
Eclipse GlassFish Security Guide,
Release 7

Eclipse GlassFish
Security Guide

Release 7

Contributed 2018 - 2024

This book provides instructions for configuring and administering Eclipse GlassFish security.

Eclipse GlassFish Security Guide, Release 7

Copyright © 2013, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

1

http://www.eclipse.org/legal/epl-2.0

Preface



This documentation is part of the Java Enterprise Edition contribution to the
Eclipse Foundation and is not intended for use in relation to Java Enterprise
Edition or Orace GlassFish. The documentation is in the process of being revised to
reflect the new Jakarta EE branding. Additional changes will be made as
requirements and procedures evolve for Jakarta EE. Where applicable, references
to Jakarta EE or Java Enterprise Edition should be considered references to Jakarta
EE.

Please see the Title page for additional license information.

The Eclipse GlassFish Security Guide provides instructions for configuring and administering
Eclipse GlassFish security.

This preface contains information about and conventions for the entire Eclipse GlassFish (Eclipse
GlassFish) documentation set.

Eclipse GlassFish 7 is developed through the GlassFish project open-source community at
https://github.com/eclipse-ee4j/glassfish. The GlassFish project provides a structured process for
developing the Eclipse GlassFish platform that makes the new features of the Jakarta EE platform
available faster, while maintaining the most important feature of Jakarta EE: compatibility. It
enables Java developers to access the Eclipse GlassFish source code and to contribute to the
development of the Eclipse GlassFish.

The following topics are addressed here:

• Eclipse GlassFish Documentation Set

• Related Documentation

• Typographic Conventions

• Symbol Conventions

• Default Paths and File Names

Eclipse GlassFish Documentation Set
The Eclipse GlassFish documentation set describes deployment planning and system installation.
For an introduction to Eclipse GlassFish, refer to the books in the order in which they are listed in
the following table.

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based
summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide Explains how to get started with the Eclipse GlassFish product.

2

https://github.com/eclipse-ee4j/glassfish
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/quick-start-guide.pdf#GSQSG

Book Title Description

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of Eclipse GlassFish.
This guide also describes differences between adjacent product
releases and configuration options that can result in incompatibility
with the product specifications.

Deployment Planning Guide Explains how to build a production deployment of Eclipse GlassFish
that meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage Eclipse GlassFish
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Security Guide Provides instructions for configuring and administering Eclipse
GlassFish security.

Application Deployment
Guide

Explains how to assemble and deploy applications to the Eclipse
GlassFish and provides information about deployment descriptors.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Jakarta EE platform) applications that are intended to run
on the Eclipse GlassFish. These applications follow the open Java
standards model for Jakarta EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of Eclipse GlassFish to
develop add-on components for Eclipse GlassFish. This document
explains how to perform only those tasks that ensure that the add-
on component is suitable for Eclipse GlassFish.

Embedded Server Guide Explains how to run applications in embedded Eclipse GlassFish and
to develop applications in which Eclipse GlassFish is embedded.

High Availability
Administration Guide

Explains how to configure Eclipse GlassFish to provide higher
availability and scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of Eclipse GlassFish.

Troubleshooting Guide Describes common problems that you might encounter when using
Eclipse GlassFish and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using
Eclipse GlassFish.

Reference Manual Provides reference information in man page format for Eclipse
GlassFish administration commands, utility commands, and related
concepts.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

3

https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/upgrade-guide.pdf#GSUPG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/administration-guide.pdf#GSADG
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/add-on-component-development-guide.pdf#GSACG
https://glassfish.org/docs/latest/add-on-component-development-guide.pdf#GSACG
https://glassfish.org/docs/latest/embedded-server-guide.pdf#GSESG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG
https://glassfish.org/docs/latest/troubleshooting-guide.pdf#GSTSG
https://glassfish.org/docs/latest/error-messages-reference.pdf#GSEMR
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html

Book Title Description

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue
Administration Guide

Explains how to set up and manage a Message Queue messaging
system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue
for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions
(JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing
Java messaging applications (Java clients) that work with Eclipse
GlassFish.

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers
working with Message Queue who want to use the C language
binding to the Message Queue messaging service to send, receive,
and process Message Queue messages.

Related Documentation
The following tutorials explain how to develop Jakarta EE applications:

• Your First Cup: An Introduction to the Jakarta EE Platform. For beginning Jakarta EE
programmers, this short tutorial explains the entire process for developing a simple enterprise
application. The sample application is a web application that consists of a component that is
based on the Enterprise JavaBeans specification, a JAX-RS web service, and a JavaServer Faces
component for the web front end.

• The Jakarta EE Tutorial. This comprehensive tutorial explains how to use Jakarta EE platform
technologies and APIs to develop Jakarta EE applications.

Javadoc tool reference documentation for packages that are provided with Eclipse GlassFish is
available as follows.

• The Jakarta EE specifications and API specification is located at https://jakarta.ee/specifications/.

• The API specification for Eclipse GlassFish 7, including Jakarta EE platform packages and
nonplatform packages that are specific to the Eclipse GlassFish product, is located at
https://glassfish.org/docs/.

For information about creating enterprise applications in the NetBeans Integrated Development
Environment (IDE), see the NetBeans Documentation, Training & Support page.

For information about the Derby database for use with the Eclipse GlassFish, see the Derby page.

The Jakarta EE Samples project is a collection of sample applications that demonstrate a broad
range of Jakarta EE technologies. The Jakarta EE Samples are bundled with the Jakarta EE Software
Development Kit (SDK) and are also available from the repository (https://github.com/eclipse-
ee4j/glassfish-samples).

4

https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://github.com/eclipse-ee4j/jakartaee-firstcup-examples
https://eclipse-ee4j.github.io/jakartaee-tutorial
https://jakarta.ee/specifications/
https://glassfish.org/docs/
https://netbeans.apache.org/kb/docs/java-ee.html
https://db.apache.org/derby/index.html
https://github.com/eclipse-ee4j/glassfish-samples
https://github.com/eclipse-ee4j/glassfish-samples

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a
real name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to
be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose New.
From the New submenu, choose
Templates.

5

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Placeho
lder

Description Default Value

as-
install

Represents the base installation directory
for Eclipse GlassFish. In configuration files,
as-install is represented as follows:
${com.sun.aas.installRoot}

• Installations on the Oracle Solaris
operating system, Linux operating
system, and Mac OS operating system:

user’s-home-
directory/glassfish7/glassfish

• Installations on the Windows operating
system:

SystemDrive:\glassfish7\glassfish

as-
install-
parent

Represents the parent of the base
installation directory for Eclipse GlassFish.

• Installations on the Oracle Solaris
operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfish7

• Installations on the Windows operating
system:

SystemDrive:\glassfish7

domain-
root-dir

Represents the directory in which a domain
is created by default.

as-install/domains/

domain-
dir

Represents the directory in which a
domain’s configuration is stored. In
configuration files, domain-dir is
represented as follows:
${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instanc
e-dir

Represents the directory for a server
instance.

domain-dir/instance-name

6

1 Administering System Security
This chapter describes general information about administering system security.

The following topics are addressed here:

• About System Security in Eclipse GlassFish

• Administering Passwords

• Administering Audit Modules

• Administering JSSE Certificates

• Administering JACC Providers

Instructions for accomplishing many of these tasks by using the Administration Console are
contained in the Administration Console online help.

Information on application security is contained in "Securing Applications" in Eclipse GlassFish
Application Development Guide.

About System Security in Eclipse GlassFish
Security is about protecting data, that is, how to prevent unauthorized access or damage to data
that is in storage or in transit. The Eclipse GlassFish is built on the Java security model, which uses a
sandbox where applications can run safely, without potential risk to systems or users. System
security affects all the applications in the Eclipse GlassFish environment.

The Jakarta EE Security API specification defines portable, plug-in interfaces for authentication and
identity stores, and a new injectable-type SecurityContext interface that provides an access point
for programmatic security. You can use the built-in implementations of the plug-in SPIs, or write
custom implementations.

System security features include the following:

• Authentication

• Authorization

• Auditing

• Firewalls

• Certificates and SSL

• Tools for Managing System Security

Authentication

Authentication is the way in which an entity (a user, an application, or a component) determines
that another entity is who it claims to be. An entity uses security credentials to authenticate itself.
The credentials might be a user name and password, a digital certificate, or something else. Usually,
servers or applications require clients to authenticate themselves. Additionally, clients might

7

https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications

require servers to authenticate themselves. When authentication is bidirectional, it is called mutual
authentication.

When an entity tries to access a protected resource, Eclipse GlassFish uses the authentication
mechanism configured for that resource to determine whether to grant access. For example, a user
can enter a user name and password in a web browser, and if the application verifies those
credentials, the user is authenticated. The user is associated with this authenticated security
identity for the remainder of the session.

Authentication Types

Within its deployment descriptors, an application can specify the type of authentication that it uses.
The Jakarta EE Security API provides an alternative mechanism for configuring the type of
authentication an application uses. See Jakarta EE Security API 1.0 specification. Eclipse GlassFish
supports specifying the following types of authentication in deployment descriptors:

BASIC

Uses the standard Basic Authentication Scheme as described in RFC 2617. The communication
protocol is HTTP (SSL optional). There is no encryption of user credentials unless using SSL. This
type is not considered to be a secure method of user authentication unless used in conjunction
with an encrypted communications channel, such as that provided by SSL.

FORM

The application provides its own custom login and error pages. The communication protocol is
HTTP (SSL optional). There is no encryption of user credentials unless using SSL.

CLIENT-CERT

The server authenticates the client using a public key certificate. The communication protocol is
HTTPS (HTTP over SSL).

DIGEST

The server authenticates a user based on a user name and a password. Unlike BASIC
authentication, the plaintext password is never sent over the network, although a hash of the
password combined with other parameters is sent. While Digest Authentication is more secure
than Basic Authentication, user names and passwords are not strongly protected, and the use of
SSL is still recommended.

JSR 375 Authentication Mechanisms and Identity Stores

The Jakarta EE Security API defines the HttpAuthenticationMechanism interface, the IdentityStore
and IdentityStoreHandler interfaces.

The HttpAuthenticationMechanism interface defines an SPI for writing authentication mechanisms
that can be provided with an application and deployed using CDI. Developers can write their own
implementations of HttpAuthenticationMechanism to support specific authentication token types or
protocols. There are also several built-in authentication mechanisms that perform BASIC, FORM,
and Custom FORM authentication. The HttpAuthenticationMechanism interface defines three
methods - validateRequest(), secureResponse(), and cleanSubject(). These methods align closely
with the methods defined by the JASPIC ServerAuth interface.

8

https://jcp.org/en/jsr/detail?id=375

The IdentityStore interface provides an abstraction of an identity store that holds user account
information including name, password, group membership, and potentially other attributes.
Implementations of the IdentityStore interface are used to validate caller credentials, typically
username and password, and retrieve and group information. There are built-in implementations
of this SPI that can validate credentials against external LDAP or Database identity stores.

IdentityStore is intended primarily for use by HttpAuthenticationMechanism implementations, but
could be used by other authentication mechanisms, such as a JASPIC ServerAuthModule, or a
container’s built-in authentication mechanisms. Though HttpAuthenticationMechanism
implementations can authenticate users in any manner they choose, the IdentityStore interface
provides a convenient mechanism. A significant advantage of using HttpAuthenticationMechanism
and IdentityStore over the declarative mechanisms defined by the Servlet specification is that it
allows an application to control the identity stores that it authenticates against, in a standard,
portable way. You can use the built-in implementations of the plug-in SPIs, or define custom
implementations.

JSR 196 Server Authentication Modules

Eclipse GlassFish implements the Servlet Container Profile of JSR 196 Java Authentication Service
Provider Interface for Containers specification.

JSR 196 defines a standard service-provider interface (SPI) for integrating authentication
mechanism implementations in message processing runtimes. JSR 196 extends the concepts of the
Java Authentication and Authorization Service (JAAS) to enable pluggability of message
authentication modules in message processing runtimes. The standard defines profiles that
establish contracts for the use of the SPI in specific contexts.

Passwords

Passwords are your first line of defense against unauthorized access to the components and data of
Eclipse GlassFish. For Information about how to use passwords for Eclipse GlassFish, see
Administering Passwords.

Master Password and Keystores

The master password is not tied to a user account and it is not used for authentication. Instead,
Eclipse GlassFish uses the master password only to encrypt the keystore and truststore for the DAS
and instances.

When you create a new Eclipse GlassFish domain, a new self-signed certificate is generated and
stored in the domain keystore and truststore. The DAS needs the master password to open these
stores at startup. Similarly, the associated server instances need the master password to open their
copy of these stores at startup.

If you use a utility such as keytool to modify the keystore or truststore, you must provide the master
password in that case as well.

The master password is a shared password and must be the same for the DAS and all instances in
the domain in order to manage the instances from the DAS. However, because Eclipse GlassFish
never transmits the master password over the network, it is up to you to keep the master password

9

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196

in sync between the DAS and instances.

If you change the master password, you can choose to enter the master password manually when
required, or save it in a file.

Understanding Master Password Synchronization

The master password is used encrypt the keystore and truststore for the DAS and instances. The
DAS needs the master password to open these stores at startup. Similarly, the associated server
instances need the master password to open their copy of these stores at startup.

Eclipse GlassFish keeps the keystore and truststore for the DAS and instances in sync, which
guarantees that all copies of the stores are encrypted with the same master password at any given
time.

However, Eclipse GlassFish does not synchronize the master password itself, and it is possible that
the DAS and instances might attempt to use different master passwords.

Consider the following potential scenario:

1. You create a domain and instances, using the default master password (changeit). As a result,
the DAS and instances have keystores and truststores encrypted using changeit.

2. You use the change-master-password subcommand on the DAS to change the master password to
ichangedit. As a result, the DAS and instance keystores and truststores are encrypted using
ichangedit.

3. Access to the keystore and truststore from an instance now requires the master password
ichangedit. You are responsible for changing the master password as needed.

If you do not use a master password file, you assume the responsibility for using the change-master-
password subcommand on the DAS and instances to keep the master passwords in sync. Be aware
that not using a master password file has additional considerations for the start-instance and start-
cluster subcommands, as described in Additional Considerations for the start-instance and start-
cluster Subcommands.

If you do use a master password file, you assume the responsibility for using the change-master-
password subcommand on the DAS and instances to keep the master password file in sync.

Using the Default Master Password

Eclipse GlassFish uses the known phrase "changeit" as the default master password. This master
password is not stored in a file. The default password is a convenience feature and provides no
additional security because it is assumed to be widely known.

All Eclipse GlassFish subcommands work as expected with the default master password and there
are no synchronization issues.

Saving the Master Password to a File

The change-master-password --savemasterpassword option indicates whether the master password
should be written to the file system in the master-password file for the DAS or a node. The default is

10

false.

For a domain, the master password is kept in domain-dir/master-password.

For a node, the master-password file is kept in nodes/node-name/agent/master-password. You can set
a master password at the node level and all instances created on that node will use that master-
password file. To do this, use the --nodedir option and provide a node name.

You might want to save the master password to the file so that the start-domain subcommand can
start the server without having to prompt the user. There are additional considerations for using a
master password with the start-instance and start-cluster subcommands, as described in
Additional Considerations for the start-instance and start-cluster Subcommands.

The master-password file is encoded, not encrypted. You must use filesystem permissions to protect
the file.

Using the Master Password When Creating a Domain

The create-domain --usemasterpassword option specifies whether the keystore is encrypted with a
master password that is built into the system, or by a user-defined master password.

• If false (default), the keystore is encrypted with a well-known password (changeit) that is built
into Eclipse GlassFish.

• If true, the subcommand obtains the master password from the AS_ADMIN_MASTERPASSWORD entry
in the password file you specified in the --passwordfile option of the asadmin utility. Or, if none
is defined, --usemasterpassword prompts the user for the master password.

Administration Password

An administration password, also known as the admin password, is used to invoke the
Administration Console and the asadmin utility. As with the default admin username, the default
admin password is usually set during installation but it can be changed. For instructions, see To
Change an Administration Password.

Encoded Passwords

Files that contain encoded passwords need to be protected using file system permissions. These
files include the following:

• domain-dir/master-password

This file contains the encoded master password and should be protected with file system
permissions 600.

• Any password file created to pass as an argument by using the --passwordfile argument to the
asadmin utility should be protected with file system permissions. Additionally, any password file
being used for a transient purpose, such as setting up SSH among nodes, should be deleted after
it has served its purpose.

For instructions, see To Set a Password From a File.

11

Web Browsers and Password Storage

Most web browsers can save login credentials entered through HTML forms. This function can be
configured by the user and also by applications that employ user credentials. If the function is
enabled, then credentials entered by the user are stored on their local computer and retrieved by
the browser on future visits to the same application. This function is convenient for users, but can
also be a security risk. The stored credentials can be captured by an attacker who gains access to
the computer, either locally or through some remote compromise. Further, methods have existed
whereby a malicious web site can retrieve the stored credentials for other applications, by
exploiting browser vulnerabilities or through application-level cross-domain attacks.

To prevent your web browser from saving login credentials for the Eclipse GlassFish
Administration Console, choose "No" or "Never for this page" when prompted by the browser
during login.

Password Aliases

To avoid storing passwords in the domain configuration file in clear text, you can create an alias for
a password. This process is also known as encrypting a password. For more information, see
Administering Password Aliases.

Single Sign-on

With single sign-on, a user who logs in to one application becomes implicitly logged in to other
applications that require the same authentication information. Single sign-on is based on groups.
Single sign-on applies to web applications configured for the same realm and virtual server. The
realm is defined by the realm-name element in the web.xml file.

On Eclipse GlassFish, single sign-on behavior can be inherited from the HTTP Service, enabled, or
disabled. By default, it is inherited from the HTTP Service. If enabled, single sign-on is enabled for
web applications on this virtual server that are configured for the same realm. If disabled, single
sign-on is disabled for this virtual server, and users must authenticate separately to every
application on the virtual server.

Authorization

Authorization, also known as access control, is the means by which users are granted permission to
access data or perform operations. After a user is authenticated, the user’s level of authorization
determines what operations the owner can perform. A user’s authorization is based on the user’s
role.

Roles

A role defines which applications and what parts of each application users can access and what
those users or groups can do with the applications. For example, in a personnel application, all
employees might be able to see phone numbers and email addresses, but only managers have
access to salary information. This application would define at least two roles: employee and manager.
Only users in the manager role are allowed to view salary information.

A role is different from a group in that a role defines a function in an application, while a group is a

12

set of users who are related in some way. For example, the personnel application specify groups
such as full-time, part-time, and on-leave. Users in these groups are all employees (the employee
role). In addition, each user has its own designation that defines an additional level of employment.

Roles are defined in the deployment descriptor for the application. The application developer or
deployer maps roles to one or more groups in the deployment descriptor for each application.
When the application is being packaged and deployed, the application specifies mappings between
users, groups, and roles, as illustrated in Figure 1-1.



By default, group principal names are mapped to roles of the same name.
Therefore, the Default Principal To Role Mapping setting is enabled by default on
the Security page of the Eclipse GlassFish Administration Console. With this setting
enabled, if the group name defined on Eclipse GlassFish matches the role name
defined in the application, there is no need to use the runtime deployment
descriptor to provide a mapping. The application server will implicitly make this
mapping, as long as the names of the groups and roles match.

Figure 1-1 Role Mapping

Java Authorization Contract for Containers

Java Authorization Contract for Containers (JACC) is the part of the Jakarta EE specification that
defines an interface for pluggable authorization providers. This enables you to set up third-party
plug-in modules to perform authorization. By default, the Eclipse GlassFish provides a simple, file-
based authorization engine that complies with the JACC specification.

This release includes Administration Console support and CLI subcommands to create (create-jacc-
provider), delete (delete-jacc-provider), and list (list-jacc-providers) JACC providers.
Administering JACC Providers for additional information.

You can also specify additional third-party JACC providers.

13

Working With the server.policy Policy File

Each Eclipse GlassFish domain has its own global Java SE policy file, located in domain-dir/config.
The file is named server.policy.

This section covers the following topics:

• Contents of server.policy

• Changing the Default Permissions

Contents of server.policy

A sample server.policy file is as follows. Comments in the file describe why various permissions are
granted. These permissions are described in more detail in the next section.


This server.policy file is presented for example purposes only and is subject to
change.

// classes in lib get all permissions by default
grant codeBase "file:${com.sun.aas.installRoot}/lib/-" {
 permission java.security.AllPermission;
};

// Core server classes get all permissions by default
grant codeBase "file:${com.sun.aas.installRoot}/modules/-" {
 permission java.security.AllPermission;
};

// Felix classes get all permissions by default
grant codeBase "file:${com.sun.aas.installRoot}/osgi/felix/bin/-" {
 permission java.security.AllPermission;
};

// iMQ classes get all permissions by default
grant codeBase "file:${com.sun.aas.imqLib}/-" {
 permission java.security.AllPermission;
};

// Derby driver classes get all permissions by default
grant codeBase "file:${com.sun.aas.derbyRoot}/lib/-" {
 permission java.security.AllPermission;
};

// permission for JDK's tools.jar to enable webservice annotation processing
// at runtime by wsgen tool:
// permission java.lang.RuntimePermission "createClassLoader";
//

14

// permission for JDK's tools.jar to sign JARs at runtime for
// Java Web Start support:
// permissions java.security.AllPermission;
// on the advice of the JDK tools folks. Should be refined later.
grant codeBase "file:${com.sun.aas.javaRoot}/lib/tools.jar" {
 permission java.security.AllPermission;
};

//Loading MBeans from anywhere, to take care of side effects of 6235678.
grant {
 permission javax.management.MBeanTrustPermission "register" ;
};
//Loading MBeans from anywhere, to take care of side effects of 6235678.

// Basic set of required permissions granted to all remaining code
// The permission FilePermission "<<ALL FILES>>", "read,write"
// allows all applications to read and write any file in the filesystem.
// It should be changed based on real deployment needs. If you know your
// applications just need to read/write a few directories consider removing
// this permission and adding grants indicating those specific directories.
// against the codebase of your application(s).
grant {
 //Workaround for bugs #6484935, 6513799
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission com.sun.corba.ee.impl.presentation.rmi.DynamicAccessPermission
"access";
 permission java.util.PropertyPermission "*", "read,write";

 permission java.lang.RuntimePermission "loadLibrary.*";
 permission java.lang.RuntimePermission "queuePrintJob";
 permission java.net.SocketPermission "*", "connect";
 permission java.io.FilePermission "<<ALL FILES>>", "read,write";

 // work-around for pointbase bug 4864405
 permission java.io.FilePermission
 "${com.sun.aas.instanceRoot}${/}lib${/}databases${/}-",
 "delete";
 permission java.io.FilePermission "${java.io.tmpdir}${/}-", "delete";

 permission java.util.PropertyPermission "*", "read";

 permission java.lang.RuntimePermission "modifyThreadGroup";
 permission java.lang.RuntimePermission "getClassLoader";
 permission java.lang.RuntimePermission "setContextClassLoader";
 permission javax.management.MBeanPermission
 "[com.sun.messaging.jms.*:*]", "*";
};

// Following grant block is only required by Connectors. If Connectors

15

// are not in use the recommendation is to remove this grant.
grant {
 permission javax.security.auth.PrivateCredentialPermission
 "javax.resource.spi.security.PasswordCredential * \"*\"","read";
};

// Following grant block is only required for Reflection. If Reflection
// is not in use the recommendation is to remove this section.
grant {
 permission java.lang.RuntimePermission "accessDeclaredMembers";
};

// Permissions to invoke CORBA objects in server
grant {
 permission com.sun.enterprise.security.CORBAObjectPermission "*", "*";
};

Changing the Default Permissions

The Eclipse GlassFish internal server code is granted all permissions. These grants are covered by
the AllPermission grant blocks to various parts of the server infrastructure code. Do not modify
these entries.

Application permissions are granted in the default grant block. These permissions apply to all code
not part of the internal server code listed previously.

The last section, beginning with the comment "Basic set of required permissions…" provides the
basic set of permissions granted to all remaining code.

Depending on your Eclipse GlassFish implementation, deleting or modifying these permissions
might be appropriate.

Specifically, the following permission allows all applications to read and write all properties and
read and write all files on the filesystem.

permission java.util.PropertyPermission "*", "read,write";
permission java.io.FilePermission "<<ALL FILES\>>", "read,write";

While this grant provides optimum flexibility, it is inherently unsecure. For enhanced security,
change this permission based on your real deployment needs.

For example, consider removing this permission and assign default read and write permissions
only to the application’s install directory (context-root). (This example uses
com.sun.aas.instanceRoot, which specifies the top level directory for a server instance.)

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-"
{
permission java.io.FilePermission "file:${com.sun.aas.instanceRoot}
/applications/MyApp/-", "read,write";

16

}

For any application that needs to read and write additional directories, you would then have to
explicitly allow such permissions by adding specific grants. In general, you should add extra
permissions only to the applications or modules that require them, not to all applications deployed
to a domain.

Additional permissions (see the embedded comments in server.policy) are granted specifically for
using connectors and reflection. If connectors or reflection are not used in a particular domain, you
should remove these permissions, because they are otherwise unnecessary.

Auditing

Auditing is the means used to capture security-related events for the purpose of evaluating the
effectiveness of security measures. Eclipse GlassFish uses audit modules to capture audit trails of all
authentication and authorization decisions. Eclipse GlassFish provides a default audit module, as
well as the ability to plug in custom audit modules. The scope of the audit module is the entire
server, which means that all the applications on the server will use the same audit module.

For administration instructions, see Administering Audit Modules.

Firewalls

A firewall controls the flow of data between two or more networks, and manages the links between
the networks. A firewall can consist of both hardware and software elements. The following
guidelines pertain primarily to Eclipse GlassFish:

• In general, firewalls should be configured so that clients can access the necessary TCP/IP ports.

For example, if the HTTP listener is operating on port 8080, configure the firewall to allow HTTP
requests on port 8080 only. Likewise, if HTTPS requests are set up for port 8081, you must
configure the firewalls to allow HTTPS requests on port 8081.

• If direct Remote Method Invocations over Internet Inter-ORB Protocol (RMI-IIOP) access from
the Internet to EJB modules is required, open the RMI-IIOP listener port as well.


Opening the RMI-IIOP listener port is strongly discouraged because it creates
security risks.

• In double firewall architecture, you must configure the outer firewall to allow for HTTP and
HTTPS transactions. You must configure the inner firewall to allow the HTTP server plug-in to
communicate with Eclipse GlassFish behind the firewall.

Certificates and SSL

The following topics are addressed here:

• Certificates

• Certificate Chains

17

• Certificate Files

• Secure Sockets Layer

• Custom Authentication of Client Certificate in SSL Mutual Authentication

For administration instructions, see Administering JSSE Certificates.

Certificates

Certificates, also called digital certificates, are electronic files that uniquely identify people and
resources on the Internet. Certificates also enable secure, confidential communication between two
entities. There are different kinds of certificates:

• Personal certificates are used by individuals.

• Server certificates are used to establish secure sessions between the server and clients through
secure sockets layer (SSL) technology.

Certificates are based on public key cryptography, which uses pairs of digital keys (very long
numbers) to encrypt, or encode, information so the information can be read only by its intended
recipient. The recipient then decrypts (decodes) the information to read it. A key pair contains a
public key and a private key. The owner distributes the public key and makes it available to anyone.
But the owner never distributes the private key, which is always kept secret. Because the keys are
mathematically related, data encrypted with one key can only be decrypted with the other key in
the pair.

Certificates are issued by a trusted third party called a Certification Authority (CA). The CA is
analogous to a passport office: it validates the certificate holder’s identity and signs the certificate
so that it cannot be forged or tampered with. After a CA has signed a certificate, the holder can
present it as proof of identity and to establish encrypted, confidential communications. Most
importantly, a certificate binds the owner’s public key to the owner’s identity.

In addition to the public key, a certificate typically includes information such as the following:

• The name of the holder and other identification, such as the URL of the web server using the
certificate, or an individual’s email address

• The name of the CA that issued the certificate

• An expiration date

Certificates are governed by the technical specifications of the X.509 format. To verify the identity
of a user in the certificate realm, the authentication service verifies an X.509 certificate, using the
common name field of the X.509 certificate as the principal name.

Certificate Chains

A certificate chain is a series of certificates issued by successive CA certificates, eventually ending
in a root CA certificate.

Web browsers are preconfigured with a set of root CA certificates that the browser automatically
trusts. Any certificates from elsewhere must come with a certificate chain to verify their validity.

18

When a certificate is first generated, it is a self-signed certificate. A self-signed certificate is one for
which the issuer (signer) is the same as the subject (the entity whose public key is being
authenticated by the certificate). When the owner sends a certificate signing request (CSR) to a CA,
then imports the response, the self-signed certificate is replaced by a chain of certificates. At the
bottom of the chain is the certificate (reply) issued by the CA authenticating the subject’s public key.
The next certificate in the chain is one that authenticates the CA’s public key. Usually, this is a self-
signed certificate (that is, a certificate from the CA authenticating its own public key) and the last
certificate in the chain.

In other cases, the CA can return a chain of certificates. In this situation, the bottom certificate in
the chain is the same (a certificate signed by the CA, authenticating the public key of the key entry),
but the second certificate in the chain is a certificate signed by a different CA, authenticating the
public key of the CA to which you sent the CSR. Then, the next certificate in the chain is a certificate
authenticating the second CA’s key, and so on, until a self-signed root certificate is reached. Each
certificate in the chain (after the first) thus authenticates the public key of the signer of the
previous certificate in the chain.

Certificate Files

During Eclipse GlassFish installation, a certificate is generated in Java Secure Socket Extension
(JSSE) format suitable for internal testing. (The certificate is self-signed.) By default, Eclipse
GlassFish stores its certificate information in certificate databases in the domain-dir/config
directory:

Keystore file

The keystore.p12 file contains Eclipse GlassFish certificate, including its private key. The keystore
file is protected with a password.
Each keystore entry has a unique alias. After installation, the Eclipse GlassFish keystore has a
single entry with an alias of s1as.
NOTE: For legacy compatibility, JKS format keystores (keystore.jks) are still supported, but
PKCS12 format is recommended as it is the industry standard and default format since Java 9.

Truststore file

The cacerts.p12 file contains the Eclipse GlassFish trusted certificates, including public keys for
other entities. For a trusted certificate, the server has confirmed that the public key in the
certificate belongs to the certificate’s owner. Trusted certificates generally include those of CAs.
NOTE: For legacy compatibility, JKS format truststores (cacerts.jks) are still supported, but
PKCS12 format is recommended.

By default, Eclipse GlassFish is configured with a keystore and truststore that will work with the
example applications and for development purposes.

Secure Sockets Layer

Secure Sockets Layer (SSL) is the most popular standard for securing Internet communications and
transactions. Secure web applications use HTTPS (HTTP over SSL). The HTTPS protocol uses
certificates to ensure confidential and secure communications between server and clients. In an
SSL connection, both the client and the server encrypt data before sending it. Data is decrypted
upon receipt.

19

When a Web browser (client) wants to connect to a secure site, an SSL handshake happens, like
this:

1. The browser sends a message over the network requesting a secure session (typically, by
requesting a URL that begins with https instead of http).

2. The server responds by sending its certificate (including its public key).

3. The browser verifies that the server’s certificate is valid and is signed by a CA whose certificate
is in the browser’s database (and who is trusted). It also verifies that the CA certificate has not
expired.

4. If the certificate is valid, the browser generates a one time, unique session key and encrypts it
with the server’s public key. The browser then sends the encrypted session key to the server so
that they both have a copy.

5. The server decrypts the message using its private key and recovers the session key.

After the handshake, the client has verified the identity of the Web site, and only the client and the
Web server have a copy of the session key. From this point forward, the client and the server use
the session key to encrypt all their communications with each other. Thus, their communications
are ensured to be secure.

The newest version of the SSL standard is called Transport Layer Security (TLS). The Eclipse
GlassFish supports the SSL 3.0 and the TLS 1.0 encryption protocols.

To use SSL, Eclipse GlassFish must have a certificate for each external interface or IP address that
accepts secure connections. The HTTPS service of most web servers will not run unless a certificate
has been installed. For instructions on applying SSL to HTTP listeners, see " To Configure an HTTP
Listener for SSL" in Eclipse GlassFish Administration Guide.

Ciphers

A cipher is a cryptographic algorithm used for encryption or decryption. SSL and TLS protocols
support a variety of ciphers used to authenticate the server and client to each other, transmit
certificates, and establish session keys.

Some ciphers are stronger and more secure than others. Clients and servers can support different
cipher suites. During a secure connection, the client and the server agree to use the strongest cipher
that they both have enabled for communication, so it is usually sufficient to enable all ciphers.

Name-based Virtual Hosts

Using name-based virtual hosts for a secure application can be problematic. This is a design
limitation of the SSL protocol itself. The SSL handshake, where the client browser accepts the server
certificate, must occur before the HTTP request is accessed. As a result, the request information
containing the virtual host name cannot be determined prior to authentication, and it is therefore
not possible to assign multiple certificates to a single IP address.

If all virtual hosts on a single IP address need to authenticate against the same certificate, the
addition of multiple virtual hosts probably will not interfere with normal SSL operations on the
server. Be aware, however, that most browsers will compare the server’s domain name against the

20

https://glassfish.org/docs/latest/administration-guide.pdf#to-configure-an-http-listener-for-ssl
https://glassfish.org/docs/latest/administration-guide.pdf#to-configure-an-http-listener-for-ssl

domain name listed in the certificate, if any (applicable primarily to official, CA-signed certificates).
If the domain names do not match, these browsers display a warning. In general, only address-
based virtual hosts are commonly used with SSL in a production environment.

Custom Authentication of Client Certificate in SSL Mutual Authentication

Release 7 of Eclipse GlassFish extends the Certificate realm to allow custom authentication and
group assignment based on the client certificate received as part of SSL mutual (two-way)
authentication.

As in previous releases, you can create only one certificate realm. However, you can now use a
convenient abstract base class to configure a JAAS LoginModule for the Certificate realm.
Specifically, your LoginModule can now extend
com.sun.appserv.security.AppservCertificateLoginModule. When you do this, you need to implement
only the authenticateUser method and call the commitUserAuthentication method to signify success.

This section describes the following topics:

• Understanding the AppservCertificateLoginModule Class

• Example AppservCertificateLoginModule Code

• Setting the JAAS Context

Understanding the AppservCertificateLoginModule Class

The AppservCertificateLoginModule class provides some convenience methods for accessing the
certificates, the application name and so forth, and for adding the group principals to the subject.
The convenience methods include the following:

getAppName()

Returns the name of the application to be authenticated. This may be useful when a single
LoginModule has to handle multiple applications that use certificates.

getCerts()

Returns the certificate chain as an array of java.security.cert.X509Certificate certificates.

getX500Principal()

Returns the Distinguished principal from the first certificate in the chain.

getSubject()

Returns the subject that is being authenticated.

commitUserAuthentication(final String[] groups)

This method sets the authentication status to success if the groups parameter is non-null. Note
that this method is called after the authentication has succeeded. If authentication failed, do not
call this method.


You do not have to extend the convenience base class, you can extend the JAAS
LoginModule javax.security.auth.spi.LoginModule instead if you so choose.

21

Example AppservCertificateLoginModule Code

Example 1-1 shows a sample instance of the AppservCertificateLoginModule class.

Take note of the following points from the example:

• The getX500Principal() method returns the subject (subject distinguished name) value from the
first certificate in the client certificate chain as an X500Principal.

• From that X500Principal, the getName() method then returns a string representation of the X.500
distinguished name using the format defined in RFC 2253.

• The example uses the getAppName() method to determine the application name. It also
determines the organizational unit (OU) from the distinguished name.

• The example concatenates the application name with the value of OU, and uses it as the group
name in the commitUserAuthentication method.

Example 1-1 Sample AppservCertificateLoginModule Code

public class CertificateLM extends AppservCertificateLoginModule {

 @Override
 protected void authenticateUser() throws LoginException {
 // Get the distinguished name from the X500Principal.
 String dname = getX500Principal().getName();
 StringTokenizer st = new StringTokenizer(dname, "B \t\n\r\f,");
 while (st.hasMoreTokens()) {
 String next = st.nextToken();
 // Set the appname:OU as the group.
 // At this point, one has the application name and the DN of
 // the certificate. A suitable login decision can be made here.
 if (next.startsWith("OU=")) {
 commitUserAuthentication(new String[]{getAppName() + ":" + next.substring
(3)});
 return;
 }
 }
 throw new LoginException("No OU found.");
 }
}

Setting the JAAS Context

After you create your LoginModule, you must plug it in to a jaas-context, which you then specify as
a parameter to the certificate realm in Eclipse GlassFish.

To do this, perform the following steps:

1. Specify a new jaas-context for the Certificate realm in the file domain-dir/config/login.conf. For
example, using the CertificateLM class from Example AppservCertificateLoginModule Code:

22

certRealm {
 com.sun.blogs.certificate.login.CertificateLM required;
};

2. Specify this jaas-context as a parameter to the set subcommand in the configs.config.server-
config.security-service.auth-realm.certificate.property.jaas-context=<jaas-context-name>
property. For example:

asadmin> set configs.config.server-config.security-service.auth-
realm.certificate.property.jaas-context=certRealm

configs.config.server-config.security-service.auth-realm.certificate.property.jaas-
context=certRealm

Command set executed successfully.

3. Optionally, get the value you just set to make sure that it is correct.

asadmin> get configs.config.server-config.security-service.auth-
realm.certificate.property.jaas-context

configs.config.server-config.security-service.auth-realm.certificate.property.jaas-
context=certRealm

Command get executed successfully.

Tools for Managing System Security

Eclipse GlassFish provides the following tools for managing system security:

Administration Console

The Administration Console is a browser-based utility used to configure security for the entire
server. Tasks include managing certificates, users, groups, and realms, and performing other
system-wide security tasks. For a general introduction to the Administration Console, see
"Administration Console" in Eclipse GlassFish Administration Guide.

The asadmin utility

The asadmin command-line utility performs many of the same tasks as the Administration
Console. You might be able to do some things with the asadmin utility that you cannot do with the
Administration Console. For a general introduction to asadmin, see "asadmin Utility" in Eclipse
GlassFish Administration Guide.

The keytool utility

The keytool Java Platform, Standard Edition (Java SE) command-line utility is used for managing
digital certificates and key pairs. For more information, see Administering JSSE Certificates.

The policytool utility

The policytool Java SE graphical utility is used for managing system-wide Java security policies.
As an administrator, you rarely use policytool.

23

https://glassfish.org/docs/latest/administration-guide.pdf#administration-console
https://glassfish.org/docs/latest/administration-guide.pdf#asadmin-utility

Administering Passwords
There are multiple ways to administer passwords. You can rely on administrators to keep
passwords secret and change the passwords regularly. You can set up files for storing passwords so
that asadmin subcommands can access these files rather than having users type the commands. You
can encrypt passwords by setting up aliases so that sensitive passwords are not visible in the
domain.xml file.

The following topics are addressed here:

• To Change the Master Password

• Additional Considerations for the start-instance and start-cluster Subcommands

• Using start-instance and start-cluster With a Password File

• To Change an Administration Password

• To Set a Password From a File

• Administering Password Aliases

To Change the Master Password

The master password gives access to the keystore used with the domain. This password is not tied
to a UNIX user. You should treat this overall shared password as sensitive data. Eclipse GlassFish
never uses it for authentication and never transmits it over the network.

You can choose to type the password manually when required, or to obscure the password in a
password file. If there is no password file, you are prompted for the master password. If there is a
password file, but you want to change access to require prompting, remove the file. The default
master password is changeit.

When changing the master password, it has to be changed on all nodes as well as on the DAS. The
master password on nodes is only stored once in the node, for all instances that are on that node.

Use the change-master-password subcommand in local mode to modify the master password.



If you change the master password and are not using a master password file, the
start-instance and start-cluster subcommands are not able to determine the
master password. In this case, you must start those instances locally by using start-
local-instance.

When the master password is saved, it is saved in the master-password file.

Before You Begin

This subcommand will not work unless the domain is stopped.

1. Stop the domain whose password you are changing.

See "To Stop a Domain" in Eclipse GlassFish Administration Guide.

24

https://glassfish.org/docs/latest/administration-guide.pdf#to-stop-a-domain

2. Change the master password for the domain by using the change-master-password subcommand.

You are prompted for the old and new passwords. All dependent items are re-encrypted.

3. Start the domain.

See "To Start a Domain" in Eclipse GlassFish Administration Guide.

Example 1-2 Changing the Master Password

The change-master-password subcommand is interactive in that you are prompted for the old master
password as well as the new master password. This example changes the master password for
domain44ps:

asadmin> change-master-password domain44ps

If you have already logged into the domain using the login subcommand, you are prompted for the
new master password:

Please enter the new master password>
Please enter the new master password again>

If you are not logged into the domain, you are prompted for both the old and the new master
passwords:

Please enter the master password>
Please enter the new master password>
Please enter the new master password again>

Information similar to the following is displayed:

Master password changed for domain44ps

See Also

You can also view the full syntax and options of the subcommand by typing asadmin --help change-
master-password at the command line.

Additional Considerations for the start-instance and start-cluster
Subcommands

If you change the master password for DAS, the start-domain and start-local-instance
subcommands allow you to provide it during domain or instance startup in one of three ways:

• Via the master-password file

• By entering it interactively

25

https://glassfish.org/docs/latest/reference-manual.pdf#change-master-password
https://glassfish.org/docs/latest/administration-guide.pdf#to-start-a-domain
https://glassfish.org/docs/latest/reference-manual.pdf#login

• Via the asadmin passwordfile

The start-instance and start-cluster subcommands are more problematic. If you create a domain
with a master password other than the default, an associated remote instance or cluster must have
access to the master password in order to start. However, for security reasons Eclipse GlassFish
never transmits the master password or the master password file over the network.

Consider the following scenario:

1. Change the master password on the DAS and save it with --savemasterpassword.

2. Create an instance on another host using the subcommand create-instance. Eclipse GlassFish
copies the keystore and truststore from the DAS to the instance, but it does not copy the master
password file.

3. Try to start the instance using the start-instance subcommand. An error results.

The start-instance command is looking for the file master-password in the node directory on the
instance machine, and it is not there by default. Therefore, the subcommand fails.

You can use the change-master-password subcommand to make sure the correct password is used in
this password file, as described in Using start-instance and start-cluster With a Password File.



The start-instance and start-cluster subcommands do not include any other way
for you to provide the password. If you change the master password and are not
using a master password file, the start-instance and start-cluster subcommands
are not able to determine the master password. In this case, you must start the
instances locally by using start-local-instance.

Using start-instance and start-cluster With a Password File

Assume that you have changed the master password on the DAS and you want to make the same
change for all instances.

The start-instance and start-cluster subcommands automatically use the master password file if
it exists in the instance filesystem. You can use the change-master-password subcommand to make
sure the password file exists and that the correct password is used.

1. From the DAS, create a domain and set the master password.
asadmin> create-domain --savemasterpassword true domain-name

2. Start the domain.
asadmin> start-domain domain-name

3. Create a node that is enabled for communication over secure shell (SSH).
asadmin> create-node-ssh --nodehost host-name --installdir/some-dir node-name

4. Create an instance on the node.
asadmin> create-instance --node node-name instance-name

5. Before you start the instance, on the instance machine run change-master-password with the
---savemasterpassword option to create a file called master-password in the agents directory to
access the keystores. (The start-instance subcommand is looking for a file called master-

26

password in the agents directory to access the stores.)
asadmin> change-master-password --savemasterpassword true --nodedir /some-dir node-name
You are prompted to enter the current and new master password:

Enter the current master password>
Enter the new master password>
Enter the new master password again>
Command change-master-password executed successfully.

Remember that when you created the domain you specified a new master password. This
master password was then used to encrypt the keystore and truststore for the DAS, and these
stores were copied to the instance as a result of the create-instance subcommand.

Therefore, enter the master password you set when you created the domain as both the current
master password and again as the new master password. You enter it as the new master
password because you do not want to change the master password for the instance and make it
out of sync with the DAS.

6. Run start-instance from the DAS.

asadmin> start-instance instance-name

The master password file is associated with the node and not with an instance. After the master
password file exists in the node directory on the instance machine, additional instances can be
created, started and stopped from the DAS.

To Change an Administration Password

Use the change-admin-password subcommand in remote mode to change an administration
password. The default administration user is admin. You are prompted for the old and new admin
passwords, with confirmation. The passwords are not echoed to the display.



For the zip bundle of Eclipse GlassFish 7, the default administrator login is admin,
with no password, which means that no login is required. For Eclipse GlassFish,
you are prompted to provide a password for the admin user when you start the
domain for the first time.


If there is a single user called admin that does not have a password, you are not
prompted for login information. Any other situation requires login.


If secure administration is enabled as described in Running Secure Admin, you
cannot change an administration password to a blank value.

Encrypting the admin password is strongly encouraged.

1. Change the admin password by using the change-admin-password subcommand.

2. Enter the old and new admin passwords when prompted.

27

https://glassfish.org/docs/latest/reference-manual.pdf#change-admin-password

3. Restart Eclipse GlassFish.
See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

Example 1-3 Changing the Admin Password

This example changes the admin password for user anonymous from adminadmin to newadmin:

asadmin> change-admin-password --username anonymous

You are prompted to enter the old and the new admin passwords:

Enter admin password>adminadmin
Enter new admin password>newadmin
Enter new admin password again>newadmin

Information similar to the following is displayed:

Command change-admin-password executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help change-
admin-password at the command line.

To Set a Password From a File

Instead of typing the password at the command line, you can access the password for a command
from a file such as passwords.txt. The --passwordfile option of the asadmin utility takes the name of
the file that contains the passwords. The entry for a password in the file must have the AS_ADMIN_
prefix followed by the password name in uppercase letters.



Any password file created to pass as an argument by using the --passwordfile
argument to the asadmin utility should be protected with file system permissions.
Additionally, any password file being used for a transient purpose, such as setting
up SSH among nodes, should be deleted after it has served its purpose.

For a list of the types of passwords that can be specified, see the asadmin(1M) help page.

AS_ADMIN_MASTERPASSWORD
AS_ADMIN_USERPASSWORD
AS_ADMIN_ALIASPASSWORD

1. Edit the password file.
For example, to specify the password for the domain administration server (DAS), add an entry
similar to the following to the password file, where adminadmin is the administrator password:

28

https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin

AS_ADMIN_PASSWORD=adminadmin

2. Save the password file.
You can now specify the password file in an asadmin subcommand. In this example,
passwords.txt is the file that contains the password:

asadmin>delete-jdbc-resource --user admin --passwordfile passwords.txt
jdbc/DerbyPool

Troubleshooting

If AS_ADMIN_PASSWORD has been exported to the global environment, specifying the --passwordfile
option will produce a warning about using the --passwordfile option. To prevent this warning
situation from happening, unset AS_ADMIN_PASSWORD.

Administering Password Aliases

A password alias is used to indirectly access a password so that the password itself does not appear
in cleartext in the domain’s domain.xml configuration file.

Storing passwords in cleartext format in system configuration files is common in many open source
projects. In addition to Eclipse GlassFish, Apache Tomcat, Maven, and Subversion, among others,
store and pass passwords in cleartext format. However, storing and passing passwords in cleartext
can be a security risk, and may violate some corporate security policies. In such cases, you can use
password aliases.

The following topics are addressed here:

• To Create a Password Alias

• To List Password Aliases

• To Delete a Password Alias

• To Update a Password Alias

To Create a Password Alias

Use the create-password-alias subcommand in remote mode to create an alias for a password in the
domain’s keystore. The password corresponding to the alias name is stored in an encrypted form in
the domain configuration file. The create-password-alias subcommand takes both a secure
interactive form, in which users are prompted for all information, and a more script-friendly form,
in which the password is propagated on the command line.

You can also use the set subcommand to remove and replace the password in the configuration file.
For example:

asadmin set --user admin server.jms-service.jms-host.default_JMS_host.

29

https://glassfish.org/docs/latest/reference-manual.pdf#set

admin-password='${ALIAS=jms-password}'

1. Ensure that the server is running. Remote subcommands require a running server.

2. Go to the directory where the configuration file resides.
By default, the configuration file is located in domain-dir/config.

3. Create the password alias by using the create-password-alias subcommand.

4. Type the password for the alias when prompted.

5. Add the alias to a password file.
For example, assume the use of a password file such as passwords.txt. Assume further that you
want to add an alias for the AS_ADMIN_USERPASSWORD entry that is read by the create-file-user
subcommand. You would add the following line to the password file:
AS_ADMIN_USERPASSWORD=${ALIAS=user-password-alias}, where user-password-alias is the new
password alias.

6. To continue the example of the previous step, you would then run the create-file-user
subcommand.
You could use this method to create several users (user1, user2, and so forth), all with the same
password.
asadmin> --passwordfile``passwords.txt create-file-user user1

Example 1-4 Creating a Password Alias

This example creates the new jms-password alias for the admin user:

asadmin> create-password-alias --user admin jms-password

You are prompted to type the password for the alias:

Please enter the alias password>secret-password
Please enter the alias password again>secret-password
Command create-password-alias executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
password-alias at the command line.

To List Password Aliases

Use the list-password-aliases subcommand in remote mode to list existing the password aliases.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List password aliases by using the list-password-aliases subcommand.

Example 1-5 Listing Password Aliases

30

https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias
https://glassfish.org/docs/latest/reference-manual.pdf#create-file-user
https://glassfish.org/docs/latest/reference-manual.pdf#create-file-user
https://glassfish.org/docs/latest/reference-manual.pdf#list-password-aliases

This example lists the existing password aliases:

asadmin> list-password aliases
jmspassword-alias
Command list-password-aliases executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
password-aliases at the command line.

To Delete a Password Alias

Use the delete-password-alias subcommand in remote mode to delete an existing password alias.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List all aliases by using the list-password-aliases subcommand.

3. Delete a password alias by using the list-password-aliases subcommand.

Example 1-6 Deleting a Password Alias

This example deletes the password alias jmspassword-alias:

asadmin> delete-password-alias jmspassword-alias
Command list-password-aliases executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
password-alias at the command line.

To Update a Password Alias

Use the update-password-alias subcommand in remote mode to change the password for an existing
password alias. The update-password-alias subcommand takes both a secure interactive form, in
which the user is prompted for all information, and a more script-friendly form, in which the
password is propagated on the command line.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Update an alias by using the update-password-alias subcommand.

3. Type the password when prompted.

Example 1-7 Updating a Password Alias

This example updates the password for the jmspassword-alias alias:

31

https://glassfish.org/docs/latest/reference-manual.pdf#list-password-aliases
https://glassfish.org/docs/latest/reference-manual.pdf#list-password-aliases
https://glassfish.org/docs/latest/reference-manual.pdf#update-password-alias

asadmin> update-password-alias jsmpassword-alias

You are prompted to type the new password for the alias:

Please enter the alias password>new-secret-password
Please enter the alias password again>new-secret-password
Command update-password-alias executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help update-
password-alias at the command line.

Administering Audit Modules
The following topics are addressed here:

• To Create an Audit Module

• To List Audit Modules

• To Delete an Audit Module

To Create an Audit Module

Use the create-audit-module subcommand in remote mode to create an audit module for the add-on
component that implements the audit capabilities.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create an audit module by using the create-audit-module subcommand.

Information about properties for this subcommand is included in this help page.

Example 1-8 Creating an Audit Module

This example creates an audit module named sampleAuditModule:

asadmin> create-audit-module
--classname com.sun.appserv.auditmodule --property defaultuser=
admin:Password=admin sampleAuditModule
Command create-audit-module executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
audit-module at the command line.

32

https://glassfish.org/docs/latest/reference-manual.pdf#create-audit-module

To List Audit Modules

Use the list-audit-modules subcommand in remote mode to list the audit modules on one of the
following targets:

• Server instance, server (the default)

• Specified server instance

• Specified configuration

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the audit modules by using the list-audit-modules subcommand.

Example 1-9 Listing Audit Modules

This example lists the audit modules on localhost:

asadmin> list-audit-modules
audit-module : default
audit-module : sampleAuditModule
Command list-audit-modules executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
audit-modules at the command line.

To Delete an Audit Module

Use the delete-audit-module subcommand in remote mode to delete an existing audit module.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the audit modules by using the list-audit-modules subcommand.

3. Delete an audit module by using the delete-audit-module subcommand.

Example 1-10 Deleting an Audit Module

This example deletes sampleAuditModule:

asadmin> delete-audit-module sampleAuditModule
Command delete-audit-module executed successfully.

Administering JSSE Certificates
In the developer profile, the Eclipse GlassFish 7 uses the JSSE format on the server side to manage
certificates and key stores. In all profiles, the client side (appclient or stand-alone) uses the JSSE
format.

33

https://glassfish.org/docs/latest/reference-manual.pdf#list-audit-modules
https://glassfish.org/docs/latest/reference-manual.pdf#list-audit-modules
https://glassfish.org/docs/latest/reference-manual.pdf#delete-audit-module

The Java SE SDK ships with the keytool utility, which enables you to set up and work with Java
Secure Socket Extension (JSSE) digital certificates. You can administer public/private key pairs and
associated certificates, and cache the public keys (in the form of certificates) of their
communicating peers.

The following topics are addressed here:

• To Generate a Certificate by Using keytool

• To Sign a Certificate by Using keytool

• To Delete a Certificate by Using keytool

To Generate a Certificate by Using keytool

By default, the keytool utility creates a keystore file in the directory where the utility is run.

Before You Begin

To run the keytool utility, your shell environment must be configured so that the Java SE /bin
directory is in the path, otherwise the full path to the utility must be present on the command line.

1. Change to the directory that contains the keystore and truststore files.
Always generate the certificate in the directory containing the keystore and truststore files. The
default is domain-dir/config.

2. Generate the certificate in the keystore file, keystore.p12, using the following command format:

keytool -genkey -alias keyAlias -keyalg RSA -keypass changeit
 -storepass changeit -keysize 4096 -keystore keystore.p12

Use any unique name as your keyAlias. If you have changed the keystore or private key
password from the default (changeit), substitute the new password for changeit. The default key
password alias is s1as.

A prompt appears that asks for your name, organization, and other information.

3. Export the generated certificate to the server.cer file (or client.cer if you prefer), using the
following command format:

keytool -export -alias keyAlias -storepass changeit
 -file server.cer -keystore keystore.p12

4. If a certificate signed by a certificate authority is required, see To Sign a Certificate by Using
keytool.

5. Create the cacerts.p12 truststore file and add the certificate to the truststore, using the following
command format:

keytool -import -v -trustcacerts -alias keyAlias

34

 -file server.cer -keystore cacerts.p12
 -keypass changeit

If you have changed the keystore or private key password from the default (changeit), substitute
the new password.

Information about the certificate is displayed and a prompt appears asking if you want to trust
the certificate.

6. Type yes, then press Enter.

Information similar to the following is displayed:

Certificate was added to keystore
[Saving cacerts.p12]

7. To apply your changes, restart Eclipse GlassFish. See "To Restart a Domain" in Eclipse GlassFish
Administration Guide.

Example 1-11 Creating a Self-Signed Certificate in a JKS Keystore by Using an RSA Key Algorithm


This example shows the legacy JKS format. For new deployments, consider using
PKCS12 format as shown in Example 1-11a.

RSA is public-key encryption technology developed by RSA Data Security, Inc.

keytool -genkey -noprompt -trustcacerts -keyalg RSA -alias ${cert.alias}
-dname ${dn.name} -keypass ${key.pass} -keystore ${keystore.file}
-storepass ${keystore.pass}

Example 1-11a Creating a Self-Signed Certificate in a PKCS12 Keystore by Using an RSA Key
Algorithm

PKCS12 is the recommended keystore format and has been the default since Java 9. RSA is public-
key encryption technology developed by RSA Data Security, Inc.

keytool -genkey -noprompt -trustcacerts -keyalg RSA -alias ${cert.alias}
-dname ${dn.name} -keypass ${key.pass}
-keystore ${keystore.file} -storepass ${keystore.pass}

Example 1-12 Creating a Self-Signed Certificate in a JKS Keystore by Using a Default Key Algorithm

keytool -genkey -noprompt -trustcacerts -alias ${cert.alias} -dname
${dn.name} -keypass ${key.pass} -keystore ${keystore.file} -storepass
${keystore.pass}

35

https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain

Example 1-13 Displaying Available Certificates From a JKS Keystore

keytool -list -v -keystore ${keystore.file} -storepass ${keystore.pass}

Example 1-14 Displaying Certificate information From a JKS Keystore

keytool -list -v -alias ${cert.alias} -keystore ${keystore.file}
-storepass ${keystore.pass}

See Also

To Sign a Certificate by Using keytool

After creating a certificate, the owner must sign the certificate to prevent forgery. E-commerce sites,
or those for which authentication of identity is important, can purchase a certificate from a well-
known Certificate Authority (CA).


If authentication is not a concern, for example if private secure communications
are all that is required, you can save the time and expense involved in obtaining a
CA certificate by using a self-signed certificate.

1. Delete the default self-signed certificate:

keytool -delete -alias s1as -keystore keystore.p12 -storepass <store_passwd>

where <store_passwd> is the password for the keystore. For example, "mypass". Note that s1as is
the default alias of the Eclipse GlassFish keystore.

2. Generate a new key pair for the application server:

keytool -genkeypair -keyalg <key_alg> -keystore keystore.p12
-validity <val_days> -alias s1as

where <key_alg> is the algorithm to be used for generating the key pair, for example RSA, and
<val_days> is the number of days that the certificate should be considered valid. For example,
365.

In addition to generating a key pair, the command wraps the public key into a self-signed
certificate and stores the certificate and the private key in a new keystore entry identified by
the alias.

For HTTPS hostname verification, it is important to ensure that the name of the certificate (CN)
matches the fully-qualified hostname of your site (fully-qualified domain name). If the names
do not match, clients connecting to the server will see a security alert stating that the name of
the certificate does not match the name of the site.

36

3. Generate a Certificate Signing Request (CSR):

keytool -certreq -alias s1as -file <certreq_file> -keystore keystore.p12
-storepass <store_passwd>

where <certreq_file> is the file in which the CSR is stored (for example, s1as.csr) and
<store_passwd> is the password for the keystore. For example, changeit.

4. Submit the CSR to a Certificate Authority such as VeriSign (at http://www.verisign.com/ssl/buy-
ssl-certificates/index.html). In response, you should receive a signed server certificate. Make
sure to import into your browser the CA certificate of the CA (if not already present) and any
intermediate certificates indicated by the CA in the reply.

5. Store the signed server certificate from the CA, including the markers -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE-----, into a file such as s1as.cert. Download the CA
certificate and any intermediate CA certificates and store them in local files.

6. Import the CA certificate (if not already present) and any intermediate CA certificates (if not
already present) indicated by the CA into the truststore cacerts.p12:

keytool -import -v -trustcacerts -alias <CA-Name> -file ca.cert
 -keystore cacerts.p12 -storepass <store_passwd>

7. Replace the original self-signed certificate with the certificate you obtained from the CA, as
stored in a file such as s1as.cert:

keytool -import -v -trustcacerts -alias s1as -file s1as.cert
 -keystore keystore.p12 -storepass <store_passwd>

When you import the certificate using the same original alias s1as, keytool treats it as a
command to replace the original certificate with the certificate obtained as a reply to a CSR.

After running the command, you should see that the certificate s1as in the keystore is no longer
the original self-signed certificate, but is now the response certificate from the CA.

Consider the following example that compares an original s1as certificate with a new s1as
certificate obtained from VeriSign:

Original s1as (self-signed):

Owner: CN=FQDN, OU=Sun Java System Application Server, O=Sun
Microsystems, L=Santa Clara, ST=California, C=US
Issuer: CN=KUMAR, OU=Sun Java System Application Server, O=Su
n Microsystems, L=Santa Clara, ST=California, C=US
Serial number: 472acd34
Valid from: Fri Nov 02 12:39:40 GMT+05:30 2007 until: Mon Oct
30 12:39:40 GMT+05:30 2017

37

http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html

New s1as (contains signed cert from CA):

Owner: CN=FQDN, OU=Terms of use at www.verisign.com/cps/test
ca (c)05, OU=Sun Java System Application Server, O=Sun Micros
ystems, L=Santa Clara, ST=California, C=US
Issuer: CN=VeriSign Trial Secure Server Test CA, OU=Terms of
use at https://www.verisign.com/cps/testca (c)05, OU="For Test
Purposes Only. No assurances.", O="VeriSign, Inc.", C=US
Serial number: 1375de18b223508c2cb0123059d5c440
Valid from: Sun Nov 11 05:30:00 GMT+05:30 2007 until: Mon Nov
26 05:29:59 GMT+05:30 2007

8. To apply your changes, restart Eclipse GlassFish.

See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

Example 1-15 Importing an RFC/Text-Formatted Certificate Into a JKS Keystore

Certificates are often stored using the printable encoding format defined by the Internet Request
for Comments (RFC) 1421 standard instead of their binary encoding. This certificate format, also
known as Base 64 encoding, facilitates exporting certificates to other applications by email or
through some other mechanism.

keytool -import -noprompt -trustcacerts -alias ${cert.alias} -file
${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

Example 1-16 Exporting a Certificate From a JKS Keystore in PKCS7 Format

The reply format defined by the Public Key Cryptography Standards #7, Cryptographic Message
Syntax Standard, includes the supporting certificate chain in addition to the issued certificate.

keytool -export -noprompt -alias ${cert.alias} -file ${cert.file}
-keystore ${keystore.file} -storepass ${keystore.pass}

Example 1-17 Exporting a Certificate From a JKS Keystore in RFC/Text Format

keytool -export -noprompt -rfc -alias ${cert.alias} -file
${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

See Also

To Delete a Certificate by Using keytool

Use the keytool delete command to delete an existing certificate.

Delete a certificate using the following command format:

38

https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain

keytool -delete
 -alias keyAlias
 -keystore keystore-name
 -storepass password

Example 1-18 Deleting a Certificate From a JKS Keystore

keytool -delete -noprompt -alias ${cert.alias} -keystore ${keystore.file}
-storepass ${keystore.pass}

See Also

Administering JACC Providers
The Java Authorization Contract for Containers (JACC) is part of the J2EE 1.4 specification that
defines an interface for pluggable authorization providers. This enables the administrator to set up
third-party plug-in modules to perform authorization.

Eclipse GlassFish includes Administration Console support and subcommands to support JACC
providers, as follows:

• create create-jacc-provider

• delete delete-jacc-provider

• list list-jacc-providers

The default Eclipse GlassFish installation includes two JACC providers, named default and simple.
You should not delete these default providers. Any JACC providers you create with the create-jacc-
provider subcommand are in addition to these two default providers.

The Eclipse GlassFish creates a JSR-115-compliant JACC provider that you can use with third-party
authorization modules for applications running in Eclipse GlassFish. The JACC provider is created
as a jacc-provider element within the security-service element in the domain’s domain.xml file.

Administering JACC Providers From the Administration Console

To use the Administration Console to administer JACC providers, perform the following steps:

1. Select Configurations and expand the entry.

2. Select the server configuration for which you want to administer JACC providers and expand
the entry.

3. Select Security and expand the entry.

4. Select JACC Providers. The JACC Providers page is displayed. The existing JACC providers are
shown on this page.

39

5. To create a new provider, click New.

Enter the Name, Policy Configuration (the class that implements the policy configuration
factory) and the Policy Provider (the class that implements the policy factory) for the new JACC
provider. You can also enter optional properties (name/value) for the provider.

6. To delete an existing JACC provider, select that provider and click Delete.

Administering JACC Providers from the Command Line

To use the command line to administer JACC providers, perform the following steps:

1. To create a JACC provider, use the create-jacc-provider subcommand. The following example
shows how to create a JACC provider named testJACC on the default server target.

asadmin> create-jacc-provider
 --policyproviderclass
org.glassfish.exousia.modules.locked.SimplePolicyProvider
 --policyconfigfactoryclass com.sun.enterprise.security.provider.PolicyCon
figurationFactoryImpl
 testJACC

2. To delete a JACC provider, use the create-jacc-provider subcommand. The following example
shows how to delete a JACC provider named testJACC from the default domain:

asadmin> delete-jacc-provider testJACC

3. To list the available providers, use the list-jacc-providers subcommand. The following
example shows how to list JACC providers for the default domain:

asadmin> list-jacc-providers
default
simple

40

Command list-jacc-providers executed successfully.

41

2 Administering User Security
This chapter provides instructions for administering user security in the Eclipse GlassFish
environment by using the asadmin command-line utility. Eclipse GlassFish enforces its
authentication and authorization policies upon realms, users, and groups. This chapter assumes
that you are familiar with security features such as authentication, authorization, and certificates.
If you are not, see Administering System Security.

The following topics are addressed here:

• Administering Authentication Realms

• Administering File Users

Instructions for accomplishing these tasks by using the Administration Console are contained in the
Administration Console online help.



JSR-375 defines the concept of an Identity Store, and an SPI interface for writing
providers that can authenticate users against Identity Stores. It also provides two
built-in providers. This mechanism is conceptually similar to Authentication
Realms, but can be configured and managed by applications. See Working with
Identity Stores in The Jakarta EE Tutorial for more information about Identity
Stores.

Administering Authentication Realms
The following topics are addressed here:

• Overview of Authentication Realms

• To Create an Authentication Realm

• To List Authentication Realms

• To Update an Authentication Realm

• To Delete an Authentication Realm

• To Configure a JDBC or Digest Authentication Realm

• To Configure LDAP Authentication with OID

• To Configure LDAP Authentication with OVD

• To Enable LDAP Authentication on the Eclipse GlassFish DAS

Overview of Authentication Realms

An authentication realm, also called a security policy domain or security domain, is a scope over
which the Eclipse GlassFish defines and enforces a common security policy. Eclipse GlassFish is
preconfigured with the file, certificate, and administration realms. In addition, you can set up LDAP,
JDBC, digest, Oracle Solaris, or custom realms. An application can specify which realm to use in its
deployment descriptor. If the application does not specify a realm, Eclipse GlassFish uses its default

42

https://eclipse-ee4j.github.io/jakartaee-tutorial/#working-with-identity-stores
https://eclipse-ee4j.github.io/jakartaee-tutorial/#working-with-identity-stores

realm (file).

File realm

Eclipse GlassFish stores user credentials locally in a file named keyfile. The file realm is the
initial default realm.

Administration realm

The administration realm is also a file realm and stores administrator user credentials locally in
a file named admin-keyfile.

Certificate realm

Eclipse GlassFish stores user credentials in a certificate database. When using the certificate
realm, the server uses certificates with the HTTPS protocol to authenticate web clients.

LDAP realm

Eclipse GlassFish can get user credentials from a Lightweight Directory Access Protocol (LDAP)
server. LDAP is a protocol for enabling anyone to locate organizations, individuals, and other
resources such as files and devices in a network, whether on the public Internet or on a
corporate intranet.
See To Configure LDAP Authentication with OID for instructions on configuring Eclipse GlassFish
to work with an OVD/OID LDAP provider.



By default, Eclipse GlassFish performs LDAP group search. If you have not
created any groups in LDAP, the search fails.

To disable LDAP group search in LDAP user name search, set the
com.oracle.enterprise.security.auth.realm.ldap.DISABLEGROUP_SEARCH Java
system property to true in the required Eclipse GlassFish instance or cluster
configurations:

asadmin> create-jvm-options --target=target
-Dcom.oracle.enterprise.security.auth.realm.ldap.DISABLEGROUP_SEARCH
=true

where target is the Eclipse GlassFish instance or cluster for which you are
disabling LDAP group search. For more information about the create-jvm-
options subcommand, see the Eclipse GlassFish Reference Manual.

JDBC realm

Eclipse GlassFish gets user credentials from a database. The server uses the database
information and the enabled JDBC realm option in the configuration file.

Digest realm

Digest Authentication authenticates a user based on a user name and a password. However, the
authentication is performed by transmitting the password in an encrypted form.

43

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Oracle Solaris realm

Eclipse GlassFish gets user credentials from the Oracle Solaris operating system. This realm is
supported on the Oracle Solaris 9 and Oracle Solaris 10 operating systems. Consult your Oracle
Solaris documentation for information about managing users and groups in the Oracle Solaris
realm.

PAM realm

A Pluggable Authentication Module (PAM) realm allows applications deployed on Eclipse
GlassFish to authenticate users against a native Unix (Solaris/Linux/Mac OS) users list. PAM
realms use the class name
com.sun.enterprise.security.ee.authentication.glassfish.pam.PamRealm and the JAAS Context
pamRealm.
This realm is supported on all Unix Operating Systems, including the Oracle Solaris 9 and Oracle
Solaris 10 operating systems

Custom realm

You can create other repositories for user credentials, such as a relational database or third-
party components. For more information about custom realms, see the Administration Console
online help. For instructions on creating a custom realm, see " Creating a Custom Realm" in
Eclipse GlassFish Application Development Guide.

The Eclipse GlassFish authentication service can govern users in multiple realms.

To Create an Authentication Realm

Use the create-auth-realm subcommand in remote mode to create an authentication realm.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a realm by using the create-auth-realm subcommand.
Information about properties for this subcommand is included in this help page.

Example 2-1 Creating a Realm

This example creates a realm named db.

asadmin> create-auth-realm --classname com.iplanet.ias.security.
auth.realm.DB.Database --property defaultuser=admin:Password=admin db
Command create-auth-realm executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
auth-realm at the command line.

For information on creating a custom realm, see "Creating a Custom Realm" in Eclipse GlassFish
Application Development Guide.

44

https://glassfish.org/docs/latest/application-development-guide.pdf#creating-a-custom-realm
https://glassfish.org/docs/latest/reference-manual.pdf#create-auth-realm
https://glassfish.org/docs/latest/application-development-guide.pdf#creating-a-custom-realm

To List Authentication Realms

Use the list-auth-realms subcommand in remote mode to list the existing authentication realms.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List realms by using the list-auth-realms subcommand.

Example 2-2 Listing Realms

This example lists the authentication realms on localhost.

asadmin> list-auth-realms
db
certificate
file
admin-realm
Command list-auth-realms executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
auth-realms at the command line.

To Update an Authentication Realm

Use the set subcommand to modify an existing authentication realm.

 A custom realm does not require server restart.

1. List realms by using the list-auth-realms subcommand.

2. Modify the values for the specified thread pool by using the set subcommand.

The thread pool is identified by its dotted name.

3. To apply your changes, restart Eclipse GlassFish.

See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

To Delete an Authentication Realm

Use the delete-auth-realm subcommand in remote mode to delete an existing authentication realm.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List realms by using the list-auth-realms subcommand.

3. If necessary, notify users that the realm is being deleted.

4. Delete the realm by using the delete-auth-realm subcommand.

5. To apply your changes, restart Eclipse GlassFish. See "To Restart a Domain" in Eclipse GlassFish

45

https://glassfish.org/docs/latest/reference-manual.pdf#list-auth-realms
https://glassfish.org/docs/latest/reference-manual.pdf#list-auth-realms
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
https://glassfish.org/docs/latest/reference-manual.pdf#list-auth-realms
https://glassfish.org/docs/latest/reference-manual.pdf#delete-auth-realm
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain

Administration Guide.

Example 2-3 Deleting a Realm

This example deletes an authentication realm named db.

asadmin> delete-auth-realm db
Command delete-auth-realm executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
auth-realm at the command line.

To Configure a JDBC or Digest Authentication Realm

Eclipse GlassFish enables you to specify a user’s credentials (user name and password) in the JDBC
realm instead of in the connection pool. Using the jdbc type realm instead of the connection pool
prevents other applications from browsing the database tables for user credentials.


By default, storage of passwords as clear text is not supported in the JDBC realm.
Under normal circumstances, passwords should not be stored as clear text.

1. Create the database tables in which to store user credentials for the realm.
How you create the database tables depends on the database that you are using.

2. Add user credentials to the database tables that you created.
How you add user credentials to the database tables depends on the database that you are
using.

3. Create a JDBC connection pool for the database.
See " To Create a JDBC Connection Pool" in Eclipse GlassFish Administration Guide.

4. Create a JDBC resource for the database.
" To Create a JDBC Resource" in Eclipse GlassFish Administration Guide.

5. Create a realm.
For instructions, see To Create an Authentication Realm.


The JAAS context should be digestRealm for digest authentication or jdbcRealm
for other authentication types.

6. Modify the deployment descriptor to specify the jdbc realm.
Modify the deployment descriptor that is associated with your application.

◦ For an enterprise application in an Enterprise Archive (EAR) file, modify the sun-
application.xml file.

◦ For a web application in a Web Application Archive (WAR) file, modify the web.xml file.

◦ For an enterprise bean in an EJB JAR file, modify the sun-ejb-jar.xml file.

46

https://glassfish.org/docs/latest/administration-guide.pdf#to-create-a-jdbc-connection-pool
https://glassfish.org/docs/latest/administration-guide.pdf#to-create-a-jdbc-resource

For more information about how to specify a realm, see " How to Configure a Realm" in Eclipse
GlassFish Application Development Guide.

7. Assign security roles to users in the realm.
To assign a security role to a user, add a security-role-mapping element to the deployment
descriptor that you modified.

8. Verify that the database is running.
If needed, see "To Start the Database" in Eclipse GlassFish Administration Guide.

9. To apply the authentication, restart the server.
See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

Example 2-4 Assigning a Security Role

This example shows a security-role-mapping element that assigns the security role Employee to user
Calvin

<security-role-mapping>
 <role-name>Employee</role-name>
 <principal-name>Calvin</principal-name>
 </security-role-mapping>

To Configure LDAP Authentication with OID

This procedure explains how to configure Eclipse GlassFish to use LDAP authentication with Oracle
Internet Directory.

1. Install Oracle Enterprise Manager 11g and the latest Enterprise Manager patches, if they are not
installed already.
Instructions for installing Oracle Enterprise Manager are provided in the Oracle Enterprise
Manager (http://docs.oracle.com/cd/E11857_01/index.html) documentation set.

2. Install the Oracle Identity Management Suite (IDM) 11g and Patch Set 2 or later, if they are not
installed already.
Instructions for installing the Oracle Identity Management suite are provided in Oracle Fusion
Middleware Installation Guide for Oracle Identity Management (http://docs.oracle.com/cd/
E12839_01/install.1111/e12002.html).

3. Configure SSL for Oracle Internet Directory (OID), if it is not configured already. Configure the
OID instance in the server authentication mode and with the protocol version set to SSLv3
Instructions for configuring SSL for OID are provided in the SSL chapter of Oracle Internet
Directory Administrator’s Guide (http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/
ssl.html).

4. Using Oracle Wallet Manager, export an SSL self-signed certificate you want to use with Eclipse
GlassFish.
Instructions for using Oracle Wallet Manager to create and export SSL certificates are provided
in the "Configure Oracle Internet Directory for SSL" (http://docs.oracle.com/cd/B14099_19/
idmanage.1012/b14082/ssl.html#CHDCADIJ) section of the SSL chapter in Oracle Internet Directory
Administrator’s Guide (http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html).

47

https://glassfish.org/docs/latest/application-development-guide.pdf#how-to-configure-a-realm
https://glassfish.org/docs/latest/administration-guide.pdf#to-start-the-database
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html

5. On the Eclipse GlassFish side, use the keytool command import the certificate you exported with
Oracle Wallet Manager.
The keytool command is available in the $JAVA_HOME/bin directory. Use the following syntax:

keytool -importcert -alias "alias-name" -keystore domain-dir/config/cacerts.p12
+
+NOTE: The above examples show PKCS12 format (.p12) which is the recommended
+format since Java 9. For legacy JKS format compatibility, use `.jks` file
extension.
-file cert-name

where the variables are defined as follows:

alias-name

Name of an alias to use for the certificate

domain-dir

Name of the domain for which the certificate is used

cert-name

Path to the certificate that you exported with Oracle Wallet Manager.

For example, to import a certificate named oi.cer for a Eclipse GlassFish domain in
/glassfish7/glassfish/domains/domain1, using an alias called "OID self-signed certificate," you
would use the following command:

keytool -importcert -alias "OID self signed certificate" -keystore \
/glassfish7/glassfish/domains/domain1/config/cacerts.p12 -file oid.cer

6. Restart the Eclipse GlassFish domain.
See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

7. Use the Oracle Enterprise Manager ldapmodify command to enable Anonymous Bind for OID.
For example:

ldapmodify -D cn=orcladmin -q -p portNum -h hostname -f ldifFile

In this example, the LDIF file might contain the following:

dn: cn=oid1,cn=osdldapd,cn=subconfigsubentry
changetype: modify
replace: orclAnonymousBindsFlag
orclAnonymousBindsFlag: 1

To disable all anonymous binds, you would use a similar LDIF file with the last line changed to:

48

https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain

orclAnonymousBindsFlag: 0

See "Managing Anonymous Binds" (http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/
authentication.html#CACJEJDA) in Oracle Fusion Middleware Administrator’s Guide for Oracle
Internet Directory (http://docs.oracle.com/cd/E14571_01/oid.1111/e10029.html) for complete
instructions on the ldapmodify command.

To Configure LDAP Authentication with OVD

This procedure explains how to configure Eclipse GlassFish to use LDAP authentication with Oracle
Virtual Directory.

1. Create the OVD adapter, as described in the "Creating and Configuring Oracle Virtual Directory
Adapters" (http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA)
chapter of Administrator’s Guide for Oracle Virtual Directory (http://docs.oracle.com/cd/
E12839_01/oid.1111/e10046.html).

2. Configure SSL for Oracle Virtual Directory (OVD), if it is not configured already. For instructions
on configuring SSL for OVD, see the section "Enable SSL for Oracle Virtual Directory Using
Fusion Middleware Control" in SSL Configuration in Oracle Fusion Middleware
(http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800).

Also, configure the SSL for the OVD listener in server authentication mode.

3. Export the certificate from JKS keystore you want to use with Eclipse GlassFish. See "Exporting a
Keystore Using Fusion Middleware Control" (http://docs.oracle.com/cd/E16764_01/core.1111/
e10105/wallets.html#CIHECAIB) for information.

4. On the Eclipse GlassFish side, use the keytool command to import the certificate you exported
from the JKS keystore.
The keytool command is available in the $JAVA_HOME/bin directory. Use the following syntax:

keytool -importcert -alias "alias-name" -keystore domain-dir/config/cacerts.p12
+
+NOTE: The above examples show PKCS12 format (.p12) which is the recommended
+format since Java 9. For legacy JKS format compatibility, use `.jks` file
extensions.
-file cert-name

where the variables are defined as follows:

alias-name

Name of an alias to use for the certificate

domain-dir

Name of the domain for which the certificate is used

49

http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046.html
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB

cert-name

Path to the certificate that you exported from the keystore.

For example, to import a certificate named ovd.cer for a Eclipse GlassFish domain in
/glassfish7/glassfish/domains/domain1, using an alias called "OVD self-signed certificate," you
would use the following command:

keytool -importcert -alias "OVD self signed certificate" -keystore \
/glassfish7/glassfish/domains/domain1/config/cacerts.p12 -file ovd.cer

5. Restart the Eclipse GlassFish domain.
See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

To Enable LDAP Authentication on the Eclipse GlassFish DAS

This procedure explains how to enable LDAP authentication for logins to the Eclipse GlassFish
Domain Administration Server (DAS). Logging in to the DAS is typically only performed by Eclipse
GlassFish administrators who want to use the Eclipse GlassFish Administration Console or asadmin
command. See To Configure LDAP Authentication with OID for instructions on enabling general
LDAP authentication for Eclipse GlassFish.

Before you begin, ensure that you have followed the configuration instructions in To Configure
LDAP Authentication with OID

Use the asadmin configure-ldap-for-admin subcommand to enable user authentication to the Eclipse
GlassFish DAS.

Use the following syntax:

asadmin configure-ldap-for-admin --basedn "dn-list" --url [ldap|ldaps]://ldap-url
--ldap-group group-name

where the variables are defined as follows:

dn-list

basedn parameters

ldap-url

URL and port number for the LDAP server; can use standard (ldap) or secure (ldaps) protocol

group-name

LDAP group name for allowed users, as defined on the LDAP server.

For example:

asadmin configure-ldap-for-admin --basedn "dc=red,dc=iplanet,dc=com" \
--url ldap://interopoel54-1:3060 --ldap-group sqestaticgroup

50

https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain

asadmin configure-ldap-for-admin --basedn "dc=red,dc=iplanet,dc=com" \
--url ldaps://interopoel54-1:7501 --ldap-group sqestaticgroup

See Also

See configure-ldap-for-admin for more information about the configure-ldap-for-admin subcommand.

Administering File Users
A user is an individual (or application program) identity that is defined in Eclipse GlassFish. A user
who has been authenticated is sometimes called a principal.

As the administrator, you are responsible for integrating users into the Eclipse GlassFish
environment so that their credentials are securely established and they are provided with access to
the applications and services that they are entitled to use.

The following topics are addressed here:

• To Create a File User

• To List File Users

• To List File Groups

• To Update a File User

• To Delete a File User

To Create a File User

Use the create-file-user subcommand in remote mode to create a new user by adding a new entry
to the keyfile. The entry includes the user name, password, and any groups for the user. Multiple
groups can be specified by separating the groups with colons (:).


If secure administration is enabled as described in Running Secure Admin, you
cannot create an administrative user with a blank password.

Creating a new file realm user is a dynamic event and does not require server restart.

1. Ensure that the server is running. Remote subcommands require a running server.

2. If the user will belong to a particular group, see the current groups by using the list-file-
groups subcommand.

3. Create a file user by using the create-file-user subcommand.

Example 2-5 Creating a User

This example create user Jennifer on the default realm file (no groups are specified).

The asadmin --passwordfile option specifies the name of a file that contains the password entries in
a specific format. The entry for a password must have the AS_ADMIN_ prefix followed by the

51

https://glassfish.org/docs/latest/reference-manual.pdf#configure-ldap-for-admin
https://glassfish.org/docs/latest/reference-manual.pdf#list-file-groups
https://glassfish.org/docs/latest/reference-manual.pdf#list-file-groups
https://glassfish.org/docs/latest/reference-manual.pdf#create-file-user

password name in uppercase letters, an equals sign, and the password. See asadmin(1M) for more
information.

asadmin> create-file-user --user admin
--passwordfile=c:\tmp\asadminpassword.txt Jennifer
Command create-file-user executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
file-user at the command line.

To List File Users

Use the list-file-users subcommand in remote mode to list the users that are in the keyfile.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List users by using the list-file-users subcommand.

Example 2-6 Listing File Users

This example lists file users on the default file realm file.

asadmin> list-file-users
Jennifer
Command list-file-users executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
file-users at the command line.

To List File Groups

A group is a category of users classified by common traits, such as job title or customer profile. For
example, users of an e-commerce application might belong to the customer group, and the big
spenders might also belong to the preferred group. Categorizing users into groups makes it easier to
control the access of large numbers of users. A group is defined for an entire server and realm. A
user can be associated with multiple groups of users.

A group is different from a role in that a role defines a function in an application, while a group is a
set of users who are related in some way. For example, in the personnel application there might be
groups such as full-time, part-time, and on-leave. Users in these groups are all employees (the
employee role). In addition, each user has its own designation that defines an additional level of
employment.

Use the list-file-groups subcommand in remote mode to list groups for a file user, or all file
groups if the --name option is not specified.

52

https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#list-file-users

1. Ensure that the server is running. Remote subcommands require a running server.

2. List file groups by using the list-file-groups subcommand.

Example 2-7 Listing Groups for a User

This example lists the groups for user joesmith.

asadmin> list-file-groups --name joesmith
staff
manager
Command list-file-groups executed successfully

To Update a File User

Use the update-file-user subcommand in remote mode to modify the information in the keyfile for
a specified user.


If secure administration is enabled as described in Running Secure Admin, you
cannot update an administrative user to have a blank password.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Update the user information by using the update-file-user subcommand.

3. To apply your changes, restart Eclipse GlassFish.
See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

Example 2-8 Updating a User

The following subcommand updates the groups for user Jennifer.

asadmin> update-file-user --passwordfile c:\tmp\asadminpassword.txt --groups
staff:manager:engineer Jennifer
Command update-file-user executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help update-
file-user at the command line.

To Delete a File User

Use the delete-file-user subcommand in remote mode to remove a user entry from the keyfile by
specifying the user name. You cannot delete yourself, that is, the user you are logged in as cannot
be deleted during your session.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List users by using the list-file-users subcommand.

53

https://glassfish.org/docs/latest/reference-manual.pdf#list-file-groups
https://glassfish.org/docs/latest/reference-manual.pdf#update-file-user
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
https://glassfish.org/docs/latest/reference-manual.pdf#list-file-users

3. Delete the user by using the delete-file-user subcommand.

Example 2-9 Deleting a User

This example deletes user Jennifer from the default file realm.

asadmin> delete-file-user Jennifer
Command delete-file-user executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
file-user at the command line.

54

https://glassfish.org/docs/latest/reference-manual.pdf#delete-file-user

3 Administering Message Security
This chapter provides information and procedures on configuring the message layer security for
web services in the Eclipse GlassFish environment.


Message security (JSR 196) is supported only in the Full Platform Profile of Eclipse
GlassFish, not in the Web Profile.

The following topics are addressed here:

• About Message Security in Eclipse GlassFish

• Enabling Default Message Security Providers for Web Services

• Configuring Message Protection Policies

• Administering Non-default Message Security Providers

• Enabling Message Security for Application Clients

• Additional Information About Message Security

Some of the material in this chapter assumes a basic understanding of security and web services
concepts. For more information about security, see About System Security in Eclipse GlassFish.

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About Message Security in Eclipse GlassFish
Message security enables a server to perform end-to-end authentication of web service invocations
and responses at the message layer. Security information is inserted into messages so that it travels
through the networking layers and arrives with the intact message at the message destination(s).
Message security differs from transport layer security in that message security can be used to
decouple message protection from message transport so that messages remain protected after
transmission.

Web services deployed on Eclipse GlassFish are secured by binding SOAP layer message security
providers and message protection policies to the containers in which the applications are deployed,
or to web service endpoints served by the applications. SOAP layer message security functionality is
configured in the client-side containers of Eclipse GlassFish by binding SOAP layer message security
providers and message protection policies to the client containers or to the portable service
references declared by client applications.

Message-level security can be configured for the entire Eclipse GlassFish or for specific applications
or methods. Configuring message security at the application level is discussed in the Eclipse
GlassFish Application Development Guide.

The following topics are addressed here:

• Security Tokens and Security Mechanisms

55

https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG

• Authentication Providers

• Message Protection Policies

• Application-Specific Web Services Security

• Message Security Administration

• Sample Application for Web Services

Security Tokens and Security Mechanisms

WS-Security is a specification that provides a communications protocol for applying security to web
services. The security mechanisms implement the specification. Web Services Interoperability
Technologies (WSIT) implements WS-Security so as to provide interoperable message content
integrity and confidentiality, even when messages pass through intermediary nodes before
reaching their destination endpoint. WS-Security as provided by WSIT is in addition to existing
transport-level security, which can still be used.

The Simple Object Access Protocol (SOAP) layer message security providers installed with Eclipse
GlassFish can be used to employ username/password and X.509 certificate security tokens to
authenticate and encrypt SOAP web services messages.

• Username Tokens. Eclipse GlassFish uses username tokens in SOAP messages to authenticate
the message sender. The recipient of a message containing a username token (within embedded
password) validates that the message sender is authorized to act as the user (identified in the
token) by confirming that the sender knows the password of the user.

When using a username token, a valid user database must be configured on Eclipse GlassFish.

• Digital Signatures. Eclipse GlassFish uses XML digital signatures to bind an authentication
identity to message content. Clients use digital signatures to establish their caller identity.
Digital signatures are verified by the message receiver to authenticate the source of the message
content (which might be different from the sender of the message.)

When using digital signatures, valid keystore and truststore files must be configured on Eclipse
GlassFish.

• Encryption. The purpose of encryption is to modify the data so that it can only be understood by
its intended audience. This is accomplished by substituting an encrypted element for the
original content. When based on public key cryptography, encryption can be used to establish
the identity of the parties who are authorized to read a message.

When using encryption, a Java Cryptography Extension (JCE) provider that supports encryption
must be installed.

Authentication Providers

The authentication layer is the message layer on which authentication processing must be
performed. Eclipse GlassFish enforces web services message security at the SOAP layer. The types of
authentication that are supported include the following:

56

• Sender authentication, including username-password authentication

• Content authentication, including XML digital signatures

Eclipse GlassFish invokes authentication providers to process SOAP message layer security. The
message security providers provide information such as the type of authentication that is required
for the request and response messages. The following message security providers are included with
Eclipse GlassFish:

• Client-side Provider. A client-side provider establishes (by signature or username/password) the
source identity of request messages and/or protects (by encryption) request messages such that
they can only be viewed by their intended recipients. A client-side provider also establishes its
container as an authorized recipient of a received response (by successfully decrypting it) and
validates passwords or signatures in the response to authenticate the source identity associated
with the response. Client-side providers configured in Eclipse GlassFish can be used to protect
the request messages sent and the response messages received by server-side components
(servlets and EJB components) acting as clients of other services.

The default client provider is used to identify the client—side provider to be invoked for any
application for which a specific client provider has not been bound.

• Server-side Provider. A server-side provider establishes its container as an authorized recipient
of a received request (by successfully decrypting it), and validates passwords or signatures in
the request to authenticate the source identity associated with the request. A server-side
provider also establishes (by signature or username/password) the source identity of response
messages and/or protects (by encryption) response messages such that they can only be viewed
by their intended recipients. Server-side providers are only invoked by server-side containers.

The default server provider is used to identify the server—side provider to be invoked for any
application for which a specific server provider has not been bound.

Message Protection Policies

A request policy defines the authentication policy requirements associated with request processing
performed by the authentication provider. Policies are expressed in message sender order such
that a requirement that encryption occur after content would mean that the message receiver
would expect to decrypt the message before validating the signature. The response policy defines
the authentication policy requirements associated with response processing performed by the
authentication provider.

Message protection policies are defined for request message processing and response message
processing. The policies are expressed in terms of requirements for source and/or recipient
authentication. The providers apply specific message security mechanisms to cause the message
protection policies to be realized in the context of SOAP web services messages.

• Source Authentication Policy. A source authentication policy represents a requirement that the
identity of the entity that sent a message or that defined the content of a message be established
in the message such that it can be authenticated by the message receiver.

• Recipient Authentication Policy. A recipient authentication policy represents a requirement that
the message be sent such that the identity of the entities that can receive the message can be

57

established by the message sender.

Request and response message protection policies are defined when a security provider is
configured into a container. Application-specific message protection policies (at the granularity of
the web service port or operation) can also be configured within the Eclipse GlassFish deployment
descriptors of the application or application client. In any situation where message protection
policies are defined, the request and response message protection policies of the client must be
equivalent t) the request and response message protection policies of the server. For more
information about defining application-specific message protection policies, see "Securing
Applications" in Eclipse GlassFish Application Development Guide.

Application-Specific Web Services Security

Application-specific web services security functionality is configured (at application assembly) by
defining the message-security-binding elements in the Eclipse GlassFish deployment descriptors of
the application. These message-security-binding elements are used to associate a specific security
provider or message protection policy with a web service endpoint or service reference, and might
be qualified so that they apply to a specific port or method of the corresponding endpoint or
referenced service.

For information about defining application-specific message protection policies, see "Securing
Applications" in Eclipse GlassFish Application Development Guide.

Message Security Administration

When Eclipse GlassFish is installed, SOAP layer message security providers are configured in the
client and server-side containers of Eclipse GlassFish, where they are available for binding for use
by the containers, or by individual applications or clients deployed in the containers. During
installation, the default providers are configured with a simple message protection policy that, if
bound to a container, or to an application or client in a container, would cause the source of the
content in all request and response messages to be authenticated by XML digital signature.

Eclipse GlassFish administrative interfaces can be used as follows:

• To modify the message protection policies enforced by the providers

• To bind the existing providers for use by the server-side containers of Eclipse GlassFish

• To create new security provider configurations with alternative message protection policies

Analogous administrative operations can be performed on the SOAP message layer security
configuration of the application client container. If you want web services security to protect all
web services applications deployed on Eclipse GlassFish. See Enabling Message Security for
Application Clients.

By default, message layer security is disabled on Eclipse GlassFish. To configure message layer
security for the Eclipse GlassFish see Enabling Default Message Security Providers for Web Services.

In most cases, you must restart Eclipse GlassFish after performing administrative tasks. This is
especially true if you want the effects of the administrative change to be applied to applications that
were already deployed on Eclipse GlassFish at the time the operation was performed.

58

https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications
https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications
https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications
https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications

Message Security Tasks

The general implementation tasks for message security include some or all of the following:

1. If you are using a version of the Java SDK prior to version 1.5.0, and using encryption
technology, configuring a JCE provider

2. If you are using a username token, verifying that a user database is configured for an
appropriate realm

When using a username/password token, an appropriate realm must be configured and a user
database must be configured for the realm.

3. Managing certificates and private keys, if necessary

4. Enabling the Eclipse GlassFish default providers

5. Configuring new message security providers

Message Security Roles

In Eclipse GlassFish, the administrator and the application deployer are expected to take primary
responsibility for configuring message security. In some situations, the application developer might
also contribute.

System Administrator

The system administrator is responsible for the following message security tasks:

• Administering server security settings and certificate databases

• Administering keystore and truststore files

• Configuring message security providers on Eclipse GlassFish

• Turning on message security

• (If needed) Installing the samples server

Application Deployer

The application deployer is responsible for the following message security tasks:

• Specifying (at application reassembly) any required application-specific message protection
policies if such policies have not already been specified by the developer/assembler.

• Modifying Eclipse GlassFish deployment descriptors to specify application-specific message
protection policies information (message-security-binding elements) to web service endpoint
and service references.

Application Developer/Assembler

The application developer/assembler is responsible for the following message security tasks:

• Determining if an application-specific message protection policy is required by the application

59

If so, the developer ensures that the required policy is specified at application assembly time.

• Specifying how web services should be set up for message security

Message security can be set up by the administrator so that all web services are secured, or by
the application deployer when the security provider or protection policy bound to the
application must be different from that bound to the container.

• Turning on message security if authorized to do so by the administrator

Sample Application for Web Services

Eclipse GlassFish includes a sample application named xms. The xms application features a simple
web service that is implemented by both a Jakarta EE EJB endpoint and a Java servlet endpoint.
Both endpoints share the same service endpoint interface. The service endpoint interface defines a
single operation, sayHello, which takes a string argument, and returns a String composed by pre-
pending Hello to the invocation argument.

The xms sample application is provided to demonstrate the use of Eclipse GlassFish WS-Security
functionality to secure an existing web services application. The instructions which accompany the
sample describe how to enable the WS-Security functionality of Eclipse GlassFish such that it is
used to secure the xms application. The sample also demonstrates the binding of WS-Security
functionality directly to the application as described in Application-Specific Web Services Security
application.

For information about compiling, packaging, and running the xms sample application, " Securing
Applications" in Eclipse GlassFish Application Development Guide.

The xms sample application is installed in the following directory: as-
install/samples/webservices/security/ejb/apps/xms/

Enabling Default Message Security Providers for Web
Services
By default, message security is disabled on Eclipse GlassFish. Default message security providers
have been created, but are not active until you enable them. After the providers have been enabled,
message security is enabled.

The following topics are addressed here:

• To Enable a Default Server Provider

• To Enable a Default Client Provider

To Enable a Default Server Provider

To enable message security for web services endpoints deployed in Eclipse GlassFish, you must
specify a security provider to be used by default on the server side. If you enable a default provider
for message security, you also need to enable providers to be used by clients of the web services
deployed in Eclipse GlassFish.

60

https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications
https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications

1. Specify the default server provider by using the set subcommand.

Use the following syntax:

asadmin set --port admin-port
server-config.security-service.message-security-config.SOAP.
default_provider=ServerProvider

2. To apply your changes to applications that are already running, restart Eclipse GlassFish.

See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

To Enable a Default Client Provider

To enable message security for web service invocations originating from deployed endpoints, you
must specify a default client provider. If you enabled a default client provider for Eclipse GlassFish,
you must ensure that any services invoked from endpoints deployed in Eclipse GlassFish are
compatibly configured for message layer security.

1. Specify the default client provider by using the set subcommand.

Use the following syntax:

asadmin set --port admin-port
server-config.security-service.message-security-config.SOAP.
default_client_provider=ClientProvider

2. To apply your changes to applications that are already running, restart Eclipse GlassFish.

See "To Restart a Domain" in Eclipse GlassFish Administration Guide.

Configuring Message Protection Policies
Message protection policies are defined for request message processing and response message
processing. The policies are expressed in terms of requirements for source and/or recipient
authentication. The providers apply specific message security mechanisms to cause the message
protection policies to be realized in the context of SOAP web services messages.

The following topics are addressed here:

• Message Protection Policy Mapping

• To Configure the Message Protection Policies for a Provider

• Setting the Request and Response Policy for the Application Client Configuration

Message Protection Policy Mapping

The following table shows message protection policy configurations and the resulting message

61

https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain

security operations performed by the WS-Security SOAP message security providers for that
configuration.

Table 3-1 Message Protection Policy Mapping to WS-Security SOAP Operations

Message Protection Policy Resulting WS-Security SOAP Message Protection Operations

auth-source="sender" The message contains a wsse:Security header that contains a
wsse:UsernameToken (with password).

auth-source="content" The content of the SOAP message Body is signed. The message
contains a wsse:Security header that contains the message Body
signature represented as a ds:`Signature`.

auth-source="sender"
auth-recipient="before-content"
OR
auth-recipient="after-content"

The content of the SOAP message Body is encrypted and
replaced with the resulting xend:EncryptedData. The message
contains a wsse:Security header that contains a
wsse:UsernameToken (with password) and an xenc:EncryptedKey.
The xenc:EncryptedKey contains the key used to encrypt the SOAP
message body. The key is encrypted in the public key of the
recipient.

auth-source="content"
auth-recipient="before-content"

The content of the SOAP message Body is encrypted and
replaced with the resulting xend:EncryptedData. The
xenc:EncryptedData is signed. The message contains a
wsse:Security header that contains an xenc:EncryptedKey and a
ds:`Signature`. The xenc:EncryptedKey contains the key used to
encrypt the SOAP message body. The key is encrypted in the
public key of the recipient.

auth-source="content"
auth-recipient="after-content"

The content of the SOAP message Body is signed, then encrypted,
and then replaced with the resulting xend:EncryptedData. The
message contains a wsse:Security header that contains an
xenc:EncryptedKey and a ds:Signature. The xenc:EncryptedKey
contains the key used to encrypt the SOAP message body. The
key is encrypted in the public key of the recipient.

auth-recipient="before-content"
OR
auth-recipient="after-content"

The content of the SOAP message Body is encrypted and
replaced with the resulting xend:EncryptedData. The message
contains a wsse:Security header that contains an
xenc:EncryptedKey. The xenc:EncryptedKey contains the key used
to encrypt the SOAP message body. The key is encrypted in the
public key of the recipient.

No policy specified. No security operations are performed by the modules.

To Configure the Message Protection Policies for a Provider

Typically, you would not reconfigure a provider. However, if needed for your situation, you can
modify a provider’s message protection policies by changing provider type, implementation class,
and provider-specific configuration properties. To understand the results of different combinations,
see Table 3-1.

62

Use the set subcommand to set the response policy, then replace the word request in the following
commands with the word response.

1. Add a request policy to the client and set the authentication source by using the set
subcommand.

For example:

asadmin> set server-config.security-service.message-security-config.SOAP.
provider-config.ClientProvider.request-policy.auth_source=[sender | content]

2. Add a request policy to the server and set the authentication source by using the set
subcommand.

For example:

asadmin> set server-config.security-service.message-security-config.SOAP.
provider-config.ServerProvider.request-policy.auth_source=[sender | content]

3. Add a request policy to the client and set the authentication recipient by using the set
subcommand:

For example:

asadmin> set server-config.security-service.message-security-config.SOAP.
provider-config.ClientProvider.request-policy.auth_recipient=[before-content |
after-content]

4. Add a request policy to the server and set the authentication recipient by using the set
subcommand:

For example:

asadmin> set server-config.security-service.message-security-config.SOAP.
provider-config.ServerProvider.request-policy.auth_recipient=[before-content |
after-content]

Setting the Request and Response Policy for the Application Client
Configuration

The request and response policies define the authentication policy requirements associated with
request and response processing performed by the authentication provider. Policies are expressed
in message sender order such that a requirement that encryption occur after content would mean
that the message receiver would expect to decrypt the message before validating the signature.

To achieve message security, the request and response policies must be enabled on both the server

63

https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#set

and client. When configuring the policies on the client and server, make sure that the client policy
matches the server policy for request/response protection at application-level message binding.

To set the request policy for the application client configuration, modify the Eclipse GlassFish-
specific configuration for the application client container as described in Enabling Message
Security for Application Clients.

Example 3-1 Message Security Policy Setting for Application Clients

In the application client configuration file, the request-policy and response-policy elements are
used to set the request policy, as shown in the following code snippet. (Additional code in the
snippet is provided as illustration and might differ slightly in your installation. Do not change the
additional code.)

<client-container>
 <target-server name="your-host" address="your-host"
 port="your-port"/>
 <log-service file="" level="WARNING"/>
 <message-security-config auth-layer="SOAP"
 default-client-provider="ClientProvider">
 <provider-config
 class-name="com.sun.enterprise.security.jauth.ClientAuthModule"
 provider-id="clientprovider" provider-type="client">
 <request-policy auth-source="sender | content"
 auth-recipient="after-content | before-content"/>
 <response-policy auth-source="sender | content"
 auth-recipient="after-content | before-content"/>
 <property name="security.config"
 value="as-install/lib/appclient/wss-client-config.xml"/>
 </provider-config>
 </message-security-config>
</client-container>

Valid values for auth-source include sender and content. Valid values for auth-recipient include
before-content and after-content. A table describing the results of various combinations of these
values can be found in Configuring Message Protection Policies.

To not specify a request or response policy, leave the element blank, for example:

<response-policy/>

Administering Non-default Message Security
Providers
The following topics are addressed here:

• To Create a Message Security Provider

64

• To List Message Security Providers

• To Update a Message Security Provider

• To Delete a Message Security Provider

• To Configure a Servlet Layer Server Authentication Module (SAM)

To Create a Message Security Provider

Use the create-message-security-provider subcommand in remote mode to create a new message
provider for the security service. If the message layer does not exist, the message layer is created,
and the provider is created under it.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create the message security provider by using the create-message-security-provider
subcommand.

Information about properties for this subcommand is included in the help page.

3. If needed, restart the server.

Some properties require server restart. See "Configuration Changes That Require Restart" in
Eclipse GlassFish Administration Guide. If your server needs to be restarted, see "To Restart a
Domain" in Eclipse GlassFish Administration Guide.

Example 3-2 Creating a Message Security Provider

This example creates the new message security provider mySecurityProvider.

asadmin> create-message-security-provider
--classname com.sun.enterprise.security.jauth.ClientAuthModule
--providertype client mySecurityProvider
Command create-message-security-provider executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
message-security-provider at the command line.

To List Message Security Providers

Use the list-message-security-providers subcommand in remote mode to list the message
providers for the security layer.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the message security providers by using the list-message-security-providers subcommand.

Example 3-3 Listing Message Security Providers

This example lists the message security providers for a message layer.

65

https://glassfish.org/docs/latest/reference-manual.pdf#create-message-security-provider
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-changes-that-require-restart
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
https://glassfish.org/docs/latest/reference-manual.pdf#list-message-security-providers

asadmin> list-message-security-providers --layer SOAP
XWS_ClientProvider
ClientProvider
XWS_ServerProvider
ServerProvider
Command list-message-security-providers executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
message-security-providers at the command line.

To Update a Message Security Provider

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the message security providers by using the list-message-security-providers subcommand.

3. Modify the values for the specified message security provider by using the set subcommand.

The message security provider is identified by its dotted name.

To Delete a Message Security Provider

Use the delete-message-security-provider subcommand in remote mode to remove a message
security provider.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the message security providers by using the list-message-security-providers subcommand.

3. Delete the message security provider by using the delete-message-security-provider
subcommand.

Example 3-4 Deleting a Message Security Provider

This example deletes the myServerityProvider message security provider.

asadmin> delete-message-security-provider --layer SOAP myServerityProvider
Command delete-message-security-provider executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
message-security-provider at the command line.

To Configure a Servlet Layer Server Authentication Module (SAM)

You configure a JSR 196 Server Authentication Module (SAM) as an HttpServlet-layer message
security provider, either through the Administration Console or with the create-message-security-

66

https://glassfish.org/docs/latest/reference-manual.pdf#list-message-security-providers
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-message-security-providers
https://glassfish.org/docs/latest/reference-manual.pdf#delete-message-security-provider

provider subcommand.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create the message security provider by using the create-message-security-provider
subcommand.

Information about properties for this subcommand is included in the help page.

3. Bind the message security provider for use with your application.

You do this by defining the httpservlet-security-provider attribute in the glassfish-web.xml file
corresponding to your application. Set the value of the attribute to the provider name you
assigned to the message security provider. For example, if you use MySAM when you create the
message security provider the entry would be httpservlet-security-provider="MySAM".

4. If needed, restart the server.

Some properties require server restart. See "Configuration Changes That Require Restart" in
Eclipse GlassFish Administration Guide. If your server needs to be restarted, see "To Restart a
Domain" in Eclipse GlassFish Administration Guide.

Example 3-5 Creating a Message Security Provider

This example creates the new message security provider mySAM.

asadmin> create-message-security-provider --layer=HttpServlet
--classname com.sun.glassfish.oamsam.OAMAuthenticatorSAM
--providertype server
--property oam.resource.hostid.variation="your-host-system.com" mySAM
Creation of message security provider named mySAM completed successfully
Command create-message-security-provider executed successfully.

The subcommand results in the following domain.xml entry:

<message-security-config auth-layer="HttpServlet">
<provider-config provider-type="server" provider-id="mysam"
class-name="com.sun.glassfish.oamsam.OAMAuthenticatorSAM">
 <property name="oam.resource.hostid.variation" value="your-host-
system.com"></property>
 <request-policy></request-policy>
 <response-policy></response-policy>
 </provider-config>
</message-security-config>

To list the HttpServlet message security providers, use the list-message-security-providers
subcommand:

asadmin> list-message-security-providers --layer HttpServlet

67

https://glassfish.org/docs/latest/reference-manual.pdf#create-message-security-provider
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-changes-that-require-restart
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain
https://glassfish.org/docs/latest/administration-guide.pdf#to-restart-a-domain

list-message-security-providers successful
GFConsoleAuthModule
mySAM
Command list-message-security-providers executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
message-security-provider at the command line.

Enabling Message Security for Application Clients
The message protection policies of client providers must be configured such that they are
equivalent to the message protection policies of the server-side providers they will be interacting
with. This is already the situation for the providers configured (but not enabled) when Eclipse
GlassFish is installed.

To enable message security for client applications, modify the Eclipse GlassFish specific
configuration for the application client container. The process is analogous to the process in
Configuring Message Protection Policies.

Additional Information About Message Security
For additional information about message security, see the following documentation:

• Introduction to Security in the Jakarta EE Platform in The Jakarta EE Tutorial

• "Securing Applications" in Eclipse GlassFish Application Development Guide

68

https://eclipse-ee4j.github.io/jakartaee-tutorial/#security-2
https://glassfish.org/docs/latest/application-development-guide.pdf#securing-applications

4 Administering Security in Cluster Mode
This chapter describes important information about administering security in a cluster.

The following topics are described:

• Configuring Certificates in Cluster Mode

• Dynamic Reconfiguration

• Understanding Synchronization

This chapter assumes that you are familiar with security features such as authentication,
authorization, and certificates. If you are not, see Administering System Security.

Instructions for accomplishing the tasks specific to Eclipse GlassFish by using the Administration
Console are contained in the Administration Console online help.

Configuring Certificates in Cluster Mode
The sections Certificates and SSL and Administering JSSE Certificates describe the relevant concepts
and use of certificates in Eclipse GlassFish.

By default, Eclipse GlassFish uses self-signed certificates. The self-signed certificates that Eclipse
GlassFish uses might not be trusted by clients by default because a certificate authority does not
vouch for the authenticity of the certificate.

You can instead use your own certificates, as described in Using Your Own Certificates.

Dynamic Reconfiguration
Administrative commands that you execute on the domain administration server (DAS) must either
be replicated on the affected server instances, or on all server instances that are part of the cluster.
Eclipse GlassFish replicates the commands by sending the same administration command request
that was sent to the DAS to the server instances. As a result of replicating the commands on the DAS
and the individual instances, the DAS and the instances make the same changes to their respective
copies of the domain’s configuration.


Oracle recommends that you enable secure admin as described in Managing
Administrative Security so that Eclipse GlassFish securely transfers these files on
the network.

Dynamic reconfiguration refers to using the --target operand to CLI subcommands to make a
change to a server instance (if the user-specified target is a server instance), or all server instances
that are part of the cluster (if the user-specified target is a cluster). For example:`asadmin create-
jdbc-resource some-options --target some-target`.

The --target operand allows the following values:

• server - Performs the command on the default server instance. This is the default value.

69

• configuration_name - Performs the command in the specified configuration.

• cluster_name - Performs the command on all server instances in the specified cluster.

• instance_name - Performs the command on a specified server instance.

If a command fails for a cluster, the status shows all server instances where dynamic
reconfiguration failed, and suggests corrective next steps.

The command status also shows when a restart is required for each server instance.

The --target operand is supported for the following security-related CLI subcommands:

• create-jacc-provider

• delete-jacc-provider

• list-jacc-providers

• create-audit-module

• create-auth-realm

• create-file-user

• delete-audit-module

• delete-auth-realm

• delete-file-user

• update-file-user

• create-message-security-provider

• delete-message-security-provider

• list-audit-modules

• list-file-groups

• list-file-users

• login

Enabling Dynamic Configuration

Dynamic configuration is enabled by default and no additional action is required.

Use the following command to enable dynamic configuration from the command line:

asadmin --user user --passwordfile password-file set cluster-name-config.dynamic-
reconfiguration-enabled=true.

To enable dynamic configuration from the Administration Console, perform the following steps:

1. Expand the Configurations node.

2. Click the name of the cluster’s configuration.

3. On the Configuration System Properties page, check the Dynamic Reconfiguration Enabled box.

70

4. Click Save.



The dynamic reconfiguration feature applies only to server instances, not the DAS.
Therefore, you cannot "disable" dynamic reconfiguration on the DAS. There is no
way to make changes to the DAS configuration using asadmin commands, the
Administration Console, or the REST interface without having those changes take
effect immediately.

Understanding Synchronization
As described in " Resynchronizing Eclipse GlassFish Instances and the DAS" in Eclipse GlassFish
High Availability Administration Guide, configuration data for a Eclipse GlassFish instance is stored
in the repository of the DAS and in a cache on the host that is local to the instance. The
configuration data in these locations must be synchronized. The cache is synchronized only when a
user uses the administration tools to start or restart an instance.

See " Resynchronizing Eclipse GlassFish Instances and the DAS" in Eclipse GlassFish High
Availability Administration Guide for information about default synchronization for files and
directories, for the steps required to resynchronize an instance and the DAS, and for additional
synchronization topics.

71

https://glassfish.org/docs/latest/ha-administration-guide.pdf#resynchronizing-glassfish-server-instances-and-the-das
https://glassfish.org/docs/latest/ha-administration-guide.pdf#resynchronizing-glassfish-server-instances-and-the-das

5 Managing Administrative Security
This chapter describes how to manage administrative security by using the secure administration
feature.

This chapter assumes that you are familiar with security features such as authentication,
authorization, and certificates. If you are not, first see Administering System Security.

Instructions for accomplishing the tasks specific to Eclipse GlassFish by using the Administration
Console are contained in the Administration Console online help.

• Secure Administration Overview

• How Secure Admin Works: The Big Picture

• Considerations When Running Eclipse GlassFish With Default Security

• Running Secure Admin

• Additional Considerations When Creating Local Instances

• Secure Admin Use Case

• Upgrading an SSL-Enabled Secure GlassFish Installation to Secure Admin

Secure Administration Overview
The secure administration feature allows an administrator to secure all administrative
communication between the domain administration server (DAS), any remote instances, and
administration clients such as the asadmin utility, the administration console, and REST clients.

In addition, secure administration helps to prevent DAS-to-DAS and instance-to-instance traffic, and
carefully restricts administration-client-to-instance traffic.

The secure administration feature, which is henceforth referred to as secure admin, provides a
secure environment, in which you can be confident that rogue users or processes cannot intercept
or corrupt administration traffic or impersonate legitimate Eclipse GlassFish components.

When you install Eclipse GlassFish or create a new domain, secure admin is disabled by default.
When secure admin is disabled, Eclipse GlassFish does not encrypt administrative communication
among the system components and does not accept administrative connections from remote hosts.

To keep your environment secure, you should always create new domain with a new private key
and certificates. You should never use supplied domain1 with provided keystore. The general
security rule of the private key is that once it is generated, it stays with the user or the machine,
never migrates, never leaves its home, and it has just two states: private and compromised.

The following subcommands enable and disable secure admin:

• enable-secure-admin
The enable-secure-admin subcommand turns on secure admin. Eclipse GlassFish uses SSL
encryption to protect subsequent administrative traffic and will accept remote administrative
connections. Enabling secure admin affects the entire domain, including the DAS and all

72

instances. The DAS must be running, and not any instances, when you run enable-secure-admin.
You must restart the DAS immediately after enabling secure admin, and then start any instances
you want to run.


The enable-secure-admin subcommand fails if any administrative user has a
blank password.

• disable-secure-admin
The disable-secure-admin subcommand turns off secure admin. Eclipse GlassFish no longer
encrypts administrative messages and will no longer accept remote administration connections.
Disabling secure admin affects the entire domain, including the DAS and all instances. The DAS
must be running , and not any instances, when you run disable-secure-admin. You must restart
the DAS immediately after disabling secure admin, and then start any instances you want to
run.

If secure admin is not enabled, this subcommand has no effect.

This section describes how to use these commands to run secure admin, and the implications of
doing so.

How Secure Admin Works: The Big Picture
Secure admin is a domain-wide setting. It affects the DAS and all instances and all administration
clients. This section describes the following topics:

• Functions Performed by Secure Admin

• Which Administration Account is Used?

• What Authentication Methods Are Used for Secure Administration?

• Understanding How Certificate Authentication is Performed

• What Certificates Are Used?

• An Alternate Approach: Using Distinguished Names to Specify Certificates

• Guarding Against Unwanted Connections

Functions Performed by Secure Admin

The enable-secure-admin subcommand performs the following functions. Subsequent sections
describe these functions in more detail.

• Enables the secure admin behavior, optionally setting which aliases are to be used for
identifying the DAS and instance certificates.

• Adjusts all configurations in the domain, including default-config.

• Adjusts Grizzly settings:

◦ SSL/TLS is enabled in the DAS’s admin listener and the instances' admin listeners.

◦ Port unification (that is, HTTP and HTTPS are handled by the same port), http—to—https

73

redirection, and client authentication (client-auth=want) are enabled.

◦ Configures SSL to use the administration truststore.

◦ Configures SSL to use the administration keystore and the correct alias (for the self-signed
cert) for authenticating itself. (You can use your own certificate instead, as described in
Using Your Own Certificates.

The Grizzly configuration on the DAS and each instance is identical, with the exception that the
DAS uses the s1as alias for SSL/TLS authentication and the instances use the glassfish-instance
alias. (These alias names are the default, and you can change them.)
A server restart is required to change the Grizzly adapter behavior.
The restart also synchronizes the restarted instances. When you start the instances, the DAS
delivers the updated configuration to the instances.

Which Administration Account is Used?

If only one administration account exists in the realm, Eclipse GlassFish treats that account as the
current default administration account. In this case, when you run an asadmin command, you do
not need to specify the username. If a password for that username is required, you need to specify
it, typically by using the --passwordfile option or by letting asadmin prompt you for it.

By default, Eclipse GlassFish includes a single account for user "admin" and an empty password.
Therefore, if you make no other changes before you enable secure admin, "admin" is the initial
default username and no password is required. You need to decide whether enabling secure admin
without also requiring a password makes sense in your environment.

If multiple admin accounts exist, then Eclipse GlassFish does not recognize any admin username as
the default. You must then specify a valid username via the -—user option when you use the asadmin
command (or by or defining the AS_ASDMIN_USER environment variable), and its associated password
(if the associated password is not empty).

The username and password used for a login attempt must match the username and password (if
required) for an account defined in the realm, and you must have set up the account as a member
of the admin group.

What Authentication Methods Are Used for Secure Administration?

The secure admin feature enforces security via the following authentication methods:

• The DAS and instances authenticate to each other via mutual (two-way) SSL/TLS certificate
authentication. The DAS authenticates to clients via one-way SSL/TLS certificate authentication.

The domain creation process creates a default keystore and truststore, plus a default private key
for the DAS. Secure admin uses this initial configuration to set up the truststore so that the DAS
and instances always trust each other.

• Remote administration clients (asadmin, administration console, browsers, and IDEs) must
accept the public certificate presented by the DAS. If accepted, remote administration clients
then send a user name and password (HTTP Basic authentication) in the HTTP Authorization
header. The receiving DAS or instance makes sure those credentials are valid in its realm, and

74

authenticates and authorizes the user.

• A locally-running asadmin (that is, connecting to an instance on the same host) authenticates and
authorizes to the co-located instance using a locally-provisioned password.

• Credentials or other sensitive information sent over the network are always encrypted if secure
admin is enabled. No credentials are sent in the clear if secure admin is enabled. (If secure
admin is disabled, credentials are sent in the clear.) Messages between administration clients
and the DAS, between the DAS and remote instances, and between local administration clients
and instances are encrypted using SSL/TLS. This is true even if you explicitly set the asadmin
-—secure option to false.

Table 5-1 shows which authentication methods are employed when secure admin is enabled or
disabled.

Table 5-1 Authentication Methods Employed

Access Method When Secure Admin is
Disabled

When Secure Admin is Enabled

Remote administration
access to the DAS

Rejected. Username/password authentication.
(Client must also accept server
certificate.)

Communication between
DAS and instances

Cleartext messages. No
mutual authentication.

SSL-encrypted messages. SSL mutual
authentication using certificates.

Communication between
administration clients and
DAS

Cleartext messages. No DAS
authentication.

SSL-encrypted messages. DAS uses SSL
certificate server authentication.

Local asadmin client to
instance on same node

Cleartext messages. Locally-
provisioned password
mechanism is used.

SSL-encrypted messages. Locally-
provisioned password mechanism is
used.

Understanding How Certificate Authentication is Performed

The domain creation process creates a primary (private) key and a self-signed certificate for the
DAS, and a separate private key and self-signed certificate for remote instances.

Then, when you enable secure admin, the following actions are performed:

• Both private keys are stored in the domain-wide DAS keystore file, keystore.p12 (PKCS12 format,
recommended). For legacy compatibility, keystore.jks (JKS format) is also supported.

• Both public certificates are stored in the domain-wide DAS truststore file, cacerts.p12 (PKCS12
format, recommended). For legacy compatibility, cacerts.jks (JKS format) is also supported.

When the DAS sends a message to an instance:

1. SSL on the instance asks the DAS to provide an SSL/TLS certificate.

2. The DAS sends the certificate with the alias you specified using the --adminalias option when
you ran the enable-secure-admin subcommand.

75

3. SSL on the instance makes sure the certificate is valid and Eclipse GlassFish makes sure that the
security Principal associated with the incoming request (provided automatically by Grizzly and
the SSL/TLS Java implementation) matches the Principal associated with the adminalias from
the instance’s truststore.

What Certificates Are Used?

When you enable secure admin, you can optionally set the --adminalias and --instancealias
options that tell secure admin which aliases to use for the DAS and instance certificates.

The DAS uses the alias associated with the --instancealias option to check incoming requests that
use SSL/TLS cert authentication. Conversely, instances use the alias associated with the --adminalias
option to check incoming requests with certificate authentication.

By default, --adminalias of the enable-secure-admin subcommand uses the s1as alias, and the
--instancealias option uses the glassfish-instance alias, both of which identify the default self-
signed certificates.

You can use your tool of choice, such as keytool, to list the default self-signed certificates in the
keystore, similar to the following:



You can list the contents of the keystore without supplying a password. However,
for a request that affects the private key, such as the keytool --certreq option, the
keystore password is required. This is the master password and has a default value
of changeit unless you change it with the change-master-password subcommand.

keytool -list -keystore keystore.p12
Enter keystore password:
Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

glassfish-instance, 16. 6. 2025, PrivateKeyEntry,
Certificate fingerprint (SHA-256):
F1:A6:22:25:2E:1A:15:66:FE:C5:93:87:FE:C9:4A:EF:7F:B1:51:D9:54:C2:7D:19:B3:77:45:D4:75
:8A:92:D8
s1as, 16. 6. 2025, PrivateKeyEntry,
Certificate fingerprint (SHA-256):
28:D2:74:B2:F0:85:C2:3E:B8:23:77:2C:B9:4B:A9:44:18:04:90:EC:7A:C1:43:A3:74:FA:73:0D:2C
:8B:BE:FA

The --adminalias and --instancealias values are maintained. Because of this design, normal
instance creation operations (create-instance over SSH and create-local-instance) apply the up-to-
date keystore, truststore, and configuration to each instance.

76

Self-Signed Certificates and Trust

The self-signed certificates that Eclipse GlassFish uses might not be trusted by clients by default
because a certificate authority does not vouch for the authenticity of the certificate. If you enable
secure admin and then contact the DAS using an administration client, that client will detect
whether the certificate is automatically trusted.

Browsers will warn you, let you view the certificate, and ask you to reject the certificate, accept it
once, or accept it indefinitely, as shown in Figure 5-1.

Figure 5-1 Sample Browser Response to Untrusted Certificate

Similarly, the first time asadmin receives an untrusted certificate, it displays the certificate and lets
you accept it or reject it, as follows: (If you accept it, asadmin also accepts that certificate in the
future.)

asadmin change-admin-password
Enter admin user name [default: admin]>
Enter the admin password>
Enter the new admin password>
Enter the new admin password again>
Command change-admin-password executed successfully.

asadmin enable-secure-admin
Command enable-secure-admin executed successfully.

asadmin stop-domain domain1
Waiting for the domain to stop
Waiting finished after 403 ms.
Command stop-domain executed successfully.

77

Executing: nohup /usr/lib/jvm/jdk21/bin/java ...
Please look at the server log for more details...
Waiting for domain1 to start .
Waiting finished after 1 830 ms.
Successfully started the domain : domain1
domain Location: glassfish7/glassfish/domains/domain1
Log File: glassfish7/glassfish/domains/domain1/logs/server.log
Admin Port: 4 848
Command start-domain executed successfully.

asadmin --passwordfile passwordfile.txt --host myhost --port 4848 --user admin get '*'
[
[
 Version: V3
 Subject: CN=myhost, OU=GlassFish, O=Eclipse Foundation
 Signature Algorithm: SHA384withRSA, OID = 1.2.840.113549.1.1.12

 Key: Sun RSA public key, 3072 bits
 params: null
 modulus:
35497354360172933959443996460508116059435324833307316394815988491953131358356011430692
78775941912833227184154864170476669765109167152322363083299440076144545884210810695275
24523529037112504922150434345263654611553900068926166082405875219964941312769571405721
64033046204796635375937836437188158261749363537440831579480025498996475798758634338797
15246339821979167572445791066895925940334028702098718914449598747058452632825884946661
99781706346747796708224649968670684981276829640313121099224796363228934304650829941527
46858782076230874560039379807799904731387866611039331700764030082638760464724493250911
95878634067766001042523423726589500567402223394224478674606376189686528174927512280324
40324772001652560502117603729338770854998244078748286827691078866989667077415941395007
74577465645026909436675250413810154856899564217098951645902783633351807103558271897409
31402932913235081939232805280270340849976056857048054492958525153
 public exponent: 65537
 Validity: [From: Mon Jun 16 23:57:45 CEST 2025,
 To: Thu Jun 14 23:57:45 CEST 2035]
 Issuer: CN=dmatej-tux, OU=GlassFish, O=Eclipse Foundation
 SerialNumber: 68:68:c4:b6:10:00:3b:60

Certificate Extensions: 1
[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: DE 76 7A 17 89 52 81 A2 16 D7 98 9A F1 88 E0 77 .vz..R.........w
0010: B5 35 45 42 .5EB
]
]

]
 Algorithm: [SHA384withRSA]
 Signature:
0000: 2D FC 98 9B B6 4D 0F 13 89 1B 50 17 FF 46 14 84 -....M....P..F..
0010: C2 42 42 4C EF DC 2A 49 FC 6C D4 CE E1 78 36 28 .BBL..*I.l...x6(

78

0020: CC 24 A1 F0 99 6E 6A 2D 09 A0 C2 56 76 E9 02 0B .$...nj-...Vv...
0030: B7 AA 19 FE 95 0A BB 7C 35 C8 23 FE CE 01 A9 CE 5.#.....
0040: 4D 7D A0 90 14 F6 4A C6 74 68 6E 4A 78 40 1F 82 M.....J.thnJx@..
0050: D0 2D 2D 91 CB 29 B7 14 37 9D B8 4A 41 39 41 63 .--..)..7..JA9Ac
0060: 21 B9 0D 91 CA 94 70 38 35 F1 5A 94 53 12 03 E3 !.....p85.Z.S...
0070: 16 73 DE 5A 2A F4 73 80 2D 3A 12 A4 E2 96 8F 4A .s.Z*.s.-:.....J
0080: 62 08 E3 CB 2F AE 61 D8 D4 37 14 0D AC 9C D2 38 b.../.a..7.....8
0090: 6F C6 FF B7 BF B7 B0 EC D7 78 70 55 24 81 AB D8 o........xpU$...
00A0: A8 28 65 F6 87 08 BB CE 29 19 66 B0 8E F2 AB D1 .(e.....).f.....
00B0: B3 12 C1 E9 A5 8C 29 F6 7B 49 B4 77 EA F9 88 D7 )..I.w....
00C0: 56 B6 C1 74 6B F5 71 B3 59 E8 CF B3 3F BA 44 F3 V..tk.q.Y...?.D.
00D0: DB 00 5F 9C 47 7A 23 A7 F4 CE 35 E4 9D 38 3E 4E .._.Gz#...5..8>N
00E0: E8 9F 3F 04 A3 A9 BB 60 B3 7E 76 9D CA DF 82 2C ..?....`..v....,
00F0: FE 5C 94 91 0A BA D4 DA DF ED 92 CE F3 09 7D 8C .\..............
0100: 7C 8F 25 C4 87 25 69 34 C5 DF 6B 66 CE F9 51 73 ..%..%i4..kf..Qs
0110: 9C 40 81 0C 7F 4F FF 9D E9 F8 A2 24 3F EB 72 5D .@...O.....$?.r]
0120: 52 F2 D5 7D ED DA 8B 96 07 AC 66 A3 B8 A7 94 35 R.........f....5
0130: 64 B7 15 26 B3 D8 5D 30 65 C0 3D A7 C4 BF D2 CB d..&..]0e.=.....
0140: 1B E7 2C AB 76 68 72 77 C4 C1 21 69 D0 B8 8F B3 ..,.vhrw..!i....
0150: 4F 00 09 51 0D BF F3 A8 16 00 73 58 F4 E7 95 CF O..Q......sX....
0160: ED 80 65 6E 01 51 3D 09 F7 EB 1A 7A 76 63 7D DD ..en.Q=....zvc..
0170: 6D 3D 11 6D 15 01 D6 EC E4 24 51 9A A5 FC 9C 7E m=.m.....$Q.....

]
Do you trust the above certificate [y|N] -->y

asadmin saves certificates you accept in the file .asadmintruststore in your log-in default directory.
You do not generally need to work with the file directly, but if you delete or move the file, asadmin
will prompt you again when it receives untrusted certificates.

Some asadmin commands such as run-script can contact an instance directly to retrieve information
(but not to make configuration changes). The instances do not use the same certificate as the DAS,
so in these cases asadmin then prompts you to accept or reject the instance certificate.

Using Your Own Certificates

By default, --adminalias of the enable-secure-admin subcommand uses the s1as alias, and the
--instancealias option uses the glassfish-instance alias, both of which identify the default self-
signed certificates.

You can instead have Eclipse GlassFish use your own certificates for this purpose by first adding
your certificates to the keystore and truststore, and then running enable-secure-admin and
specifying the aliases for your certificates.

It is also possible to use s1as and glassfish-instance as the alias names for your own certificates. A
benefit of doing so is that you would not have to specify alias names with the enable-secure-admin
subcommand.

In addition, your own certificate identified by the s1as alias would be used in all other cases within
the domain where the s1as alias is used (by default), such as in the SSL configuration of the IIOP

79

and http-listener-2 listeners, and as the encryption.key.alias and signature.key.alias used for
provider configuration in the SOAP authentication layer for Message Security configuration.

You may find the wide-reaching effect of using the s1as alias with your own certificate to be either a
useful feature or an unintended consequence. Therefore, you should understand the implications
of using the s1as alias before doing so.

If you decide to use the s1as and glassfish-instance aliases with your own certificates, you will first
need to disable secure admin (if enabled) and then change or delete the exiting s1as alias from both
the keystore.p12 keystore and cacerts.p12 truststore for the DAS. You can use the --changealias or
--delete option of keytool to accomplish this. Then, import your own certificates.

When you enable secure admin, the DAS and the instances then have copies of the same keystore
and truststore

An Alternate Approach: Using Distinguished Names to Specify Certificates

By default, the DAS uses the alias associated with the --instancealias option to check incoming
requests that use SSL/TLS cert authentication. Conversely, instances use the alias associated with
the --adminalias option to check incoming requests with certificate authentication.

The enable-secure-admin-principal subcommand provides an alternate approach. enable-secure-
admin-principal instructs Eclipse GlassFish to accept admin requests when accompanied by an SSL
certificate with the specified distinguished name (DN).


Any certificate you specify with enable-secure-admin-principal must either be
issued by a trusted certificate authority or, if it is self-signed, must already be in
the Eclipse GlassFish truststore.

For example, assume that you write your own admin client that uses the REST interface. When your
client establishes the connection, it can choose which certificate to use for its client cert. You would
then specify the DN of this certificate to enable-secure-admin-principal.

You must specify either the DN or the --alias option of the enable-secure-admin-principal
subcommand.

If you specify the DN, Eclipse GlassFish records the value you specify as the DN. You specify the DN
as a comma-separated list in quotes. For example,
"CN=system.amer.oracle.com,OU=GlassFish,O=Oracle Corporation,L=Santa Clara,ST=California,C=US".


The enable-secure-admin-principal subcommand accepts the string you enter and
does not immediately validate it. However, secure admin must be able to match
the DN you specify in order to use it.

If you have sufficient privileges to view the content of the keystore, you can use keytool to display
the DN of a certificate:

keytool -v -list -keystore keystore.p12
Enter keystore password:

80

https://glassfish.org/docs/latest/reference-manual.pdf#enable-secure-admin-principal
https://glassfish.org/docs/latest/reference-manual.pdf#enable-secure-admin-principal

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

Alias name: glassfish-instance
Creation date: 16. 6. 2025
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=localhost-instance, OU=GlassFish, O=Eclipse Foundation
Issuer: CN=localhost-instance, OU=GlassFish, O=Eclipse Foundation
Serial number: e99681e61da6a953
Valid from: Mon Jun 16 17:13:17 CEST 2025 until: Thu Jun 14 17:13:17 CEST 2035
Certificate fingerprints:
 SHA1: 37:6D:39:C1:F5:57:86:07:61:2D:0D:6C:93:E6:13:E5:05:CF:4A:5C
 SHA256:
F1:A6:22:25:2E:1A:15:66:FE:C5:93:87:FE:C9:4A:EF:7F:B1:51:D9:54:C2:7D:19:B3:77:45:D4:75
:8A:92:D8
Signature algorithm name: SHA384withRSA
Subject Public Key Algorithm: 3072-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 83 D4 5A 15 9E 87 E8 B3 5C D3 F9 D3 7F 06 2F D0 ..Z.....\...../.
0010: CF E5 AB F0
]
]

Alias name: s1as
Creation date: 16. 6. 2025
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=localhost, OU=GlassFish, O=Eclipse Foundation
Issuer: CN=localhost, OU=GlassFish, O=Eclipse Foundation
Serial number: a1cbb63cfa2050c4
Valid from: Mon Jun 16 17:13:16 CEST 2025 until: Thu Jun 14 17:13:16 CEST 2035
Certificate fingerprints:
 SHA1: 59:80:01:EB:F7:99:E8:37:BA:6E:49:D1:B7:2B:74:42:8A:89:23:CE
 SHA256:

81

28:D2:74:B2:F0:85:C2:3E:B8:23:77:2C:B9:4B:A9:44:18:04:90:EC:7A:C1:43:A3:74:FA:73:0D:2C
:8B:BE:FA
Signature algorithm name: SHA384withRSA
Subject Public Key Algorithm: 3072-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 16 BE A5 C1 AB A0 66 8B 63 66 64 02 C8 25 7C A9 f.cfd..%..
0010: 0F B1 C8 5E ...^
]
]

If you use the "`--alias` aliasname" form, then Eclipse GlassFish looks in its truststore for a
certificate with the specified alias and uses the DN associated with that certificate. alias-name must
be an alias associated with a certificate currently in the truststore. Therefore, you may find it most
useful for self-signed certificates for which you know the alias.

If you have sufficient privileges to view the contents of the truststore, you can use keytool to display
the alias of a certificate:

keytool -v -list -keystore cacerts.p12
Enter keystore password:
Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

Alias name: glassfish-instance
Creation date: 16. 6. 2025
Entry type: trustedCertEntry

Owner: CN=localhost-instance, OU=GlassFish, O=Eclipse Foundation
Issuer: CN=localhost-instance, OU=GlassFish, O=Eclipse Foundation
Serial number: e99681e61da6a953
Valid from: Mon Jun 16 17:13:17 CEST 2025 until: Thu Jun 14 17:13:17 CEST 2035
Certificate fingerprints:
 SHA1: 37:6D:39:C1:F5:57:86:07:61:2D:0D:6C:93:E6:13:E5:05:CF:4A:5C
 SHA256:
F1:A6:22:25:2E:1A:15:66:FE:C5:93:87:FE:C9:4A:EF:7F:B1:51:D9:54:C2:7D:19:B3:77:45:D4:75
:8A:92:D8
Signature algorithm name: SHA384withRSA

82

Subject Public Key Algorithm: 3072-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 83 D4 5A 15 9E 87 E8 B3 5C D3 F9 D3 7F 06 2F D0 ..Z.....\...../.
0010: CF E5 AB F0
]
]

Alias name: s1as
Creation date: 16. 6. 2025
Entry type: trustedCertEntry

Owner: CN=localhost, OU=GlassFish, O=Eclipse Foundation
Issuer: CN=localhost, OU=GlassFish, O=Eclipse Foundation
Serial number: a1cbb63cfa2050c4
Valid from: Mon Jun 16 17:13:16 CEST 2025 until: Thu Jun 14 17:13:16 CEST 2035
Certificate fingerprints:
 SHA1: 59:80:01:EB:F7:99:E8:37:BA:6E:49:D1:B7:2B:74:42:8A:89:23:CE
 SHA256:
28:D2:74:B2:F0:85:C2:3E:B8:23:77:2C:B9:4B:A9:44:18:04:90:EC:7A:C1:43:A3:74:FA:73:0D:2C
:8B:BE:FA
Signature algorithm name: SHA384withRSA
Subject Public Key Algorithm: 3072-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 16 BE A5 C1 AB A0 66 8B 63 66 64 02 C8 25 7C A9 f.cfd..%..
0010: 0F B1 C8 5E ...^
]
]

When you run enable-secure-admin, Eclipse GlassFish automatically records the DNs for the admin
alias and the instance alias, whether you specify those values or use the defaults. You do not need to
run enable-secure-admin-principal yourself for those certificates.

83

Other than these certificates, you must run enable-secure-admin-principal for any other DN that
Eclipse GlassFish should authorize to send admin requests. This includes DNs corresponding to
trusted certificates (those with a certificate chain to a trusted authority.)

You can run enable-secure-admin-principal multiple times so that Eclipse GlassFish accepts admin
requests from a client sending a certificate with any of the DNs you specify.

The following example shows how to specify a DN for authorizing access in secure administration:

asadmin enable-secure-admin-principal "CN=myadmin,OU=GlassFish,O=Eclipse Foundation"
Command enable-secure-admin-principal executed successfully.

You can use the disable-secure-admin-principal subcommand to disable a specific certificate for
authenticating and authorizing access in secure admin. You must specify either the DN or the
--alias option of the disable-secure-admin-principal subcommand. To disable multiple certificates
for authenticating and authorizing access in secure admin, run the disable-secure-admin-principal
subcommand multiple times.

You can use the list-secure-admin-principals subcommand to list the certificates for which Eclipse
GlassFish accepts admin requests from clients.

Guarding Against Unwanted Connections

Secure admin guards against unwanted connections in several ways:

• DAS-to-DAS, instance-to-instance:

◦ The DAS and the instances have copies of the same truststore, which contains the public
certificate of the DAS and the separate public certificate that is used by all instances. In
addition, Eclipse GlassFish includes a unique, generated "domain ID" that servers use to
ensure that admin requests from other Eclipse GlassFishs originate from the correct
domain.

◦ DAS-to-other-DAS communication is not authenticated because each different DAS will have
its own self-signed certificate that is not in the truststore of the other DAS.

◦ DAS-to-itself communication is unlikely unless you were to misconfigure the admin listener
port for an instance on the same host so it is the same as for the DAS. Similarly, instance-to-
instance traffic is unlikely unless you were to misconfigure listener ports for instances on
the same host.

To prevent both of these situations, both cases are handled by making sure that the
connecting Principal (alias) is not the running Principal. secure admin ensures that if the
client has authenticated using SSL/TLS client authentication that the Principal associated
with the remote client is not the same as the current process. That is, the DAS makes sure
that the Principal is not itself. Similarly, each instance ensures that the client is not an
instance. (The instances share the same self-signed certificate and therefore are mapped to
the same Principal.)

• Remote client-to-instance:

84

https://glassfish.org/docs/latest/reference-manual.pdf#disable-secure-admin-principal
https://glassfish.org/docs/latest/reference-manual.pdf#list-secure-admin-principals

Remote asadmin clients are unable to connect directly to instances. If the user on host "test1"
runs a local command but specifies a remote instance on host "test2," asadmin on test1 will read
and send that locally-provisioned password. The instance on "test2" will have a different locally-
provisioned password and so the authentication attempt will fail.

Therefore, a user on "test1" will not be able to run a remote command targeting an instance on
"test2."

Considerations When Running Eclipse GlassFish With
Default Security
In Eclipse GlassFish, the default admin account is username "admin" with an empty password.
Admin clients provide empty credentials or none at all, and all are authenticated and authorized as
that default admin user. None of the participants (clients, DAS, or instances) encrypts network
messages.

If this level of security is acceptable in your environment, no changes are needed and you do not
need to enable secure administration. Imposing a heightened level of security is optional.

However, consider Table 5-2, which shows which operations are accepted and rejected when secure
admin is disabled.


When secure admin is disabled, Eclipse GlassFish does allow remote monitoring
(read-only) access via the REST interface.

Table 5-2 Accepted and Rejected Operations if Secure Admin is Disabled

Operation Run From Same
System as DAS

Run From Remote System

start-local-instance Functions as expected Cannot sync with DAS. The instance starts
but cannot communicate with the DAS. DAS
will not see the instance.

Any other asadmin
subcommand

Functions as expected Rejected. A user sees the
username/password prompt, but even
correct entries are rejected.

Commands that use SSH. For
example, create-instance.

Functions as expected;
requires prior SSH
configuration.

Functions as expected; requires prior SSH
configuration.

Running Secure Admin
This section describes how to run secure admin. The section begins with prerequisites for running
secure admin.

85

Prerequisites for Running Secure Admin

Before running Eclipse GlassFish with secure admin enabled, you must make sure that:

1. The DAS is installed, initialized, and running.

2. If one or more remote instances are installed and initialized, they must not be running.

3. Any administration clients you require are installed.

4. The DAS communicates on the -—adminport you configure when you create the domain, and
defaults to 4848. An instance communicates on the ASADMIN_LISTENER_PORT system property you
specify for the instance.

5. The user name and password sent by remote administration clients (asadmin, administration
console, browsers, and IDEs) must exist in the realm and be in the admin group.

6. The keystore and truststore for the domain exist. (They are created by default when you create
the domain or install Eclipse GlassFish.)

If you are not using the default self-signed certificates, you must add your own valid certificates
and CA root in the keystore and truststore, respectively.

7. If you are not using the default self-signed certificates, create two aliases corresponding to
certificates in the keystore and truststore: one that the DAS will use for authenticating itself in
administration traffic, and one that the instances will use for authenticating itself in
administration traffic.

An Alternate Approach: Using A User Name and Password for Internal
Authentication and Authorization

By default, secure admin uses the Eclipse GlassFish self-signed certificates, via the aliases
corresponding to these certificates, to authenticate the DAS and instances with each other and to
authorize secure admin operations. Specifically, the DAS uses the (s1as) alias for authenticating
itself and authorizing access in administration traffic, and instances use the (glassfish-instance)
alias for authenticating themselves and authorizing access in secure admin traffic.

As described in Using Your Own Certificates, you can instead use your own certificates and their
associated aliases for authenticating and authorizing the DAS and instances in administration
traffic.

As an alternative to this certificate-based authentication and authorization, you can instead use the
enable-secure-admin-internal-user subcommand to instruct all servers in the domain to
authenticate to each other, and to authorize admin operations submitted to each other, using an
existing admin user name and password rather than SSL certificates.


If secure admin is enabled, all Eclipse GlassFish processes continue to use SSL
encryption to secure the content of the admin messages, regardless of how they
authenticate to each other.

You might want to use the enable-secure-admin-internal-user subcommand if your use case favors
the use of a user name and password combination over the use of SSL certificates and aliases.

86

https://glassfish.org/docs/latest/reference-manual.pdf#enable-secure-admin-internal-user
https://glassfish.org/docs/latest/reference-manual.pdf#enable-secure-admin-internal-user
https://glassfish.org/docs/latest/reference-manual.pdf#enable-secure-admin-internal-user
https://glassfish.org/docs/latest/reference-manual.pdf#enable-secure-admin-internal-user

This generally means that you must:

1. Create a valid admin user.

asadmin> create-file-user --authrealmname admin-realm --groups
asadmin newAdminUsername

2. Create a password alias for the just-created password.

asadmin> create-password-alias passwordAliasName

3. Use that user name and password for inter-process authentication and admin authorization.

asadmin> enable-secure-admin-internal-user
--passwordalias passwordAliasName
newAdminUsername

The following example allows secure admin to use a user name and password alias for
authentication and authorization between the DAS and instances, instead of certificates.

asadmin> enable-secure-admin-internal-user
--passwordalias passwordAliasName
newAdminUsername

If Eclipse GlassFish finds at least one secure admin internal user, then if secure admin is enabled
Eclipse GlassFish processes will not use SSL authentication and authorization with each other and
will instead use user name password pairs.

Most users who use this subcommand will need to set up only one secure admin internal user. If
you set up more than one secure admin internal user, you should not make any assumptions about
which user name and password pair Eclipse GlassFish will choose to use for any given admin
request.

As a general practice, you should not use the same user name and password pair for internal admin
communication and for admin user login. That is, create at least one admin account specifically for
internal admin communication.

You can use the disable-secure-admin-internal-user subcommand to disable secure admin from
using the user name (instead of SSL certificates) to authenticate the DAS and instances with each
other and to authorize admin operations. To disable multiple user names for authenticating and
authorizing access in secure admin, run the disable-secure-admin-internal-user subcommand
multiple times.

You can use the list-secure-admin-internal-users subcommand to list the user names for which
Eclipse GlassFish authenticate the DAS and instances with each other and authorizes admin
operations.

87

https://glassfish.org/docs/latest/reference-manual.pdf#disable-secure-admin-internal-user
https://glassfish.org/docs/latest/reference-manual.pdf#list-secure-admin-internal-users

Example of Running enable-secure-admin

The following example shows how to enable secure admin for a domain using the default admin
alias and the default instance alias. You must restart the DAS immediately after enabling secure
admin.


The only indicator that secure admin is enabled is the successful status from the
enable-secure-admin subcommand. When secure admin is running, the DAS and
instances do not report the secure admin status.

asadmin> enable-secure-admin
Command enable-secure-admin executed successfully.

The following example shows how to enable secure admin for a domain using an admin alias adtest
and an instance alias intest. You can also use this command to modify an existing secure admin
configuration to use different aliases.

asadmin> enable-secure-admin --adminalias adtest --instancealias intest

The following example shows how to disable secure admin:

asadmin> disable-secure-admin
Command disable-secure-admin executed successfully.

You can use the following command to see the current state of secure admin in a domain:

asadmin> get secure-admin.enabled
secure-admin.enabled=false
Command get executed successfully.

Additional Considerations When Creating Local
Instances
If you use xxx-local-instance commands to set up local instances, either leave secure admin
disabled, or enable it before you create or start the instances and leave it that way.

However, if you use xxx-instance commands over SSH to manage remote instances, you can enable
and disable secure admin, although this is not recommended because it can result in an
inconsistent security model.

Secure Admin Use Case
This section describes a simple secure admin use case.

88

In the asadmin --secure=false --user me --passwordfile myFile.txt cmd … use case, the user
submits a command with --secure set to false, and supplies password credentials.

The important concept to note is that asadmin uses HTTPS because of the DAS redirection, even
though the command sets --secure to false. asadmin sends the HTTP Authorization header along
with the redirected request.

In addition to the flow described here, certificate authentication is also performed as described in
Table 5-3. Also, the credentials that the user supplies are assumed to be valid administrator
credentials for the DAS.

Table 5-3 asadmin --secure=false, With Username and Password

asadmin Grizzly AdminAdapter

Sends HTTP request, no
authorization header (because
the transport is not secure).

Returns 3xx status and
redirects HTTP to HTTPS.

Follows redirection, this time
adding the Authorization header
(because transport is now
HTTPS).

Authenticates admin user and
password from HTTP
Authorization header in the
realm Executes command, and
responds with success status.

Upgrading an SSL-Enabled Secure GlassFish
Installation to Secure Admin
If you enable secure admin on an SSL-enabled Eclipse GlassFish installation, secure admin uses the
existing <ssl cert-nickname> value as the DAS adminalias for secure admin.

89

6 Running in a Secure Environment
This chapter describes important information about running Eclipse GlassFish in a secure
environment.

This chapter assumes that you are familiar with security features such as authentication,
authorization, and certificates. If you are not, see Administering System Security.

Instructions for accomplishing the tasks specific to Eclipse GlassFish by using the Administration
Console are contained in the Administration Console online help.

The chapter describes the following topics:

• Determining Your Security Needs

• Installing Eclipse GlassFish in a Secure Environment

• Run on the Web Profile if Possible

• Securing the Eclipse GlassFish Host

• Securing Eclipse GlassFish

• Securing Applications

Determining Your Security Needs
Before you deploy Eclipse GlassFish and your Jakarta EE applications into a production
environment, determine your security needs and make sure that you take the appropriate security
measures, as described in the following sections:

• Understand Your Environment

• Read Security Publications

Understand Your Environment

To better understand your security needs, ask yourself the following questions:

• Which resources am I protecting?

Many resources in the production environment can be protected, including information in
databases accessed by Eclipse GlassFish and the availability, performance, applications, and the
integrity of the Web site. Consider the resources you want to protect when deciding the level of
security you must provide.

• From whom am I protecting the resources?

For most Web sites, resources must be protected from everyone on the Internet. But should the
Web site be protected from the employees on the intranet in your enterprise? Should your
employees have access to all resources within the Eclipse GlassFish environment? Should the
system administrators have access to all Eclipse GlassFish resources? Should the system
administrators be able to access all data? You might consider giving access to highly confidential

90

data or strategic resources to only a few well trusted system administrators. Perhaps it would be
best to allow no system administrators access to the data or resources.

• What will happen if the protections on strategic resources fail?

In some cases, a fault in your security scheme is easily detected and considered nothing more
than an inconvenience. In other cases, a fault might cause great damage to companies or
individual clients that use the Web site. Understanding the security ramifications of each
resource will help you protect it properly.

See Also: https://www.oracle.com/us/products/ondemand/index.html

Read Security Publications

Read about security issues:

• For the latest information about securing Web servers, Oracle recommends the "Security
Practices & Evaluations" information available from the CERT Coordination Center operated by
Carnegie Mellon University at http://www.cert.org/.

Installing Eclipse GlassFish in a Secure Environment
This section describes recommendations for installing Eclipse GlassFish in a secure environment.
The Enable the Secure Administration Feature topic is described.

Enable the Secure Administration Feature

The secure administration feature allows an administrator to secure all administrative
communication between the domain administration server (DAS), any remote instances, and
administration clients such as the asadmin utility, the administration console, and REST clients. In
addition, secure administration helps to prevent DAS-to-DAS and instance-to-instance traffic, and
carefully restricts administration-client-to-instance traffic.

When you install Eclipse GlassFish or create a new domain, secure admin is disabled by default.
Eclipse GlassFish does not encrypt administrative communication among the system components
and does not accept administrative connections from remote hosts. Imposing a heightened level of
security is optional.

See Managing Administrative Security for information on enabling the secure administration
feature.

Run on the Web Profile if Possible
If your applications can run on the Web Profile, use that instead of the Full Platform.

Starting in Jakarta EE 6, Jakarta EE introduced the concept of profiles. A profile is a collection of
Jakarta EE technologies and APIs that address specific developer communities and application
types.

91

https://www.oracle.com/us/products/ondemand/index.html
http://www.cert.org/

The following profiles are implemented through the distributions of Eclipse GlassFish:

• Full Platform -The full Jakarta EE platform is designed for developers who require the full set of
Jakarta EE APIs for enterprise application development, and is installed when you install
Eclipse GlassFish.

• Web Profile -This profile contains Web technologies that are a subset of the full Java platform,
and is designed for developers who do not require the full set of Jakarta EE APIs.

For the list of APIs in each profile, see " Jakarta EE Standards Support" in Eclipse GlassFish Release
Notes.

Securing the Eclipse GlassFish Host
A Eclipse GlassFish production environment is only as secure as the security of the machine on
which it is running. It is important that you secure the physical machine, the operating system, and
all other software that is installed on the host machine.

The following are recommendations for securing a Eclipse GlassFish host in a production
environment. Also check with the manufacturer of the machine and operating system for
recommended security measures.


The domain and server configuration files should be accessible only by the
operating system users who configure or execute Eclipse GlassFish.

Table 6-1 Securing the Eclipse GlassFish Host

Security Action Description

Physically secure the
hardware.

Keep your hardware in a secured area to prevent unauthorized
operating system users from tampering with the deployment machine
or its network connections.

Log out of the
Administration Console
before navigating to a
non-secure site.

If you are logged on to the Administration Console, be sure to log out
completely before browsing to an unknown or non-secure Web site.

Secure networking
services that the
operating system
provides.

Have an expert review network services such as e-mail programs or
directory services to ensure that a malicious attacker cannot access the
operating system or system-level commands. The way you do this
depends on the operating system you use.

Sharing a file system with other machines in the enterprise network
imposes risks of a remote attack on the file system. Be certain that the
remote machines and the network are secure before sharing the file
systems from the machine.

Use a file system that can
prevent unauthorized
access.

Make sure that the file system on each Eclipse GlassFishhost can
prevent unauthorized access to protected resources. For example, on a
Windows computer, use only NTFS.

92

https://glassfish.org/docs/latest/release-notes.pdf#java-ee-standards-support

Security Action Description

Set file access
permissions for data
stored on disk.

Set operating system file access permissions to restrict access to data
stored on disk. This data includes, but is not limited to, the following:

The database files. Eclipse GlassFish includes Apache Derby database,
however, you can use any JDBC-compliant database.

The directory and filename location of a private keystore, such as
keystore.p12.

The directory and filename location of a Root Certificate Authority (CA)
keystore, such as cacerts.p12.

For example, operating systems provide utilities such as umask and
chmod to set the file access permissions. At a minimum, consider using
"umask 066", which denies read and write permission to Group and
Others.

Set file access permission
for the Eclipse GlassFish
installation.

The directory structure in which Eclipse GlassFish is located, including
all files, should be protected from access by unprivileged users.

Taking this step helps ensure that unprivileged users cannot insert
code that can potentially be executed by Eclipse GlassFish.

Limit the number of user
accounts on the host
machine.

Avoid creating more user accounts than you need on host machines,
and limit the file access privileges granted to each account. On
operating systems that allow more than one system administrator user,
the host machine should have two user accounts with system
administrator privileges and one user with sufficient privileges to run
Eclipse GlassFish. Having two system administrator users provides a
back up at all times. The Eclipse GlassFish user should be a restricted
user, not a system administrator user. One of the system administrator
users can always create a new Eclipse GlassFish user if needed.

Important: Domain and server configuration files should be accessible
only by the operating system users who configure or execute Eclipse
GlassFish.

Review active user accounts regularly and when personnel leave.

Background Information: Configuration data and some URL (Web)
resources, including Java Server Pages (JSPs) and HTML pages, are
stored in clear text on the file system. A sophisticated user or intruder
with read access to files and directories might be able to defeat any
security mechanisms you establish with authentication and
authorization schemes.

For your system
administrator user
accounts, choose names
that are not obvious.

For additional security, avoid choosing an obvious name such as
"system," "admin," or "administrator" for your system administrator
user accounts.

93

Security Action Description

Safeguard passwords. The passwords for user accounts on production machines should be
difficult to guess and should be guarded carefully.

Set a policy to expire passwords periodically.

Never code passwords in client applications.

Do not deploy an application that can be accessed with the default
username admin and no password.

Safeguard password files The -passwordfile option of the asadmin command specifies the name of
a file that contains password entries in a specific format. These
password entries are stored in clear text in the password file, and rely
on file system mechanisms for protection. Therefore, any password file
created for use with the -passwordfile option should be protected with
file system permissions. Additionally, any password file being used for
a transient purpose, such as setting up SSH among nodes, should be
deleted after it has served its purpose.

To provide additional security, create a password alias.

Use a password alias A password alias stores a password in encrypted form in the domain
keystore, providing a clear-text alias name to use instead of the
password.

To provide additional security, use the create-password-alias
subcommand to create an alias for the password. The password for
which the alias is created is stored in an encrypted form.

Then, specify the alias in the entry for the password in the password
file as follows:

In password files and the domain configuration file, use the form
$\{alias=alias-name} to refer to the encrypted password.

Do not run Eclipse
GlassFish as root

Eclipse GlassFish should run only as an unprivileged user, never as
root.

Taking this step helps ensure that code from other users cannot be
executed by Eclipse GlassFish.

Consider use PAM Realm The use of a PAM Realm requires Eclipse GlassFish to run as an account
that has read-access to a shadow password file or the equivalent, and
therefore may not be suitable in your environment.

Do not develop on a
production machine.

Develop first on a development machine and then move code to the
production machine when it is completed and tested. This process
prevents bugs in the development environment from affecting the
security of the production environment.

94

Security Action Description

Do not install
development or sample
software on a production
machine.

Do not install development tools on production machines. Keeping
development tools off the production machine reduces the leverage
intruders have should they get partial access to a production machine.

Enable security auditing. If the operating system on which Eclipse GlassFish runs supports
security auditing of file and directory access, Oracle recommends using
audit logging to track any denied directory or file access violations.
Administrators should ensure that sufficient disk space is available for
the audit log.

Consider using additional
software to secure your
operating system.

Most operating systems can run additional software to secure a
production environment. For example, an Intrusion Detection System
(IDS) can detect attempts to modify the production environment. Refer
to the vendor of your operating system for information about available
software.

Apply operating system
patch sets and security
patches.

Refer to the vendor of your operating system for a list of recommended
patch sets and security-related patches.

Apply the latest
maintenance packs and
critical patch updates.

Refer to the vendor of your operating system for a list of maintenance
packs and critical patch updates.

Securing Eclipse GlassFish
Eclipse GlassFish provides a powerful and flexible set of software tools for securing the subsystems
and applications that run on a server instance. The following table provides a checklist of essential
features that Oracle recommends you use to secure your production environment.

Table 6-2 Securing Eclipse GlassFish

95

Security Action Description

Enable Secure Admin. The secure administration feature allows an administrator to secure all
administrative communication between the domain administration
server (DAS), any remote instances, and administration clients such as
the asadmin utility, the administration console, and REST clients.

In addition, secure administration helps to prevent DAS-to-DAS and
instance-to-instance traffic, and carefully restricts administration-client-
to-instance traffic.

The secure administration feature provides a secure environment, in
which you can be confident that rogue users or processes cannot
intercept or corrupt administration traffic or impersonate legitimate
Eclipse GlassFish components.

See Managing Administrative Security.

Protect the
.asadminpass file

If you create a domain with the --savelogin option, create-domain saves
the administration user name and password in the .asadminpass file in
the user’s home directory.

Make sure that this file remains protected. Information stored in this file
will be used by asadmin commands to manage this domain.

Safeguard password
files

The -passwordfile option of the asadmin command specifies the name of a
file that contains password entries in a specific format. These password
entries are stored in clear text in the password file, and rely on file
system mechanisms for protection. Therefore, any password file created
for use with the -passwordfile option should be protected with file
system permissions. Additionally, any password file being used for a
transient purpose, such as setting up SSH among nodes, should be deleted
after it has served its purpose.

To provide additional security, create a password alias.

Deploy production-
ready security
providers to the
security realm.

Java Authorization Contract for Containers (JACC) is the part of the
Jakarta EE specification that defines an interface for pluggable
authorization providers. This enables you to set up third-party plug-in
modules to perform authorization.

By default, the Eclipse GlassFish provides a simple, file-based
authorization engine that complies with the JACC specification. You can
also specify additional third-party JACC providers.

If you have purchased or written your own security providers, make sure
that you have deployed and configured them properly.

96

Security Action Description

Use SSL, but do not use
the self-signed
certificates in a
production
environment.

To prevent sensitive data from being compromised, secure data transfers
by using HTTPS.

By default, Eclipse GlassFish uses self-signed certificates. The self-signed
certificates that Eclipse GlassFish uses might not be trusted by clients by
default because a certificate authority does not vouch for the authenticity
of the certificate.

You can instead use your own certificates, as described in Using Your
Own Certificates.

Restrict the size and the
time limit of requests
on external channels to
prevent Denial of
Service attacks.

To prevent some Denial of Service (DoS) attacks, restrict the size of a
message as well as the maximum time it takes a message to arrive.

The default setting for maximum post size is 2097152 bytes and 900
seconds for the request timeout.

Enable authentication
and authorization
auditing.

Auditing is the process of recording key security events in your Eclipse
GlassFish environment. You use audit modules to develop an audit trail
of all authentication and authorization decisions. To enable audit logging,
two steps are required:

1. On the Security page, select the Audit Logging Enabled checkbox to
enable audit logging.

2. Set the auditOn property for the active audit module to true.

Review the auditing records periodically to detect security breaches and
attempted breaches. Noting repeated failed logon attempts or a
surprising pattern of security events can prevent serious problems.

Set logging for security
and SSL messages.

Consider setting module log levels for
jakarta.enterprise.system.security.ssl
and
jakarta.enterprise.system.core.security.
You can set a level from SEVERE to FINEST (the default is INFO), but be
aware that the finer logging levels may produce a large log file and may
contain sensitive information.

By default, Eclipse GlassFish logging messages are recorded in the
server.log file, and you can set the file rotation limit, as described in
rotate-log(1)

Ensure that you don’t
share sensitive
information in logs.

Logs may contain sensitive information. Despite the $Eclipse GlassFish in
default configuration doesn’t log any passwords, before you share logs
with anyone else you should verify that you don’t compromise your
system by any information contained in logs, especially if you configured
more verbose log levels.

97

https://glassfish.org/docs/latest/reference-manual.pdf#rotate-log
https://glassfish.org/docs/latest/reference-manual.pdf#rotate-log

Security Action Description

Ensure that you have
correctly assigned
users to the correct
groups.

Make sure you have assigned the desired set of users to the right groups.
In particular, make sure that users assigned to the asadmin group need to
be members of that group.

Create no fewer than
two user accounts in
the asadmin group.

The user admin is created when you install Eclipse GlassFish. For
production environments, create at least one other account in the
asadmin group in case one account password is compromised. When
creating asadmin users give them unique names that cannot be easily
guessed.

Assign a password to
the admin account.

By default, Eclipse GlassFish includes a single account for user "admin"
and an empty password. For production environments this default is
inherently unsecure, and you should set a password for admin.

Run on the latest JDK
update.

Refer to the vendor of your JDK for a list of security-related updates.

Disabling any public
facing listeners if they
are not used in any
way.

By default, Eclipse GlassFish opens several listener ports upon startup,
but you can restrict this by disabling unused listeners. This step helps
prevent access from malicious attackers.

Securing Applications
Although much of the responsibility for securing the Eclipse GlassFish resources in a domain fall
within the scope of the server, some security responsibilities lie within the scope of individual
applications. For some security options, Eclipse GlassFish enables you to determine whether the
server or individual applications are responsible. For each application that you deploy in a
production environment, review the items in the following table to verify that you have secured its
resources.

Table 6-3 Securing Applications

Security Action Description

Use JSP comment
tags instead of
HTML comment
tags.

Comments in JSP files that might contain sensitive data and or other
comments that are not intended for the end user should use the JSP syntax
of <%/* xxx */%> instead of the HTML syntax <!-- xxx -→. The JSP comments,
unlike the HTML comments, are deleted when the JSP is compiled and
therefore cannot be viewed in the browser.

98

Security Action Description

Do not install
uncompiled JSPs and
other source code on
the production
machine.

Always keep source code off of the production machine. Getting access to
your source code allows an intruder to find security holes.

Consider precompiling JSPs and installing only the compiled JSPs on the
production machine. To do this, set the deploy subcommand -precompilejsp
option to true for the component.

When set to true, the deploy and redeploy subcommands -precompilejsp
option compiles JSPs during deploy time. If set to false (the default), JSPs are
compiled during runtime.

Configure your
applications to use
SSL.

Set the transport-guarantee to CONFIDENTIAL in the user-data-constraint
element of the web.xml file whenever appropriate.

Examine
applications for
security.

There are instances where an application can lead to a security
vulnerability.

Of particular concern is code that uses Java native interface (JNI) because
Java positions native code outside of the scope of Java security. If Java native
code behaves errantly, it is only constrained by the operating system. That is,
the Java native code can do anything Eclipse GlassFish itself can do. This
potential vulnerability is further complicated by the fact that buffer
overflow errors are common in native code and can be used to run
arbitrary code.

If your applications
contain untrusted
code, enable the
Java security
manager.

The Java security manager defines and enforces permissions for classes that
run within a JVM. In many cases, where the threat model does not include
malicious code being run in the JVM, the Java security manager is
unnecessary. However, when third parties use Eclipse GlassFish and
untrusted classes are being run, the Java security manager may be useful.
See "Enabling and Disabling the Security Manager" in Eclipse GlassFish
Application Development Guide.

Replace HTML
special characters
when servlets or
JSPs return user-
supplied data.

The ability to return user-supplied data can present a security vulnerability
called cross-site scripting, which can be exploited to steal a user’s security
authorization. For a detailed description of cross-site scripting, refer to
"Understanding Malicious Content Mitigation for Web Developers" (a CERT
security advisory) at http://www.cert.org/tech_tips/
malicious_code_mitigation.html.

To remove the security vulnerability, before you return data that a user has
supplied, scan the data for HTML special characters. If you find any such
characters, replace them with their HTML entity or character reference.
Replacing the characters prevents the browser from executing the user-
supplied data as HTML.

99

https://glassfish.org/docs/latest/application-development-guide.pdf#enabling-and-disabling-the-security-manager
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html

	Eclipse GlassFish Security Guide, Release 7
	Eclipse GlassFish
	Preface
	Eclipse GlassFish Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names

	1 Administering System Security
	About System Security in Eclipse GlassFish
	Authentication
	Authorization
	Auditing
	Firewalls
	Certificates and SSL
	Tools for Managing System Security

	Administering Passwords
	To Change the Master Password
	Additional Considerations for the start-instance and start-cluster Subcommands
	Using start-instance and start-cluster With a Password File
	To Change an Administration Password
	To Set a Password From a File
	Administering Password Aliases

	Administering Audit Modules
	To Create an Audit Module
	To List Audit Modules
	To Delete an Audit Module

	Administering JSSE Certificates
	To Generate a Certificate by Using keytool
	To Sign a Certificate by Using keytool
	To Delete a Certificate by Using keytool

	Administering JACC Providers
	Administering JACC Providers From the Administration Console
	Administering JACC Providers from the Command Line

	2 Administering User Security
	Administering Authentication Realms
	Overview of Authentication Realms
	To Create an Authentication Realm
	To List Authentication Realms
	To Update an Authentication Realm
	To Delete an Authentication Realm
	To Configure a JDBC or Digest Authentication Realm
	To Configure LDAP Authentication with OID
	To Configure LDAP Authentication with OVD
	To Enable LDAP Authentication on the Eclipse GlassFish DAS

	Administering File Users
	To Create a File User
	To List File Users
	To List File Groups
	To Update a File User
	To Delete a File User

	3 Administering Message Security
	About Message Security in Eclipse GlassFish
	Security Tokens and Security Mechanisms
	Authentication Providers
	Message Protection Policies
	Application-Specific Web Services Security
	Message Security Administration
	Sample Application for Web Services

	Enabling Default Message Security Providers for Web Services
	To Enable a Default Server Provider
	To Enable a Default Client Provider

	Configuring Message Protection Policies
	Message Protection Policy Mapping
	To Configure the Message Protection Policies for a Provider
	Setting the Request and Response Policy for the Application Client Configuration

	Administering Non-default Message Security Providers
	To Create a Message Security Provider
	To List Message Security Providers
	To Update a Message Security Provider
	To Delete a Message Security Provider
	To Configure a Servlet Layer Server Authentication Module (SAM)

	Enabling Message Security for Application Clients
	Additional Information About Message Security

	4 Administering Security in Cluster Mode
	Configuring Certificates in Cluster Mode
	Dynamic Reconfiguration
	Enabling Dynamic Configuration

	Understanding Synchronization

	5 Managing Administrative Security
	Secure Administration Overview
	How Secure Admin Works: The Big Picture
	Functions Performed by Secure Admin
	Which Administration Account is Used?
	What Authentication Methods Are Used for Secure Administration?
	Understanding How Certificate Authentication is Performed
	What Certificates Are Used?
	An Alternate Approach: Using Distinguished Names to Specify Certificates
	Guarding Against Unwanted Connections

	Considerations When Running Eclipse GlassFish With Default Security
	Running Secure Admin
	Prerequisites for Running Secure Admin
	An Alternate Approach: Using A User Name and Password for Internal Authentication and Authorization
	Example of Running enable-secure-admin

	Additional Considerations When Creating Local Instances
	Secure Admin Use Case
	Upgrading an SSL-Enabled Secure GlassFish Installation to Secure Admin

	6 Running in a Secure Environment
	Determining Your Security Needs
	Understand Your Environment
	Read Security Publications

	Installing Eclipse GlassFish in a Secure Environment
	Enable the Secure Administration Feature

	Run on the Web Profile if Possible
	Securing the Eclipse GlassFish Host
	Securing Eclipse GlassFish
	Securing Applications

