
Eclipse GlassFish Performance Tuning
Guide, Release 7

Eclipse GlassFish
Performance Tuning Guide

Release 7

Contributed 2018 - 2024

This book describes how to get the best performance with Eclipse GlassFish 7.

Eclipse GlassFish Performance Tuning Guide, Release 7

Copyright © 2013, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

1

http://www.eclipse.org/legal/epl-2.0

Preface



This documentation is part of the Java Enterprise Edition contribution to the
Eclipse Foundation and is not intended for use in relation to Java Enterprise
Edition or Orace GlassFish. The documentation is in the process of being revised to
reflect the new Jakarta EE branding. Additional changes will be made as
requirements and procedures evolve for Jakarta EE. Where applicable, references
to Jakarta EE or Java Enterprise Edition should be considered references to Jakarta
EE.

Please see the Title page for additional license information.

The Performance Tuning Guide describes how to get the best performance with Eclipse GlassFish 7.

This preface contains information about and conventions for the entire Eclipse GlassFish (Eclipse
GlassFish) documentation set.

Eclipse GlassFish 7 is developed through the GlassFish project open-source community at
http://glassfish.java.net/. The GlassFish project provides a structured process for developing the
Eclipse GlassFish platform that makes the new features of the Jakarta EE platform available faster,
while maintaining the most important feature of Java EE: compatibility. It enables Java developers
to access the Eclipse GlassFish source code and to contribute to the development of the Eclipse
GlassFish. The GlassFish project is designed to encourage communication between Oracle engineers
and the community.

Eclipse GlassFish Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based
summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide Explains how to get started with the Eclipse GlassFish product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of Eclipse GlassFish.
This guide also describes differences between adjacent product
releases and configuration options that can result in incompatibility
with the product specifications.

Deployment Planning Guide Explains how to build a production deployment of Eclipse GlassFish
that meets the requirements of your system and enterprise.

2

http://glassfish.java.net/
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/quick-start-guide.pdf#GSQSG
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/upgrade-guide.pdf#GSUPG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG

Book Title Description

Administration Guide Explains how to configure, monitor, and manage Eclipse GlassFish
subsystems and components from the command line by using the
asadmin utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Security Guide Provides instructions for configuring and administering Eclipse
GlassFish security.

Application Deployment
Guide

Explains how to assemble and deploy applications to the Eclipse
GlassFish and provides information about deployment descriptors.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Jakarta EE platform) applications that are intended to run
on the Eclipse GlassFish. These applications follow the open Java
standards model for Jakarta EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Embedded Server Guide Explains how to run applications in embedded Eclipse GlassFish and
to develop applications in which Eclipse GlassFish is embedded.

High Availability
Administration Guide

Explains how to configure Eclipse GlassFish to provide higher
availability and scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of Eclipse GlassFish.

Troubleshooting Guide Describes common problems that you might encounter when using
Eclipse GlassFish and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using
Eclipse GlassFish.

Reference Manual Provides reference information in man page format for Eclipse
GlassFish administration commands, utility commands, and related
concepts.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue
Administration Guide

Explains how to set up and manage a Message Queue messaging
system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue
for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions
(JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing
Java messaging applications (Java clients) that work with Eclipse
GlassFish.

3

https://glassfish.org/docs/latest/administration-guide.pdf#GSADG
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/embedded-server-guide.pdf#GSESG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG
https://glassfish.org/docs/latest/troubleshooting-guide.pdf#GSTSG
https://glassfish.org/docs/latest/error-messages-reference.pdf#GSEMR
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html

Book Title Description

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers
working with Message Queue who want to use the C language
binding to the Message Queue messaging service to send, receive,
and process Message Queue messages.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a
real name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to
be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

4

https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html

Symbol Description Example Meaning

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Placeholder Description Default Value

as-install Represents the base installation
directory for Eclipse GlassFish.

In configuration files, as-install
is represented as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating
system, Linux operating system, and Mac OS
operating system:

user’s-home-directory/glassfish7/glassfish

Installations on the Windows operating system:

SystemDrive:\glassfish7\glassfish

as-install-
parent

Represents the parent of the
base installation directory for
Eclipse GlassFish.

Installations on the Oracle Solaris operating
system, Linux operating system, and Mac
operating system:

user’s-home-directory/glassfish7

Installations on the Windows operating system:

SystemDrive:\glassfish7

domain-
root-dir

Represents the directory in
which a domain is created by
default.

as-install/domains/

domain-dir Represents the directory in
which a domain’s configuration
is stored.

In configuration files, domain-
dir is represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instance-dir Represents the directory for a
server instance.

domain-dir/instance-name

5

1 Overview of Eclipse GlassFish
Performance Tuning
You can significantly improve performance of the Eclipse GlassFish and of applications deployed to
it by adjusting a few deployment and server configuration settings. However, it is important to
understand the environment and performance goals. An optimal configuration for a production
environment might not be optimal for a development environment.

The following topics are addressed here:

• Process Overview

• Understanding Operational Requirements

• General Tuning Concepts

• Further Information

Process Overview
The following table outlines the overall Eclipse GlassFish 7 administration process, and shows
where performance tuning fits in the sequence.

Table 1-1 Performance Tuning Roadmap

Step Description of Task Location of Instructions

1 Design: Decide on the high-
availability topology and set up
Eclipse GlassFish.

Eclipse GlassFish Deployment
Planning Guide

2 Capacity Planning: Make sure
the systems have sufficient
resources to perform well.

Eclipse GlassFish Deployment
Planning Guide

3 Installation: Configure your
DAS, clusters, and clustered
server instances.

Eclipse GlassFish Installation
Guide

4 Deployment: Install and run
your applications. Familiarize
yourself with how to configure
and administer the Eclipse
GlassFish.

The following books:

• Eclipse GlassFish
Application Deployment
Guide

• Eclipse GlassFish
Administration Guide

6

https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/administration-guide.pdf#GSADG
https://glassfish.org/docs/latest/administration-guide.pdf#GSADG

Step Description of Task Location of Instructions

5 High Availability Configuration:
Configuring your DAS, clusters,
and clustered server instances
for high availability and
failover

Eclipse GlassFish High
Availability Administration
Guide

6 Performance Tuning: Tune the
following items:

• Applications

• Eclipse GlassFish

• Java Runtime System

• Operating system and
platform

The following chapters:

• Tuning Your Application

• Tuning the Eclipse GlassFish

• Tuning the Java Runtime
System

• Tuning the Operating
System and Platform

Performance Tuning Sequence

Application developers should tune applications prior to production use. Tuning applications often
produces dramatic performance improvements. System administrators perform the remaining
steps in the following list after tuning the application, or when application tuning has to wait and
you want to improve performance as much as possible in the meantime.

Ideally, follow this sequence of steps when you are tuning performance:

1. Tune your application, described in Tuning Your Application.

2. Tune the server, described in Tuning the Eclipse GlassFish.

3. Tune the Java runtime system, described in Tuning the Java Runtime System.

4. Tune the operating system, described in Tuning the Operating System and Platform.

Understanding Operational Requirements
Before you begin to deploy and tune your application on the Eclipse GlassFish, it is important to
clearly define the operational environment. The operational environment is determined by high-
level constraints and requirements such as:

• Application Architecture

• Security Requirements

• High Availability Clustering, Load Balancing, and Failover

• Hardware Resources

• Administration

7

https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG

Application Architecture

The Jakarta EE Application model, as shown in the following figure, is very flexible; allowing the
application architect to split application logic functionally into many tiers. The presentation layer is
typically implemented using servlets and JSP technology and executes in the web container.

Figure 1-1 Jakarta EE Application Model

Moderately complex enterprise applications can be developed entirely using servlets and JSP
technology. More complex business applications often use Enterprise JavaBeans (EJB) components.
The Eclipse GlassFish integrates the Web and EJB containers in a single process. Local access to EJB
components from servlets is very efficient. However, some application deployments may require
EJB components to execute in a separate process; and be accessible from standalone client
applications as well as servlets. Based on the application architecture, the server administrator can
employ the Eclipse GlassFish in multiple tiers, or simply host both the presentation and business
logic on a single tier.

It is important to understand the application architecture before designing a new Eclipse GlassFish
deployment, and when deploying a new business application to an existing application server
deployment.

Security Requirements

Most business applications require security. This section discusses security considerations and
decisions.

User Authentication and Authorization

Application users must be authenticated. The Eclipse GlassFish provides a number of choices for
user authentication, including file-based, administration, LDAP, certificate, JDBC, digest, PAM,
Solaris, and custom realms.

The default file based security realm is suitable for developer environments, where new

8

applications are developed and tested. At deployment time, the server administrator can choose
between the Lighweight Directory Access Protocol (LDAP) or Solaris security realms. Many large
enterprises use LDAP-based directory servers to maintain employee and customer profiles. Small to
medium enterprises that do not already use a directory server may find it advantageous to leverage
investment in Solaris security infrastructure.

For more information on security realms, see "Administering Authentication Realms" in Eclipse
GlassFish Security Guide.

The type of authentication mechanism chosen may require additional hardware for the
deployment. Typically a directory server executes on a separate server, and may also require a
backup for replication and high availability. Refer to the Oracle Java System Directory Server
(https://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/
index.html) documentation for more information on deployment, sizing, and availability guidelines.

An authenticated user’s access to application functions may also need authorization checks. If the
application uses the role-based Jakarta EE authorization checks, the application server performs
some additional checking, which incurs additional overheads. When you perform capacity
planning, you must take this additional overhead into account.

Encryption

For security reasons, sensitive user inputs and application output must be encrypted. Most
business-oriented web applications encrypt all or some of the communication flow between the
browser and Eclipse GlassFish. Online shopping applications encrypt traffic when the user is
completing a purchase or supplying private data. Portal applications such as news and media
typically do not employ encryption. Secure Sockets Layer (SSL) is the most common security
framework, and is supported by many browsers and application servers.

The Eclipse GlassFish supports SSL 2.0 and 3.0 and contains software support for various cipher
suites. It also supports integration of hardware encryption cards for even higher performance.
Security considerations, particularly when using the integrated software encryption, will impact
hardware sizing and capacity planning.

Consider the following when assessing the encryption needs for a deployment:

• What is the nature of the applications with respect to security? Do they encrypt all or only a
part of the application inputs and output? What percentage of the information needs to be
securely transmitted?

• Are the applications going to be deployed on an application server that is directly connected to
the Internet? Will a web server exist in a demilitarized zone (DMZ) separate from the
application server tier and backend enterprise systems?

A DMZ-style deployment is recommended for high security. It is also useful when the
application has a significant amount of static text and image content and some business logic
that executes on the Eclipse GlassFish, behind the most secure firewall. Eclipse GlassFish
provides secure reverse proxy plugins to enable integration with popular web servers. The
Eclipse GlassFish can also be deployed and used as a web server in DMZ.

9

https://glassfish.org/docs/latest/security-guide.pdf#administering-authentication-realms
https://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
https://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
https://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html

• Is encryption required between the web servers in the DMZ and application servers in the next
tier? The reverse proxy plugins supplied with Eclipse GlassFish support SSL encryption between
the web server and application server tier. If SSL is enabled, hardware capacity planning must
be take into account the encryption policy and mechanisms.

• If software encryption is to be employed:

◦ What is the expected performance overhead for every tier in the system, given the security
requirements?

◦ What are the performance and throughput characteristics of various choices?

For information on how to encrypt the communication between web servers and Eclipse GlassFish,
see "Administering Message Security" in Eclipse GlassFish Security Guide.

High Availability Clustering, Load Balancing, and Failover

Eclipse GlassFish 7 enables multiple Eclipse GlassFish instances to be clustered to provide high
availability through failure protection, scalability, and load balancing.

High availability applications and services provide their functionality continuously, regardless of
hardware and software failures. To make such reliability possible, Eclipse GlassFish 7 provides
mechanisms for maintaining application state data between clustered Eclipse GlassFish instances.
Application state data, such as HTTP session data, stateful EJB sessions, and dynamic cache
information, is replicated in real time across server instances. If any one server instance goes
down, the session state is available to the next failover server, resulting in minimum application
downtime and enhanced transactional security.

Eclipse GlassFish provides the following high availability features:

• High Availability Session Persistence

• High Availability Java Message Service

• RMI-IIOP Load Balancing and Failover

See Tuning High Availability Persistence for high availability persistence tuning recommendations.

See the Eclipse GlassFish High Availability Administration Guide for complete information about
configuring high availability clustering, load balancing, and failover features in Eclipse GlassFish 7.

Hardware Resources

The type and quantity of hardware resources available greatly influence performance tuning and
site planning.

Eclipse GlassFish provides excellent vertical scalability. It can scale to efficiently utilize multiple
high-performance CPUs, using just one application server process. A smaller number of application
server instances makes maintenance easier and administration less expensive. Also, deploying
several related applications on fewer application servers can improve performance, due to better
data locality, and reuse of cached data between co-located applications. Such servers must also
contain large amounts of memory, disk space, and network capacity to cope with increased load.

10

https://glassfish.org/docs/latest/security-guide.pdf#administering-message-security
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG

Eclipse GlassFish can also be deployed on large "farms" of relatively modest hardware units.
Business applications can be partitioned across various server instances. Using one or more
external load balancers can efficiently spread user access across all the application server
instances. A horizontal scaling approach may improve availability, lower hardware costs and is
suitable for some types of applications. However, this approach requires administration of more
application server instances and hardware nodes.

Administration

A single Eclipse GlassFish installation on a server can encompass multiple instances. A group of one
or more instances that are administered by a single Administration Server is called a domain.
Grouping server instances into domains permits different people to independently administer the
groups.

You can use a single-instance domain to create a "sandbox" for a particular developer and
environment. In this scenario, each developer administers his or her own application server,
without interfering with other application server domains. A small development group may choose
to create multiple instances in a shared administrative domain for collaborative development.

In a deployment environment, an administrator can create domains based on application and
business function. For example, internal Human Resources applications may be hosted on one or
more servers in one Administrative domain, while external customer applications are hosted on
several administrative domains in a server farm.

Eclipse GlassFish supports virtual server capability for web applications. For example, a web
application hosting service provider can host different URL domains on a single Eclipse GlassFish
process for efficient administration.

For detailed information on administration, see the Eclipse GlassFish Administration Guide.

General Tuning Concepts
Some key concepts that affect performance tuning are:

• User load

• Application scalability

• Margins of safety

The following table describes these concepts, and how they are measured in practice. The left most
column describes the general concept, the second column gives the practical ramifications of the
concept, the third column describes the measurements, and the right most column describes the
value sources.

Table 1-2 Factors That Affect Performance

11

https://glassfish.org/docs/latest/administration-guide.pdf#GSADG

Concept In practice Measurement Value sources

User Load Concurrent
sessions at
peak load

Transactions Per Minute
(TPM)

Web Interactions Per
Second (WIPS)

(Max. number of concurrent users) *
(expected response time) / (time between
clicks)

Example:

(100 users * 2 sec) / 10 sec = 20

Application
Scalability

Transaction
rate
measured
on one CPU

TPM or WIPS Measured from workload benchmark.
Perform at each tier.

Vertical
scalability

Increase in
performanc
e from
additional
CPUs

Percentage gain per
additional CPU

Based on curve fitting from benchmark.
Perform tests while gradually increasing the
number of CPUs. Identify the "knee" of the
curve, where additional CPUs are providing
uneconomical gains in performance.
Requires tuning as described in this guide.
Perform at each tier and iterate if necessary.
Stop here if this meets performance
requirements.

Horizontal
scalability

Increase in
performanc
e from
additional
servers

Percentage gain per
additional server
process and/or
hardware node.

Use a well-tuned single application server
instance, as in previous step. Measure how
much each additional server instance and
hardware node improves performance.

Safety
Margins

High
availability
requireme
nts

If the system must cope
with failures, size the
system to meet
performance
requirements assuming
that one or more
application server
instances are non
functional

Different equations used if high availability is
required.

+ Excess
capacity for
unexpected
peaks

It is desirable to operate
a server at less than its
benchmarked peak, for
some safety margin

80% system capacity utilization at peak loads
may work for most installations. Measure
your deployment under real and simulated
peak loads.

Capacity Planning

The previous discussion guides you towards defining a deployment architecture. However, you
determine the actual size of the deployment by a process called capacity planning. Capacity
planning enables you to predict:

12

• The performance capacity of a particular hardware configuration.

• The hardware resources required to sustain specified application load and performance.

You can estimate these values through careful performance benchmarking, using an application
with realistic data sets and workloads.

To Determine Capacity

1. Determine performance on a single CPU.

First determine the largest load that a single processor can sustain. You can obtain this figure by
measuring the performance of the application on a single-processor machine. Either leverage
the performance numbers of an existing application with similar processing characteristics or,
ideally, use the actual application and workload in a testing environment. Make sure that the
application and data resources are tiered exactly as they would be in the final deployment.

2. Determine vertical scalability.

Determine how much additional performance you gain when you add processors. That is, you are
indirectly measuring the amount of shared resource contention that occurs on the server for a
specific workload. Either obtain this information based on additional load testing of the application
on a multiprocessor system, or leverage existing information from a similar application that has
already been load tested.

Running a series of performance tests on one to eight CPUs, in incremental steps, generally
provides a sense of the vertical scalability characteristics of the system. Be sure to properly tune the
application, Eclipse GlassFish, backend database resources, and operating system so that they do
not skew the results. 3. Determine horizontal scalability.

+ If sufficiently powerful hardware resources are available, a single hardware node may meet the
performance requirements. However for better availability, you can cluster two or more systems.
Employing external load balancers and workload simulation, determine the performance benefits
of replicating one well-tuned application server node, as determined in step 2.

User Expectations

Application end-users generally have some performance expectations. Often you can numerically
quantify them. To ensure that customer needs are met, you must understand these expectations
clearly, and use them in capacity planning.

Consider the following questions regarding performance expectations:

• What do users expect the average response times to be for various interactions with the
application? What are the most frequent interactions? Are there any extremely time-critical
interactions? What is the length of each transaction, including think time? In many cases, you
may need to perform empirical user studies to get good estimates.

• What are the anticipated steady-state and peak user loads? Are there are any particular times of
the day, week, or year when you observe or expect to observe load peaks? While there may be
several million registered customers for an online business, at any one time only a fraction of

13

them are logged in and performing business transactions. A common mistake during capacity
planning is to use the total size of customer population as the basis and not the average and
peak numbers for concurrent users. The number of concurrent users also may exhibit patterns
over time.

• What is the average and peak amount of data transferred per request? This value is also
application-specific. Good estimates for content size, combined with other usage patterns, will
help you anticipate network capacity needs.

• What is the expected growth in user load over the next year? Planning ahead for the future will
help avoid crisis situations and system downtimes for upgrades.

Further Information
• For more information on Java performance, see Java Performance Documentation

(http://java.sun.com/docs/performance) and Java Performance BluePrints (http://java.sun.com/
blueprints/performance/index.html).

• For more information about performance tuning for high availability configurations, see the
Eclipse GlassFish High Availability Administration Guide.

• For complete information about using the Performance Tuning features available through the
Eclipse GlassFish Administration Console, refer to the Administration Console online help.

• For details on optimizing EJB components, see Seven Rules for Optimizing Entity Beans
(http://java.sun.com/developer/technicalArticles/ebeans/sevenrules/)

• For details on profiling, see " Profiling Tools" in Eclipse GlassFish Application Development
Guide.

• To view a demonstration video showing how to use the Eclipse GlassFish Performance Tuner,
see the Oracle GlassFish 3.1 - Performance Tuner demo.

• To find additional Performance Tuning development information, see the Performance Tuner
in Oracle GlassFish 3.1 blog.

14

http://java.sun.com/docs/performance
http://java.sun.com/docs/performance
http://java.sun.com/blueprints/performance/index.html
http://java.sun.com/blueprints/performance/index.html
http://java.sun.com/blueprints/performance/index.html
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
http://java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://java.sun.com/developer/technicalArticles/ebeans/sevenrules/
https://glassfish.org/docs/latest/application-development-guide.pdf#profiling-tools
http://www.youtube.com/watch?v=FavsE2pzAjc
http://blogs.oracle.com/jenblog/entry/performance_tuner_in_oracle_glassfish
http://blogs.oracle.com/jenblog/entry/performance_tuner_in_oracle_glassfish

2 Tuning Your Application
This chapter provides information on tuning applications for maximum performance. A complete
guide to writing high performance Java and Java EE applications is beyond the scope of this
document.

The following topics are addressed here:

• Java Programming Guidelines

• Java Server Page and Servlet Tuning

• EJB Performance Tuning

Java Programming Guidelines
This section covers issues related to Java coding and performance. The guidelines outlined are not
specific to Eclipse GlassFish, but are general rules that are useful in many situations.

The following topics are addressed here:

• Avoid Serialization and Deserialization

• Use StringBuilder to Concatenate Strings

• Assign null to Variables That Are No Longer Needed

• Declare Methods as final Only If Necessary

• Declare Constants as static final

• Avoid Finalizers

• Declare Method Arguments final

• Synchronize Only When Necessary

• Use DataHandlers for SOAP Attachments

Avoid Serialization and Deserialization

Serialization and deserialization of objects is a CPU-intensive procedure and is likely to slow down
your application. Use the transient keyword to reduce the amount of data serialized. Additionally,
customized readObject() and writeObject() methods may be beneficial in some cases.

Use StringBuilder to Concatenate Strings

To improve performance, instead of using string concatenation, use StringBuilder.append().

String objects are immutable - that is, they never change after creation. For example, consider the
following code:

String str = "testing";
str = str + "abc";

15

str = str + "def";

The compiler translates this code as:

String str = "testing";
StringBuilder tmp = new StringBuilder(str);
tmp.append("abc");
str = tmp.toString();
StringBulder tmp = new StringBuilder(str);
tmp.append("def");
str = tmp.toString();

This copying is inherently expensive and overusing it can reduce performance significantly. You are
far better off writing:

StringBuilder tmp = new StringBuilder(16);
tmp.append("testing");
tmp.append("abc");
tmp.append("def");
String str = tmp.toString();

Assign null to Variables That Are No Longer Needed

Explicitly assigning a null value to variables that are no longer needed helps the garbage collector
to identify the parts of memory that can be safely reclaimed. Although Java provides memory
management, it does not prevent memory leaks or using excessive amounts of memory.

An application may induce memory leaks by not releasing object references. Doing so prevents the
Java garbage collector from reclaiming those objects, and results in increasing amounts of memory
being used. Explicitly nullifying references to variables after their use allows the garbage collector
to reclaim memory.

One way to detect memory leaks is to employ profiling tools and take memory snapshots after each
transaction. A leak-free application in steady state will show a steady active heap memory after
garbage collections.

Declare Methods as final Only If Necessary

Modern optimizing dynamic compilers can perform inlining and other inter-procedural
optimizations, even if Java methods are not declared final. Use the keyword final as it was
originally intended: for program architecture reasons and maintainability.

Only if you are absolutely certain that a method must not be overridden, use the final keyword.

Declare Constants as static final

The dynamic compiler can perform some constant folding optimizations easily, when you declare

16

constants as static final variables.

Avoid Finalizers

Adding finalizers to code makes the garbage collector more expensive and unpredictable. The
virtual machine does not guarantee the time at which finalizers are run. Finalizers may not always
be executed, before the program exits. Releasing critical resources in finalize() methods may lead
to unpredictable application behavior.

Declare Method Arguments final

Declare method arguments final if they are not modified in the method. In general, declare all
variables final if they are not modified after being initialized or set to some value.

Synchronize Only When Necessary

Do not synchronize code blocks or methods unless synchronization is required. Keep synchronized
blocks or methods as short as possible to avoid scalability bottlenecks. Use the Java Collections
Framework for unsynchronized data structures instead of more expensive alternatives such as
java.util.HashTable.

Use DataHandlers for SOAP Attachments

Using a javax.activation.DataHandler for a SOAP attachment will improve performance.

JAX-RPC specifies:

• A mapping of certain MIME types to Java types.

• Any MIME type is mappable to a javax.activation.DataHandler .

As a result, send an attachment (.gif or XML document) as a SOAP attachment to an RPC style web
service by utilizing the Java type mappings. When passing in any of the mandated Java type
mappings (appropriate for the attachment’s MIME type) as an argument for the web service, the
JAX-RPC runtime handles these as SOAP attachments.

For example, to send out an image/gif attachment, use java.awt.Image, or create a DataHandler
wrapper over your image. The advantages of using the wrapper are:

• Reduced coding: You can reuse generic attachment code to handle the attachments because the
DataHandler determines the content type of the contained data automatically. This feature is
especially useful when using a document style service. Since the content is known at runtime,
there is no need to make calls to attachment.setContent(stringContent, "image/gif"), for
example.

• Improved Performance: Informal tests have shown that using DataHandler wrappers doubles
throughput for image/gif MIME types, and multiplies throughput by approximately 1.5 for
text/xml or java.awt.Image for image/* types.

17

Java Server Page and Servlet Tuning
Many applications running on the Eclipse GlassFish use servlets or JavaServer Pages (JSP)
technology in the presentation tier. This section describes how to improve performance of such
applications, both through coding practices and through deployment and configuration settings.

Suggested Coding Practices

This section provides some tips on coding practices that improve servlet and JSP application
performance.

The following topics are addressed here:

• General Guidelines

• Avoid Shared Modified Class Variables

• HTTP Session Handling

• Configuration and Deployment Tips

General Guidelines

Follow these general guidelines to increase performance of the presentation tier:

• Minimize Java synchronization in servlets.

• Do not use the single thread model for servlets.

• Use the servlet’s init() method to perform expensive one-time initialization.

• Avoid using System.out.println() calls.

Avoid Shared Modified Class Variables

In the servlet multithread model (the default), a single instance of a servlet is created for each
application server instance. All requests for a servlet on that application instance share the same
servlet instance. This can lead to thread contention if there are synchronization blocks in the
servlet code. Therefore, avoid using shared modified class variables because they create the need
for synchronization.

HTTP Session Handling

Follow these guidelines when using HTTP sessions:

• Create sessions sparingly. Session creation is not free. If a session is not required, do not create
one.

• Use javax.servlet.http.HttpSession.invalidate() to release sessions when they are no longer
needed.

• Keep session size small, to reduce response times. If possible, keep session size below 7
kilobytes.

• Use the directive <%page session="false"%> in JSP files to prevent the Eclipse GlassFish from

18

automatically creating sessions when they are not necessary.

• Avoid large object graphs in an HttpSession. They force serialization and add computational
overhead. Generally, do not store large objects as HttpSession variables.

• Do not cache transaction data in an HttpSession. Access to data in an HttpSession is not
transactional. Do not use it as a cache of transactional data, which is better kept in the database
and accessed using entity beans. Transactions will rollback upon failures to their original state.
However, stale and inaccurate data may remain in HttpSession objects. Eclipse GlassFish
provides "read-only" bean-managed persistence entity beans for cached access to read-only
data.

Configuration and Deployment Tips

Follow these configuration tips to improve performance. These tips are intended for production
environments, not development environments.

• To improve class loading time, avoid having excessive directories in the server CLASSPATH. Put
application-related classes into JAR files.

• HTTP response times are dependent on how the keep-alive subsystem and the HTTP server is
tuned in general. For more information, see HTTP Service Settings.

• Cache servlet results when possible. For more information, see "Developing Web Applications"
in Eclipse GlassFish Application Development Guide.

• If an application does not contain any EJB components, deploy the application as a WAR file, not
an EAR file.

Optimize SSL

Optimize SSL by using routines in the appropriate operating system library for concurrent access to
heap space. The library to use depends on the version of the Solaris Operating System (SolarisOS)
that you are using. To ensure that you use the correct library, set the LD_PRELOAD environment
variable to specify the correct library file. For more information, refer to the following table.

Solaris OS Version Library Setting of LD_PRELOAD Environment Variable

10 libumem3LIB /usr/lib/libumem.so

9 libmtmalloc3LIB /usr/lib/libmtmalloc.so

To set the LD_PRELOAD environment variable, edit the entry for this environment variable in the
startserv script. The startserv script is located is located in the bin/startserv directory of your
domain.

The exact syntax to define an environment variable depends on the shell that you are using.

Disable Security Manager

The security manager is expensive because calls to required resources must call the doPrivileged()
method and must also check the resource with the server.policy file. If you are sure that no
malicious code will be run on the server and you do not use authentication within your application,
then you can disable the security manager.

19

https://glassfish.org/docs/latest/application-development-guide.pdf#developing-web-applications

See "Enabling and Disabling the Security Manager" in Eclipse GlassFish Application Development
Guide for instructions on enabling or disabling the security manager. If using the Eclipse GlassFish
Administration Console, navigate to the Configurations>configuration-name>Security node and
check or uncheck the Security Manager option as desired. Refer to the Administration Console
online help for more information.

EJB Performance Tuning
The Eclipse GlassFish’s high-performance EJB container has numerous parameters that affect
performance. Individual EJB components also have parameters that affect performance. The value
of individual EJB component’s parameter overrides the value of the same parameter for the EJB
container. The default values are designed for a single-processor computer system. Modify these
values as appropriate to optimize for other system configurations.

The following topics are addressed here:

• Goals

• Monitoring EJB Components

• General Guidelines

• Using Local and Remote Interfaces

• Improving Performance of EJB Transactions

• Using Special Techniques

• Tuning Tips for Specific Types of EJB Components

• JDBC and Database Access

• Tuning Message-Driven Beans

Goals

The goals of EJB performance tuning are:

• Increased speed: Cache as many beans in the EJB caches as possible to increase speed
(equivalently, decrease response time). Caching eliminates CPU-intensive operations. However,
since memory is finite, as the caches become larger, housekeeping for them (including garbage
collection) takes longer.

• Decreased memory consumption: Beans in the pools or caches consume memory from the Java
virtual machine heap. Very large pools and caches degrade performance because they require
longer and more frequent garbage collection cycles.

• Improved functional properties: Functional properties such as user timeout, commit options,
security, and transaction options, are mostly related to the functionality and configuration of
the application. Generally, they do not compromise functionality for performance. In some
cases, you might be forced to make a "trade-off" decision between functionality and
performance. This section offers suggestions in such cases.

20

https://glassfish.org/docs/latest/application-development-guide.pdf#enabling-and-disabling-the-security-manager

Monitoring EJB Components

When the EJB container has monitoring enabled, you can examine statistics for individual beans
based on the bean pool and cache settings.

For example, the monitoring command below returns the Bean Cache statistics for a stateful
session bean.

asadmin get --user admin --host e4800-241-a --port 4848
-m specjcmp.application.SPECjAppServer.ejb-module.
 supplier_jar.stateful-session-bean.BuyerSes.bean-cache.*

The following is a sample of the monitoring output:

resize-quantity = -1
 cache-misses = 0
 idle-timeout-in-seconds = 0
 num-passivations = 0
 cache-hits = 59
 num-passivation-errors = 0
 total-beans-in-cache = 59
 num-expired-sessions-removed = 0
 max-beans-in-cache = 4096
 num-passivation-success = 0

The monitoring command below gives the bean pool statistics for an entity bean:

asadmin get --user admin --host e4800-241-a --port 4848
-m specjcmp.application.SPECjAppServer.ejb-module.
 supplier_jar.stateful-entity-bean.ItemEnt.bean-pool.*
idle-timeout-in-seconds = 0
steady-pool-size = 0
total-beans-destroyed = 0
num-threads-waiting = 0
num-beans-in-pool = 54
max-pool-size = 2147483647
pool-resize-quantity = 0
total-beans-created = 255

The monitoring command below gives the bean pool statistics for a stateless bean.

asadmin get --user admin --host e4800-241-a --port 4848
-m test.application.testEjbMon.ejb-module.slsb.stateless-session-bean.slsb.bean-pool.*
idle-timeout-in-seconds = 200
steady-pool-size = 32
total-beans-destroyed = 12
num-threads-waiting = 0

21

num-beans-in-pool = 4
max-pool-size = 1024
pool-resize-quantity = 12
total-beans-created = 42

Tuning the bean involves charting the behavior of the cache and pool for the bean in question over
a period of time.

If too many passivations are happening and the JVM heap remains fairly small, then the max-cache-
size or the cache-idle-timeout-in-seconds can be increased. If garbage collection is happening too
frequently, and the pool size is growing, but the cache hit rate is small, then the pool-idle-timeout-
in-seconds can be reduced to destroy the instances.



Specifying a max-pool-size of zero (0) means that the pool is unbounded. The
pooled beans remain in memory unless they are removed by specifying a small
interval for pool-idle-timeout-in-seconds. For production systems, specifying the
pool as unbounded is NOT recommended.

Monitoring Individual EJB Components

To gather method invocation statistics for all methods in a bean, use the following command:

asadmin get -m monitorableObject.*

where monitorableObject is a fully-qualified identifier from the hierarchy of objects that can be
monitored, shown below.

serverInstance.application.applicationName.ejb-module.moduleName

where moduleName is x_jar for module x.jar.

• .stateless-session-bean.beanName .bean-pool .bean-method.methodName

• .stateful-session-bean.beanName .bean-cache .bean-method.methodName

• .entity-bean.beanName .bean-cache .bean-pool .bean-method.methodName

• .message-driven-bean.beanName .bean-pool .bean-method.methodName (methodName = onMessage)

For standalone beans, use this pattern:

serverInstance.application.applicationName.standalone-ejb-module.moduleName

The possible identifiers are the same as for ejb-module.

For example, to get statistics for a method in an entity bean, use this command:

22

asadmin get -m serverInstance.application.appName.ejb-module.moduleName
.entity-bean.beanName.bean-method.methodName.*

For more information about administering the monitoring service in general, see "Administering
the Monitoring Service" in Eclipse GlassFish Administration Guide. For information about viewing
comprehensive EJB monitoring statistics, see "EJB Statistics" in Eclipse GlassFish Administration
Guide.

To configure EJB monitoring using the Eclipse GlassFish Administration Console, navigate to the
Configurations>configuration-name>Monitoring node. After configuring monitoring, you can view
monitoring statistics by navigating to the server (Admin Server) node and then selecting the
Monitor tab. Refer to the Administration Console online help for instructions on each of these
procedures.

Alternatively, to list EJB statistics, use the asadmin list subcommand. For more information, see
list(1).

For statistics on stateful session bean passivations, use this command:

asadmin get -m serverInstance.application.appName.ejb-module.moduleName
.stateful-session-bean.beanName.bean-cache.*

From the attribute values that are returned, use this command:

num-passivationsnum-passivation-errorsnum-passivation-success

General Guidelines

The following guidelines can improve performance of EJB components. Keep in mind that
decomposing an application into many EJB components creates overhead and can degrade
performance. EJB components are not simply Java objects. They are components with semantics for
remote call interfaces, security, and transactions, as well as properties and methods.

Use High Performance Beans

Use high-performance beans as much as possible to improve the overall performance of your
application. For more information, see Tuning Tips for Specific Types of EJB Components.

The types of EJB components are listed below, from the highest performance to the lowest:

1. Stateless Session Beans and Message Driven Beans

2. Stateful Session Beans

3. Container Managed Persistence (CMP) entity beans configured as read-only

4. Bean Managed Persistence (BMP) entity beans configured as read-only

5. CMP beans

6. BMP beans

23

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service
https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service
https://glassfish.org/docs/latest/administration-guide.pdf#ejb-statistics
https://glassfish.org/docs/latest/reference-manual.pdf#list
https://glassfish.org/docs/latest/reference-manual.pdf#list

For more information about configuring high availability session persistence, see "Configuring High
Availability Session Persistence and Failover" in Eclipse GlassFish High Availability Administration
Guide. To configure EJB beans using the Eclipse GlassFish Administration Console, navigate to the
Configurations>configuration-name>EJB Container node and then refer to the Administration
Console online help for detailed instructions.

Use Caching

Caching can greatly improve performance when used wisely. For example:

• Cache EJB references: To avoid a JNDI lookup for every request, cache EJB references in servlets.

• Cache home interfaces: Since repeated lookups to a home interface can be expensive, cache
references to EJBHomes in the init() methods of servlets.

• Cache EJB resources: Use setSessionContext() or ejbCreate() to cache bean resources. This is
again an example of using bean lifecycle methods to perform application actions only once
where possible. Remember to release acquired resources in the ejbRemove() method.

Use the Appropriate Stubs

The stub classes needed by EJB applications are generated dynamically at runtime when an EJB
client needs them. This means that it is not necessary to generate the stubs or retrieve the client JAR
file when deploying an application with remote EJB components. When deploying an application, it
is no longer necessary to specify the --retrieve option, which can speed up deployment.

If you have a legacy rich-client application that directly uses the CosNaming service (not a
recommended configuration), then you must generate the stubs for your application explicitly
using RMIC. For more information, see the Eclipse GlassFish Troubleshooting Guide for more
details.

Remove Unneeded Stateful Session Beans

Removing unneeded stateful session beans avoids passivating them, which requires disk
operations.

Cache and Pool Tuning Tips

Follow these tips when using the EJB cache and pools to improve performance:

• Explicitly call remove(): Allow stateful session EJB components to be removed from the
container cache by explicitly calling of the remove() method in the client.

• Tune the entity EJB component’s pool size: Entity Beans use both the EJB pool and cache
settings. Tune the entity EJB component’s pool size to minimize the creation and destruction of
beans. Populating the pool with a non-zero steady size before hand is useful for getting better
response for initial requests.

• Cache bean-specific resources: Use the setEntityContext() method to cache bean specific
resources and release them using the unSetEntityContext() method.

• Load related data efficiently for container-managed relationships (CMRs). For more
information, see Pre-Fetching Container Managed Relationship (CMR) Beans.

24

https://glassfish.org/docs/latest/ha-administration-guide.pdf#configuring-high-availability-session-persistence-and-failover
https://glassfish.org/docs/latest/ha-administration-guide.pdf#configuring-high-availability-session-persistence-and-failover
https://glassfish.org/docs/latest/troubleshooting-guide.pdf#GSTSG

• Identify read-only beans: Configure read-only entity beans for read only operations. For more
information, see Read-Only Entity Beans.

Using Local and Remote Interfaces

This section describes some considerations when EJB components are used by local and remote
clients.

Prefer Local Interfaces

An EJB component can have remote and local interfaces. Clients not located in the same application
server instance as the bean (remote clients) use the remote interface to access the bean. Calls to the
remote interface require marshalling arguments, transportation of the marshalled data over the
network, un-marshaling the arguments, and dispatch at the receiving end. Thus, using the remote
interface entails significant overhead.

If an EJB component has a local interface, then local clients in the same application server instance
can use it instead of the remote interface. Using the local interface is more efficient, since it does
not require argument marshalling, transportation, and un-marshalling.

If a bean is to be used only by local clients then it makes sense to provide only the local interface. If,
on the other hand, the bean is to be location-independent, then you should provide both the remote
and local interfaces so that remote clients use the remote interface and local clients can use the
local interface for efficiency.

Using Pass-By-Reference Semantics

By default, the Eclipse GlassFish uses pass-by-value semantics for calling the remote interface of a
bean, even if it is co-located. This can be expensive, since clients using pass-by-value semantics
must copy arguments before passing them to the EJB component.

However, local clients can use pass-by-reference semantics and thus the local and remote interfaces
can share the passed objects. But this means that the argument objects must be implemented
properly, so that they are shareable. In general, it is more efficient to use pass-by-reference
semantics when possible.

Using the remote and local interfaces appropriately means that clients can access EJB components
efficiently. That is, local clients use the local interface with pass-by-reference semantics, while
remote clients use the remote interface with pass-by-value semantics.

However, in some instances it might not be possible to use the local interface, for example when:

• The application predates the EJB 2.0 specification and was written without any local interfaces.

• There are bean-to-bean calls and the client beans are written without making any co-location
assumptions about the called beans.

For these cases, the Eclipse GlassFish provides a pass-by-reference option that clients can use to
pass arguments by reference to the remote interface of a co-located EJB component.

You can specify the pass-by-reference option for an entire application or a single EJB component.

25

When specified at the application level, all beans in the application use pass-by-reference semantics
when passing arguments to their remote interfaces. When specified at the bean level, all calls to the
remote interface of the bean use pass-by-reference semantics. See "Value Added Features" in Eclipse
GlassFish Application Development Guide for more details about the pass-by-reference flag.

To specify that an EJB component will use pass by reference semantics, use the following tag in the
sun-ejb-jar.xml deployment descriptor:

<pass-by-reference>true</pass-by-reference>

This avoids copying arguments when the EJB component’s methods are invoked and avoids copying
results when methods return. However, problems will arise if the data is modified by another
source during the invocation.

Improving Performance of EJB Transactions

This section provides some tips to improve performance when using transactions.

The following topics are addressed here:

• Use Container-Managed Transactions

• Do Not Encompass User Input Time

• Identify Non-Transactional Methods

• Use TX_REQUIRED for Long Transaction Chains

• Use Lowest Cost Database Locking

• Use XA-Capable Data Sources Only When Needed

• Configure JDBC Resources as One-Phase Commit Resources

• Use the Least Expensive Transaction Attribute

Use Container-Managed Transactions

Container-managed transactions are preferred for consistency, and provide better performance.

Do Not Encompass User Input Time

To avoid resources being held unnecessarily for long periods, a transaction should not encompass
user input or user think time.

Identify Non-Transactional Methods

Declare non-transactional methods of session EJB components with NotSupported or Never
transaction attributes. These attributes can be found in the ejb-jar.xml deployment descriptor file.
Transactions should span the minimum time possible since they lock database rows.

26

https://glassfish.org/docs/latest/application-development-guide.pdf#value-added-features

Use TX_REQUIRED for Long Transaction Chains

For very large transaction chains, use the transaction attribute TX_REQUIRED. To ensure EJB methods
in a call chain, use the same transaction.

Use Lowest Cost Database Locking

Use the lowest cost locking available from the database that is consistent with any transaction.
Commit the data after the transaction completes rather than after each method call.

Use XA-Capable Data Sources Only When Needed

When multiple database resources, connector resources or JMS resources are involved in one
transaction, a distributed or global transaction needs to be performed. This requires XA capable
resource managers and data sources. Use XA capable data sources, only when two or more data
source are going to be involved in a transaction. If a database participates in some distributed
transactions, but mostly in local or single database transactions, it is advisable to register two
separate JDBC resources and use the appropriate resource in the application.

Configure JDBC Resources as One-Phase Commit Resources

To improve performance of transactions involving multiple resources, the Eclipse GlassFish uses
last agent optimization (LAO), which allows the configuration of one of the resources in a
distributed transaction as a one-phase commit (1PC) resource. Since the overhead of multiple-
resource transactions is much higher for a JDBC resource than a message queue, LAO substantially
improves performance of distributed transactions involving one JDBC resource and one or more
message queues. To take advantage of LAO, configure a JDBC resource as a 1PC resource. Nothing
special needs to be done to configure JMS resources.

In global transactions involving multiple JDBC resources, LAO will still improve performance,
however, not as much as for one JDBC resource. In this situation, one of the JDBC resources should
be configured as 1PC, and all others should be configured as XA.

Use the Least Expensive Transaction Attribute

Set the following transaction attributes in the EJB deployment descriptor file (ejb-jar.xml). Options
are listed from best performance to worst. To improve performance, choose the least expensive
attribute that will provide the functionality your application needs:

1. NEVER

2. TX_NOTSUPPORTED

3. TX_MANDATORY

4. TX_SUPPORTS

5. TX_REQUIRED

6. TX_REQUIRESNEW

27

Using Special Techniques

Special performance-enhancing techniques are discussed in the following sections:

• Version Consistency

• Request Partitioning

Version Consistency


The technique in section applies only to the EJB 2.1 architecture. In the EJB 3.0
architecture, use the Java Persistence API (JPA).

Use version consistency to improve performance while protecting the integrity of data in the
database. Since the application server can use multiple copies of an EJB component simultaneously,
an EJB component’s state can potentially become corrupted through simultaneous access.

The standard way of preventing corruption is to lock the database row associated with a particular
bean. This prevents the bean from being accessed by two simultaneous transactions and thus
protects data. However, it also decreases performance, since it effectively serializes all EJB access.

Version consistency is another approach to protecting EJB data integrity. To use version consistency,
you specify a column in the database to use as a version number. The EJB lifecycle then proceeds
like this:

• The first time the bean is used, the ejbLoad() method loads the bean as normal, including
loading the version number from the database.

• The ejbStore() method checks the version number in the database versus its value when the
EJB component was loaded.

◦ If the version number has been modified, it means that there has been simultaneous access
to the EJB component and ejbStore() throws a ConcurrentModificationException.

◦ Otherwise, ejbStore() stores the data and completes as normal.

The ejbStore() method performs this validation at the end of the transaction regardless of
whether any data in the bean was modified.

Subsequent uses of the bean behave similarly, except that the ejbLoad() method loads its initial data
(including the version number) from an internal cache. This saves a trip to the database. When the
ejbStore() method is called, the version number is checked to ensure that the correct data was used
in the transaction.

Version consistency is advantageous when you have EJB components that are rarely modified,
because it allows two transactions to use the same EJB component at the same time. Because
neither transaction modifies the data, the version number is unchanged at the end of both
transactions, and both succeed. But now the transactions can run in parallel. If two transactions
occasionally modify the same EJB component, one will succeed and one will fail and can be retried
using the new values—which can still be faster than serializing all access to the EJB component if
the retries are infrequent enough (though now your application logic has to be prepared to perform
the retry operation).

28

To use version consistency, the database schema for a particular table must include a column
where the version can be stored. You then specify that table in the sun-cmp-mapping.xml deployment
descriptor for a particular bean:

<entity-mapping>
 <cmp-field-mapping>
 ...
 </cmp-field-mapping>
 <consistency>
 <check-version-of-accessed-instances>
 <column-name>OrderTable.VC_VERSION_NUMBER</column-name>
 </check-version-of-accessed-instances>
 </consistency>
</entity-mapping>

In addition, you must establish a trigger on the database to automatically update the version
column when data in the specified table is modified. The Eclipse GlassFish requires such a trigger to
use version consistency. Having such a trigger also ensures that external applications that modify
the EJB data will not conflict with EJB transactions in progress.

For example, the following DDL illustrates how to create a trigger for the Order table:

CREATE TRIGGER OrderTrigger
 BEFORE UPDATE ON OrderTable
 FOR EACH ROW
 WHEN (new.VC_VERSION_NUMBER = old.VC_VERSION_NUMBER)
 DECLARE
 BEGIN
 :NEW.VC_VERSION_NUMBER := :OLD.VC_VERSION_NUMBER + 1;
 END;

Request Partitioning

Request partitioning enables you to assign a request priority to an EJB component. This gives you
the flexibility to make certain EJB components execute with higher priorities than others.

An EJB component which has a request priority assigned to it will have its requests (services)
executed within an assigned threadpool. By assigning a threadpool to its execution, the EJB
component can execute independently of other pending requests. In short, request partitioning
enables you to meet service-level agreements that have differing levels of priority assigned to
different services.

Request partitioning applies only to remote EJB components (those that implement a remote
interface). Local EJB components are executed in their calling thread (for example, when a servlet
calls a local bean, the local bean invocation occurs on the servlet’s thread).

To Enable Request Partitioning

29

Follow this procedure.

1. Configure additional threadpools for EJB execution.

Using the Eclipse GlassFish Administration Console, navigate to the
Configurations>configuration-name>Thread Pools node. Refer to the Administration Console
online help for more information. Alternatively, you can follow the instructions in "
Administering Thread Pools" in Eclipse GlassFish Administration Guide.

Configure the threadpools as follows:

1. Add the additional threadpool IDs to the Eclipse GlassFish’s ORB.

This can be done on the Configurations>configuration-name>ORB node in the
Administration Console.

For example, enable threadpools named priority-1 and priority-2 to the <orb> element as
follows:

<orb max-connections="1024" message-fragment-size="1024"
 use-thread-pool-ids="thread-pool-1,priority-1,priority-2">

2. Include the threadpool ID in the use-thread-pool-id element of the EJB component’s sun-
ejb-jar.xml deployment descriptor.

For example, the following sun-ejb-jar.xml deployment descriptor for an EJB component
named “TheGreeter” is assigned to a thread pool named priority-2:

<sun-ejb-jar>
 <enterprise-beans>
 <unique-id>1</unique-id>
 <ejb>
 <ejb-name>TheGreeter</ejb-name>
 <jndi-name>greeter</jndi-name>
 <use-thread-pool-id>priority-1</use-thread-pool-id>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

2. Restart the Eclipse GlassFish.

Tuning Tips for Specific Types of EJB Components

This section provides tips for tuning various specific types of EJB components:

• Entity Beans

• Stateful Session Beans

• Stateless Session Beans

30

https://glassfish.org/docs/latest/administration-guide.pdf#administering-thread-pools
https://glassfish.org/docs/latest/administration-guide.pdf#administering-thread-pools

• Read-Only Entity Beans

• Pre-Fetching Container Managed Relationship (CMR) Beans

These components can all be configured in the Eclipse GlassFish Administration Console from the
Configurations>configuration-name>EJB Container node. Alternatively, you can perform these
configurations by following the instructions in " RMI-IIOP Load Balancing and Failover" in Eclipse
GlassFish High Availability Administration Guide.

Entity Beans

Depending on the usage of a particular entity bean, one should tune max-cache-size so that the
beans that are used less frequently (for example, an order that is created and never used after the
transaction is over) are cached less, and beans that are used frequently (for example, an item in the
inventory that gets referenced very often), are cached more.

Stateful Session Beans

When a stateful bean represents a user, a reasonable max-cache-size of beans is the expected
number of concurrent users on the application server process. If this value is too low (in relation to
the steady load of users), beans would be frequently passivated and activated, causing a negative
impact on the response times, due to CPU intensive serialization and deserialization as well as disk
I/O.

Another important variable for tuning is cache-idle-timeout-in-seconds where at periodic intervals
of cache-idle-timeout-in-seconds, all the beans in the cache that have not been accessed for more
than cache-idle-timeout-in-seconds time, are passivated. Similar to an HTTP session timeout, the
bean is removed after it has not been accessed for removal-timeout-in-seconds. Passivated beans are
stored on disk in serialized form. A large number of passivated beans could not only mean many
files on the disk system, but also slower response time as the session state has to be de-serialized
before the invocation.

Checkpoint only when needed

In high availability mode, when using stateful session beans, consider checkpointing only those
methods that alter the state of the bean significantly. This reduces the number of times the bean
state has to be checkpointed into the persistent store.

Stateless Session Beans

Stateless session beans are more readily pooled than entity or the stateful session beans. Valid
values for steady-pool-size, pool-resize-quantity and max-pool-size are the best tunables for these
type of beans. Set the steady-pool-size to greater than zero if you want to pre-populate the pool.
This way, when the container comes up, it creates a pool with steady-pool-size number of beans. By
pre-populating the pool it is possible to avoid the object creation time during method invocations.

Setting the steady-pool size to a very large value can cause unwanted memory growth and can
result in large garbage collection times. pool-resize-quantity determines the rate of growth as well
as the rate of decay of the pool. Setting it to a small value is better as the decay behaves like an
exponential decay. Setting a small max-pool-size can cause excessive object destruction (and as a

31

https://glassfish.org/docs/latest/ha-administration-guide.pdf#rmi-iiop-load-balancing-and-failover

result excessive object creation) as instances are destroyed from the pool if the current pool size
exceeds max-pool-size.

Read-Only Entity Beans

Read-only entity beans cache data from the database. Eclipse GlassFish supports read-only beans
that use both bean-managed persistence (BMP) and container-managed persistence (CMP). Of the
two types, CMP read-only beans provide significantly better performance. In the EJB lifecycle, the
EJB container calls the ejbLoad() method of a read-only bean once. The container makes multiple
copies of the EJB component from that data, and since the beans do not update the database, the
container never calls the ejbStore() method. This greatly reduces database traffic for these beans.

If there is a bean that never updates the database, use a read-only bean in its place to improve
performance. A read-only bean is appropriate if either:

• Database rows represented by the bean do not change.

• The application can tolerate using out-of-date values for the bean.

For example, an application might use a read-only bean to represent a list of best-seller books.
Although the list might change occasionally in the database (say, from another bean entirely), the
change need not be reflected immediately in an application.

The ejbLoad() method of a read-only bean is handled differently for CMP and BMP beans. For CMP
beans, the EJB container calls ejbLoad() only once to load the data from the database; subsequent
uses of the bean just copy that data. For BMP beans, the EJB container calls ejbLoad() the first time a
bean is used in a transaction. Subsequent uses of that bean within the transaction use the same
values. The container calls ejbLoad() for a BMP bean that doesn’t run within a transaction every
time the bean is used. Therefore, read-only BMP beans still make a number of calls to the database.

To create a read-only bean, add the following to the EJB deployment descriptor sun-ejb-jar.xml:

<is-read-only-bean>true</is-read-only-bean>
<refresh-period-in-seconds>600</refresh-period-in-seconds>

Refresh Period

An important parameter for tuning read-only beans is the refresh period, represented by the
deployment descriptor entity refresh-period-in-seconds. For CMP beans, the first access to a bean
loads the bean’s state. The first access after the refresh period reloads the data from the database.
All subsequent uses of the bean uses the newly refreshed data (until another refresh period
elapses). For BMP beans, an ejbLoad() method within an existing transaction uses the cached data
unless the refresh period has expired (in which case, the container calls ejbLoad() again).

This parameter enables the EJB component to periodically refresh its "snapshot" of the database
values it represents. If the refresh period is less than or equal to 0, the bean is never refreshed from
the database (the default behavior if no refresh period is given).

32

Pre-Fetching Container Managed Relationship (CMR) Beans

If a container-managed relationship (CMR) exists in your application, loading one bean will load all
its related beans. The canonical example of CMR is an order-orderline relationship where you have
one Order EJB component that has related OrderLine EJB components. In previous releases of the
application server, to use all those beans would require multiple database queries: one for the
Order bean and one for each of the OrderLine beans in the relationship.

In general, if a bean has n relationships, using all the data of the bean would require n+1 database
accesses. Use CMR pre-fetching to retrieve all the data for the bean and all its related beans in one
database access.

For example, you have this relationship defined in the ejb-jar.xml file:

<relationships>
 <ejb-relation>
 <description>Order-OrderLine</description>
 <ejb-relation-name>Order-OrderLine</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Order-has-N-OrderLines
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>OrderEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>orderLines</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

When a particular Order is loaded, you can load its related OrderLines by adding this to the sun-cmp-
mapping.xml file for the application:

<entity-mapping>
 <ejb-name>Order</ejb-name>
 <table-name>...</table-name>
 <cmp-field-mapping>...</cmp-field-mapping>
 <cmr-field-mapping>
 <cmr-field-name>orderLines</cmr-field-name>
 <column-pair>
 <column-name>OrderTable.OrderID</column-name>
 <column-name>OrderLineTable.OrderLine_OrderID</column-name>
 </column-pair>
 <fetched-with>
 <default>

33

 </fetched-with>
 </cmr-field-mapping>
</entity-mappping>

Now when an Order is retrieved, the CMP engine issues SQL to retrieve all related OrderLines with a
SELECT statement that has the following WHERE clause:

OrderTable.OrderID = OrderLineTable.OrderLine_OrderID

This clause indicates an outer join. These OrderLines are pre-fetched.

Pre-fetching generally improves performance because it reduces the number of database accesses.
However, if the business logic often uses Orders without referencing their OrderLines, then this can
have a performance penalty, that is, the system has spent the effort to pre-fetch the OrderLines that
are not actually needed.

Avoid pre-fetching for specific finder methods; this can often avoid that penalty. For example,
consider an order bean has two finder methods: a findByPrimaryKey method that uses the
Orderlines, and a findByCustomerId method that returns only order information and therefore does
not use the Orderlines. If you have enabled CMR pre-fetching for the Orderlines, both finder
methods will pre-fetch the Orderlines. However, you can prevent pre-fetching for the
findByCustomerId method by including this information in the sun-ejb-jar.xml descriptor:

<ejb>
 <ejb-name>OrderBean</ejb-name>
 ...
 <cmp>
 <prefetch-disabled>
 <query-method>
 <method-name>findByCustomerId</method-name>
 </query-method>
 </prefetch-disabled>
 </cmp>
</ejb>

JDBC and Database Access

The following are some tips to improve the performance of database access:

• Use JDBC Directly

• Encapsulate Business Logic in Entity EJB Components

• Close Connections

• Minimize the Database Transaction Isolation Level

34

Use JDBC Directly

When dealing with large amounts of data, such as searching a large database, use JDBC directly
rather than using Entity EJB components.

Encapsulate Business Logic in Entity EJB Components

Combine business logic with the Entity EJB component that holds the data needed for that logic to
process.

Close Connections

To ensure that connections are returned to the pool, always close the connections after use.

Minimize the Database Transaction Isolation Level

Use the default isolation level provided by the JDBC driver rather than calling
setTransactionIsolationLevel(), unless you are certain that your application behaves correctly and
performs better at a different isolation level.

Reduce the database transaction isolation level when appropriate. Reduced isolation levels reduce
work in the database tier, and could lead to better application performance. However, this must be
done after carefully analyzing the database table usage patterns.

To set the database transaction isolation level using the Eclipse GlassFish Administration Console,
navigate to the Resources>JDBC>JDBC Connection Pools>pool-name node. Refer to the
Administration Console online help for complete instructions. Alternatively, follow the instructions
in "Administering Database Connectivity" in Eclipse GlassFish Administration Guide. For more
information on tuning JDBC connection pools, see JDBC Connection Pool Settings.

Tuning Message-Driven Beans

This section provides some tips to improve performance when using JMS with message-driven
beans (MDBs).

Use getConnection()

JMS connections are served from a connection pool. This means that calling getConnection() on a
Queue connection factory is fast.

Tune the Message-Driven Bean’s Pool Size

The container for message-driven beans (MDB) is different than the containers for entity and
session beans. In the MDB container, sessions and threads are attached to the beans in the MDB
pool. This design makes it possible to pool the threads for executing message-driven requests in the
container.

Tune the Message-Driven bean’s pool size to optimize the concurrent processing of messages. Set
the size of the MDB pool to, based on all the parameters of the server (taking other applications into
account). For example, a value greater than 500 is generally too large.

35

https://glassfish.org/docs/latest/administration-guide.pdf#administering-database-connectivity

To configure MDB pool settings in the Eclipse GlassFish Administration Console, navigate to the
Configurations>configuration-name>EJB Container node and then select the MDB Settings tab.
Refer to the Administration Console online help for more information. Alternatively, you can set the
MDB pool size by using the following asadmin set subcommand:

asadmin set server.mdb-container.max-pool-size = value

Cache Bean-Specific Resources

Use the setMessageDrivenContext() or ejbCreate() method to cache bean specific resources, and
release those resources from the ejbRemove() method.

Limit Use of JMS Connections

When designing an application that uses JMS connections make sure you use a methodology that
sparingly uses connections, by either pooling them or using the same connection for multiple
sessions.

The JMS connection uses two threads and the sessions use one thread each. Since these threads are
not taken from a pool and the resultant objects aren’t pooled, you could run out of memory during
periods of heavy usage.

One workaround is to move createTopicConnection into the init of the servlet.

Make sure to specifically close the session, or it will stay open, which ties up resources.

36

3 Tuning the Eclipse GlassFish
This chapter describes some ways to tune your Eclipse GlassFish installation for optimum
performance.

Note that while this chapter describes numerous interactions with both the Eclipse GlassFish
Administration Console and the command-line interface, it is not intended to provide exhaustive
descriptions of either. For complete information about using the Administration Console, refer to
the Administration Console online help. For complete information about using the Eclipse GlassFish
command-line interface, refer to the other titles in the Eclipse GlassFish documentation set at
http://docs.oracle.com/docs/cd/E18930_01/index.html.

The following topics are addressed here:

• Using the Eclipse GlassFish Performance Tuner

• Deployment Settings

• Logger Settings

• Web Container Settings

• EJB Container Settings

• Java Message Service Settings

• Transaction Service Settings

• HTTP Service Settings

• Network Listener Settings

• Transport Settings

• Thread Pool Settings

• ORB Settings

• Resource Settings

• Load Balancer Settings

Using the Eclipse GlassFish Performance Tuner
You can significantly improve the performance of Eclipse GlassFish and the applications deployed
on it by adjusting a few deployment and server configuration settings. These changes can be made
manually, as described in this chapter, or by using the built-in Performance Tuner in the Eclipse
GlassFish Administration Console.

The Performance Tuner recommends server settings to suit the needs of your Eclipse GlassFish
deployment. It helps you reach an optimal configuration, although finer tuning might be needed in
case of specific requirements. You can configure performance tuning for the entire domain, or for
individual Eclipse GlassFish instances or clusters. The Tuner performs a static analysis of Eclipse
GlassFish resources and throughput requirements. Note that no dynamic inspection of the system is
performed.

37

http://docs.oracle.com/docs/cd/E18930_01/index.html

For complete information about using the Performance Tuning features available through the
Eclipse GlassFish Administration Console, refer to the Administration Console online help. You may
also want to refer to the following resources for additional information:

• To view a demonstration video showing how to use the Eclipse GlassFish Performance Tuner,
see the Eclipse GlassFish 3.1 - Performance Tuner demo (http://www.youtube.com/watch?
v=FavsE2pzAjc).

• To find additional Performance Tuning development information, see the Performance Tuner
in Eclipse GlassFish 3.1 (http://blogs.oracle.com/jenblog/entry/
performance_tuner_in_oracle_glassfish) blog.

Deployment Settings
Deployment settings can have significant impact on performance. Follow these guidelines when
configuring deployment settings for best performance:

• Disable Auto-Deployment

• Use Pre-compiled JavaServer Pages

• Disable Dynamic Application Reloading

Disable Auto-Deployment

Enabling auto-deployment will adversely affect deployment, though it is a convenience in a
development environment. For a production system, disable auto-deploy to optimize performance.
If auto-deployment is enabled, then the Reload Poll Interval setting can have a significant
performance impact.

To enable or disable auto-deployment from the Eclipse GlassFish Administration Console, navigate
to the Domain node and then click the Applications Configuration tab. Refer to the Administration
Console for further instructions. Alternatively, refer to "To Deploy an Application or Module
Automatically" in Eclipse GlassFish Application Deployment Guide for instructions on enabling or
disabling auto-deployment.

Use Pre-compiled JavaServer Pages

Compiling JSP files is resource intensive and time consuming. Pre-compiling JSP files before
deploying applications on the server will improve application performance. When you do so, only
the resulting servlet class files will be deployed.

You can specify to precompile JSP files when you deploy an application through the Administration
Console or deploy subcommand. You can also specify to pre-compile JSP files for a deployed
application with the Administration Console. Navigate to the Domain node and then click the
Applications Configuration tab. Refer to the Administration Console for further instructions.

Disable Dynamic Application Reloading

If dynamic reloading is enabled, the server periodically checks for changes in deployed applications

38

http://www.youtube.com/watch?v=FavsE2pzAjc
http://www.youtube.com/watch?v=FavsE2pzAjc
http://www.youtube.com/watch?v=FavsE2pzAjc
http://blogs.oracle.com/jenblog/entry/performance_tuner_in_oracle_glassfish
http://blogs.oracle.com/jenblog/entry/performance_tuner_in_oracle_glassfish
http://blogs.oracle.com/jenblog/entry/performance_tuner_in_oracle_glassfish
http://blogs.oracle.com/jenblog/entry/performance_tuner_in_oracle_glassfish
https://glassfish.org/docs/latest/application-deployment-guide.pdf#to-deploy-an-application-or-module-automatically
https://glassfish.org/docs/latest/application-deployment-guide.pdf#to-deploy-an-application-or-module-automatically

and automatically reloads the application with the changes. Dynamic reloading is intended for
development environments and is also incompatible with session persistence. To improve
performance, disable dynamic class reloading.

You can use the Administration Console to disable dynamic class reloading for an application that is
already deployed. Navigate to the Domain node and then click the Applications Configuration tab.
Refer to the Administration Console for further instructions.

Logger Settings
The Eclipse GlassFish produces writes log messages and exception stack trace output to the log file
in the logs directory of the instance, domain-dir/logs. The volume of log activity can impact server
performance; particularly in benchmarking situations.

General Settings

In general, writing to the system log slows down performance slightly; and increased disk access
(increasing the log level, decreasing the file rotation limit or time limit) also slows down the
application.

Also, make sure that any custom log handler does not log to a slow device like a network file system
since this can adversely affect performance.

Log Levels

Set the log level for the server and its subsystems in the Eclipse GlassFish Administration Console.
Navigate to the Configurations>configuration-name>Logger Settings page, and follow the
instructions in the online help. Alternatively, you can configure logging by following the
instructions in "Administering the Logging Service" in Eclipse GlassFish Administration Guide.

Web Container Settings
Set Web container settings in the Eclipse GlassFish Administration Console by navigating to the
Configurations>configuration-name>Web Container node. Follow the instructions in the online help
for more information. Alternatively, you can configure Web container settings by following the
instructions in "Administering Web Applications" in Eclipse GlassFish Administration Guide.

• Session Properties: Session Timeout

• Manager Properties: Reap Interval

• Disable Dynamic JSP Reloading

Session Properties: Session Timeout

Session timeout determines how long the server maintains a session if a user does not explicitly
invalidate the session. The default value is 30 minutes. Tune this value according to your
application requirements. Setting a very large value for session timeout can degrade performance
by causing the server to maintain too many sessions in the session store. However, setting a very

39

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-logging-service
https://glassfish.org/docs/latest/administration-guide.pdf#administering-web-applications

small value can cause the server to reclaim sessions too soon.

Manager Properties: Reap Interval

Modifying the reap interval can improve performance, but setting it without considering the nature
of your sessions and business logic can cause data inconsistency, especially for time-based
persistence-frequency.

For example, if you set the reap interval to 60 seconds, the value of session data will be recorded
every 60 seconds. But if a client accesses a servlet to update a value at 20 second increments, then
inconsistencies will result.

For example, consider the following online auction scenario:

• Bidding starts at $5, in 60 seconds the value recorded will be $8 (three 20 second intervals).

• During the next 40 seconds, the client starts incrementing the price. The value the client sees is
$10.

• During the client’s 20 second rest, the Eclipse GlassFish stops and starts in 10 seconds. As a
result, the latest value recorded at the 60 second interval ($8) is be loaded into the session.

• The client clicks again expecting to see $11; but instead sees is $9, which is incorrect.

• So, to avoid data inconsistencies, take into the account the expected behavior of the application
when adjusting the reap interval.

Disable Dynamic JSP Reloading

On a production system, improve web container performance by disabling dynamic JSP reloading.
To do so, edit the default-web.xml file in the config directory for each instance. Change the servlet
definition for a JSP file to look like this:

<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>org.glassfish.wasp.servlet.JspServlet</servlet-class>
 <init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>xpoweredBy</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>genStrAsCharArray</param-name>
 <param-value>true</param-value>
 </init-param> <load-on-startup>3</load-on-startup>
</servlet>

40

EJB Container Settings
The EJB Container has many settings that affect performance. As with other areas, use monitor the
EJB Container to track its execution and performance.

You can configure most EJB container settings from the Eclipse GlassFish Administration Console by
navigating to the Configurations>configuration-name>EJB Container node and then following the
instructions in the online help.

Monitoring the EJB Container

Monitoring the EJB container is disabled by default. You can enable EJB monitoring through the
Eclipse GlassFish Administration Console by navagating to the the Configurations>configuration-
name>Monitoring node and then following the instructions in the online help. Set the monitoring
level to LOW for to monitor all deployed EJB components, EJB pools, and EJB caches. Set the
monitoring level to HIGH to also monitor EJB business methods.

Tuning the EJB Container

The EJB container caches and pools EJB components for better performance. Tuning the cache and
pool properties can provide significant performance benefits to the EJB container.

The pool settings are valid for stateless session and entity beans while the cache settings are valid
for stateful session and entity beans.

The following topics are addressed here:

• Overview of EJB Pooling and Caching

• Tuning the EJB Pool

• Tuning the EJB Cache

• Pool and Cache Settings for Individual EJB Components

• Commit Option

Overview of EJB Pooling and Caching

Both stateless session beans and entity beans can be pooled to improve server performance. In
addition, both stateful session beans and entity beans can be cached to improve performance.

Table 3-1 Bean Type Pooling or Caching

Bean Type Pooled Cached

Stateless Session Yes No

Stateful Session No Yes

Entity Yes Yes

The difference between a pooled bean and a cached bean is that pooled beans are all equivalent
and indistinguishable from one another. Cached beans, on the contrary, contain conversational

41

state in the case of stateful session beans, and are associated with a primary key in the case of
entity beans. Entity beans are removed from the pool and added to the cache on ejbActivate() and
removed from the cache and added to the pool on ejbPassivate(). ejbActivate() is called by the
container when a needed entity bean is not in the cache. ejbPassivate() is called by the container
when the cache grows beyond its configured limits.


If you develop and deploy your EJB components using Oracle Java Studio, then you
need to edit the individual bean descriptor settings for bean pool and bean cache.
These settings might not be suitable for production-level deployment.

Tuning the EJB Pool

A bean in the pool represents the pooled state in the EJB lifecycle. This means that the bean does
not have an identity. The advantage of having beans in the pool is that the time to create a bean can
be saved for a request. The container has mechanisms that create pool objects in the background, to
save the time of bean creation on the request path.

Stateless session beans and entity beans use the EJB pool. Keeping in mind how you use stateless
session beans and the amount of traffic your server handles, tune the pool size to prevent excessive
creation and deletion of beans.

EJB Pool Settings

An individual EJB component can specify cache settings that override those of the EJB container in
the <bean-pool> element of the EJB component’s sun-ejb-jar.xml deployment descriptor.

The EJB pool settings are:

• Initial and Minimum Pool Size: the initial and minimum number of beans maintained in the
pool. Valid values are from 0 to MAX_INTEGER, and the default value is 8. The corresponding EJB
deployment descriptor attribute is steady-pool-size.

Set this property to a number greater than zero for a moderately loaded system. Having a value
greater than zero ensures that there is always a pooled instance to process an incoming request.

• Maximum Pool Size: the maximum number of connections that can be created to satisfy client
requests. Valid values are from zero to MAX_INTEGER., and the default is 32. A value of zero means
that the size of the pool is unbounded. The potential implication is that the JVM heap will be
filled with objects in the pool. The corresponding EJB deployment descriptor attribute is max-
pool-size.

Set this property to be representative of the anticipated high load of the system. An very large
pool wastes memory and can slow down the system. A very small pool is also inefficient due to
contention.

• Pool Resize Quantity: the number of beans to be created or deleted when the cache is being
serviced by the server. Valid values are from zero to MAX_INTEGER and default is 16. The
corresponding EJB deployment descriptor attribute is resize-quantity.

Be sure to re-calibrate the pool resize quantity when you change the maximum pool size, to

42

maintain an equilibrium. Generally, a larger maximum pool size should have a larger pool
resize quantity.

• Pool Idle Timeout: the maximum time that a stateless session bean, entity bean, or message-
driven bean is allowed to be idle in the pool. After this time, the bean is destroyed if the bean in
case is a stateless session bean or a message driver bean. This is a hint to server. The default
value is 600 seconds. The corresponding EJB deployment descriptor attribute is pool-idle-
timeout-in-seconds.

If there are more beans in the pool than the maximum pool size, the pool drains back to initial
and minimum pool size, in steps of pool resize quantity at an interval specified by the pool idle
timeout. If the resize quantity is too small and the idle timeout large, you will not see the pool
draining back to steady size quickly enough.

Tuning the EJB Cache

A bean in the cache represents the ready state in the EJB lifecycle. This means that the bean has an
identity (for example, a primary key or session ID) associated with it.

Beans moving out of the cache have to be passivated or destroyed according to the EJB lifecycle.
Once passivated, a bean has to be activated to come back into the cache. Entity beans are generally
stored in databases and use some form of query language semantics to load and store data. Session
beans have to be serialized when storing them upon passivation onto the disk or a database; and
similarly have to be deserialized upon activation.

Any incoming request using these "ready" beans from the cache avoids the overhead of creation,
setting identity, and potentially activation. So, theoretically, it is good to cache as many beans as
possible. However, there are drawbacks to caching:

• Memory consumed by all the beans affects the heap available in the Virtual Machine.

• Increasing objects and memory taken by cache means longer, and possibly more frequent,
garbage collection.

• The application server might run out of memory unless the heap is carefully tuned for peak
loads.

Keeping in mind how your application uses stateful session beans and entity beans, and the amount
of traffic your server handles, tune the EJB cache size and timeout settings to minimize the number
of activations and passivations.

EJB Cache Settings

An individual EJB component can specify cache settings that override those of the EJB container in
the <bean-cache> element of the EJB component’s sun-ejb-jar.xml deployment descriptor.

The EJB cache settings are:

• Max Cache Size: Maximum number of beans in the cache. Make this setting greater than one.
The default value is 512. A value of zero indicates the cache is unbounded, which means the size
of the cache is governed by Cache Idle Timeout and Cache Resize Quantity. The corresponding
EJB deployment descriptor attribute is max-cache-size.

43

• Cache Resize Quantity: Number of beans to be created or deleted when the cache is serviced by
the server. Valid values are from zero to MAX_INTEGER, and the default is 16. The
corresponding EJB deployment descriptor attribute is resize-quantity.

• Removal Timeout: Amount of time that a stateful session bean remains passivated (idle in the
backup store). If a bean was not accessed after this interval of time, then it is removed from the
backup store and will not be accessible to the client. The default value is 60 minutes. The
corresponding EJB deployment descriptor attribute is removal-timeout-in-seconds.

• Removal Selection Policy: Algorithm used to remove objects from the cache. The corresponding
EJB deployment descriptor attribute is victim-selection-policy. Choices are:

◦ NRU (not recently used). This is the default, and is actually pseudo-random selection policy.

◦ FIFO (first in, first out)

◦ LRU (least recently used)

• Cache Idle Timeout: Maximum time that a stateful session bean or entity bean is allowed to be
idle in the cache. After this time, the bean is passivated to the backup store. The default value is
600 seconds. The corresponding EJB deployment descriptor attribute is cache-idle-timeout-in-
seconds.

• Refresh period: Rate at which a read-only-bean is refreshed from the data source. Zero (0)
means that the bean is never refreshed. The default is 600 seconds. The corresponding EJB
deployment descriptor attribute is refresh-period-in-seconds. Note: this setting does not have a
custom field in the Admin Console. To set it, use the Add Property button in the Additional
Properties section.

Pool and Cache Settings for Individual EJB Components

Individual EJB pool and cache settings in the sun-ejb-jar.xml deployment descriptor override those
of the EJB container. The following table lists the cache and pool settings for each type of EJB
component.

Cache or Pool Setting Stateful
Session
Bean

Stateless
Session
Bean

Entity
Bean

Entity
Read-Only
Bean

Message
Driven
Bean

cache-resize-quantity X + X X +

max-cache-size X + X X +

cache-idle-timeout-in-seconds X + X X +

removal-timeout-in-seconds X + X X +

victim-selection-policy X + X X +

refresh-period-in-seconds + + + X +

steady-pool-size + X X X +

pool-resize-quantity + X X X X

max-pool-size + X X X X

pool-idle-timeout-in-seconds + X X X X

44

Commit Option

The commit option controls the action taken by the EJB container when an EJB component
completes a transaction. The commit option has a significant impact on performance.

The following are the possible values for the commit option:

• Commit option B: When a transaction completes, the bean is kept in the cache and retains its
identity. The next invocation for the same primary key can use the cached instance. The EJB
container will call the bean’s ejbLoad() method before the method invocation to synchronize
with the database.

• Commit option C: When a transaction completes, the EJB container calls the bean’s
ejbPassivate() method, the bean is disassociated from its primary key and returned to the free
pool. The next invocation for the same primary key will have to get a free bean from the pool,
set the PrimaryKey on this instance, and then call ejbActivate() on the instance. Again, the EJB
container will call the bean’s ejbLoad() before the method invocation to synchronize with the
database.

Option B avoids ejbAcivate() and ejbPassivate() calls. So, in most cases it performs better than
option C since it avoids some overhead in acquiring and releasing objects back to pool.

However, there are some cases where option C can provide better performance. If the beans in the
cache are rarely reused and if beans are constantly added to the cache, then it makes no sense to
cache beans. With option C is used, the container puts beans back into the pool (instead of caching
them) after method invocation or on transaction completion. This option reuses instances better
and reduces the number of live objects in the JVM, speeding garbage collection.

Determining the Best Commit Option

To determine whether to use commit option B or commit option C, first take a look at the cache-hits
value using the monitoring command for the bean. If the cache hits are much higher than cache
misses, then option B is an appropriate choice. You might still have to change the max-cache-size
and cache-resize-quantity to get the best result.

If the cache hits are too low and cache misses are very high, then the application is not reusing the
bean instances and hence increasing the cache size (using max-cache-size) will not help (assuming
that the access pattern remains the same). In this case you might use commit option C. If there is no
great difference between cache-hits and cache-misses then tune max-cache-size, and probably
cache-idle-timeout-in-seconds.

Java Message Service Settings
The Type attribute that determines whether the Java Message Service (JMS) is on local or remote
system affects performance. Local JMS performance is better than remote JMS performance.
However, a remote cluster can provide failover capabilities and can be administrated together, so
there may be other advantages of using remote JMS. For more information on using JMS, see
"Administering the Java Message Service (JMS)" in Eclipse GlassFish Administration Guide.

45

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-java-message-service-jms

Transaction Service Settings
The transaction manager makes it possible to commit and roll back distributed transactions.

A distributed transactional system writes transactional activity into transaction logs so that they
can be recovered later. But writing transactional logs has some performance penalty.

The following topics are addressed here:

• Monitoring the Transaction Service

• Tuning the Transaction Service

Monitoring the Transaction Service

Transaction Manager monitoring is disabled by default. Enable monitoring of the transaction
service through the Eclipse GlassFish Administration Console by navigating to the
Configurations>configuration-name>Monitoring node. Refer to the Administration Console for
complete instructions.

You can also enable monitoring with these commands:

set serverInstance.transaction-service.monitoringEnabled=true
reconfig serverInstance

Viewing Monitoring Information

To view monitoring information for the transaction service in the Eclipse GlassFish Administration
Console, navigate to the server (Admin Server) node and then select the Monitor tab.

The following statistics are gathered on the transaction service:

• total-tx-completed Completed transactions.

• total-tx-rolled-back Total rolled back transactions.

• total-tx-inflight Total inflight (active) transactions.

• isFrozen Whether transaction system is frozen (true or false)

• inflight-tx List of inflight (active) transactions.

Tuning the Transaction Service

This property can be used to disable the transaction logging, where the performance is of utmost
importance more than the recovery. This property, by default, won’t exist in the server
configuration.

Most Transaction Service tuning tasks can be performed through the Eclipse GlassFish
Administration Console by navigating to the Configurations>configuration-name>Transaction
Service node and then following the instructions in the online help. Alternatively, you can follow
the instructions in "Administering Transactions" in Eclipse GlassFish Administration Guide.

46

https://glassfish.org/docs/latest/administration-guide.pdf#administering-transactions

Disable Distributed Transaction Logging

You can disable transaction logging through the Administration Console or by using the following
asadmin set subcommand:

asadmin set
server1.transaction-service.disable-distributed-transaction-logging=true

Disabling transaction logging can improve performance. Setting it to false (the default), makes the
transaction service write transactional activity to transaction logs so that transactions can be
recovered. If Recover on Restart is checked, this property is ignored.

Set this property to true only if performance is more important than transaction recovery.

Recover On Restart (Automatic Recovery)

You can set the Recover on Restart attribute through the Administration Console or by entering the
following asadmin set subcommand:

asadmin set server1.transaction-service.automatic-recovery=false

When Recover on Restart is true, the server will always perform transaction logging, regardless of
the Disable Distributed Transaction Logging attribute.

If Recover on Restart is false, then:

• If Disable Distributed Transaction Logging is false (the default), then the server will write
transaction logs.

• If Disable Distributed Transaction Logging is true, then the server will not write transaction
logs.

Not writing transaction logs will give approximately twenty percent improvement in
performance, but at the cost of not being able to recover from any interrupted transactions. The
performance benefit applies to transaction-intensive tests. Gains in real applications may be
less.

Keypoint Interval

The keypoint interval determines how often entries for completed transactions are removed from
the log file. Keypointing prevents a process log from growing indefinitely.

Frequent keypointing is detrimental to performance. The default value of the Keypoint Interval is
2048, which is sufficient in most cases.

HTTP Service Settings
Tuning the monitoring and access logging settings for the HTTP server instances that handle client
requests are important parts of ensuring peak Eclipse GlassFish performance.

47

The following topics are addressed here:

• Monitoring the HTTP Service

• HTTP Service Access Logging

Monitoring the HTTP Service

Disabling the collection of monitoring statistics can increase overall Eclipse GlassFish performance.
You can enable or disable monitoring statistics collection for the HTTP service using either the
Administration Console or asadmin subcommands.

Refer to "Administering the Monitoring Service" in Eclipse GlassFish Administration Guide for
complete instructions on configuring the monitoring service using asadmin subcommands.

If using the Administration Console, click the Configurations>configuration-name>Monitoring node
for the configuration for which you want to enable or disable monitoring for selected components.
Refer to the Administration Console online help for complete instructions.

For instructions on viewing comprehensive monitoring statistics using asadmin subcommands, see
"Viewing Comprehensive Monitoring Data" in Eclipse GlassFish Administration Guide. If using the
Administration Console, you can view monitoring statistics by navigating to the server (Admin
Server) node, and then clicking the Monitor tab. Refer to the online help for configuring different
views of the available monitoring statistics.

When viewing monitoring statistics, some key performance-related information to review includes
the following:

• DNS Cache Information (dns)

• File Cache Information (file-cache)

• Keep Alive (keep-alive)

• Connection Queue

DNS Cache Information (dns)

The DNS cache caches IP addresses and DNS names. The DNS cache is disabled by default. In the
DNS Statistics for Process ID All page under Monitor in the web-based Administration interface the
following statistics are displayed:

• Enabled

• CacheEntries (CurrentCacheEntries / MaxCacheEntries)

• HitRatio

• Caching DNS Entries

• Limit DNS Lookups to Asynchronous

• Enabled

• NameLookups

• AddrLookups

48

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service
https://glassfish.org/docs/latest/administration-guide.pdf#viewing-comprehensive-monitoring-data

• LookupsInProgress

Enabled

If the DNS cache is disabled, the rest of this section is not displayed.

By default, the DNS cache is off. Enable DNS caching in the Administration Console by clicking the
Configurations>configuration-name>Network Config>http-listener-name node. Click the HTTP tab
and enable the DNS Lookup option.

CacheEntries (CurrentCacheEntries / MaxCacheEntries)

The number of current cache entries and the maximum number of cache entries. A single cache
entry represents a single IP address or DNS name lookup. Make the cache as large as the maximum
number of clients that access your web site concurrently. Note that setting the cache size too high is
a waste of memory and degrades performance.

Set the maximum size of the DNS cache by entering or changing the value in the in the
Administration Console by clicking the Configurations>configuration-name>Network Config>http-
listener-name node. Click the File tab and set the desired options.

HitRatio

The hit ratio is the number of cache hits divided by the number of cache lookups.

This setting is not tunable.


If you turn off DNS lookups on your server, host name restrictions will not work
and IP addresses will appear instead of host names in log files.

Caching DNS Entries

It is possible to also specify whether to cache the DNS entries. If you enable the DNS cache, the
server can store hostname information after receiving it. If the server needs information about the
client in the future, the information is cached and available without further querying. specify the
size of the DNS cache and an expiration time for DNS cache entries. The DNS cache can contain 32
to 32768 entries; the default value is 1024. Values for the time it takes for a cache entry to expire
can range from 1 second to 1 year specified in seconds; the default value is 1200 seconds (20
minutes).

Limit DNS Lookups to Asynchronous

Do not use DNS lookups in server processes because they are resource-intensive. If you must
include DNS lookups, make them asynchronous.

Enabled

If asynchronous DNS is disabled, the rest of this section will not be displayed.

NameLookups

49

The number of name lookups (DNS name to IP address) that have been done since the server was
started. This setting is not tunable.

AddrLookups

The number of address loops (IP address to DNS name) that have been done since the server was
started. This setting is not tunable.

LookupsInProgress

The current number of lookups in progress.

File Cache Information (file-cache)

The file cache caches static content so that the server handles requests for static content quickly.
The file-cache section provides statistics on how your file cache is being used.

For information about tuning the file cache, see File Cache Settings.

The Monitoring page lists the following file cache statistics:

• Number of Hits on Cached File Content

• Number of Cache Entries

• Number of Hits on Cached File Info

• Heap Space Used for Cache

• Number of Misses on Cached File Content

• Cache Lookup Misses

• Number of Misses on Cached File Content

• Max Age of a Cache Entry

• Max Number of Cache Entries

• Max Number of Open Entries

• Is File Cached Enabled?

• Maximum Memory Map to be Used for Cache

• Memory Map Used for cache

• Cache Lookup Hits

• Open Cache Entries: The number of current cache entries and the maximum number of cache
entries are both displayed. A single cache entry represents a single URI. This is a tunable setting.

• Maximum Heap Space to be Used for Cache

Keep Alive (keep-alive)

The following are statistics related to the Keep Alive system. The most important settings you can
tune here relate to HTTP Timeout. See Timeout for more information.

50

• Connections Terminated Due to Client Connection Timed Out

• Max Connection Allowed in Keep-alive

• Number of Hits

• Connections in Keep-alive Mode

• Connections not Handed to Keep-alive Thread Due to too Many Persistent Connections

• The Time in Seconds Before Idle Connections are Closed

• Connections Closed Due to Max Keep-alive Being Exceeded

Connection Queue

• Total Connections Queued: Total connections queued is the total number of times a connection
has been queued. This includes newly accepted connections and connections from the keep-
alive system.

• Average Queuing Delay: Average queueing delay is the average amount of time a connection
spends in the connection queue. This represents the delay between when a request connection
is accepted by the server, and a request processing thread (also known as a session) begins
servicing the request.

HTTP Service Access Logging

Accessing Logging can be tuned using several asadmin subcommands. Refer to "Administering the
Monitoring Service" in Eclipse GlassFish Administration Guide for information about using these
subcommands.

If using the Administration Console, Access Logging is configured from the
Configurations>configuration-name>HTTP Service page. Refer to the Administration Console online
help for complete instructions about the options on this page.

To enable or disable access logging, check or uncheck the Access Logging Enabled checkbox. Access
Logging is disabled by default.

When performing benchmarking, ensure that Access Logging is disabled. If Access Logging is
enabled, it is recommended that you also enable Rotation to ensure that the logs do not run out of
disk space.

Network Listener Settings
You can tune Network Listener settings from the command line by using the instructions in
"Administering HTTP Network Listeners" in Eclipse GlassFish Administration Guide.

If using the Administration Console, navigate to the Configurations >configuration-name>Network
Config>Network Listeners>listener-name node, and then click the tab for the desired configuration
page. Refer to the online help for complete instructions about the options on these tabs.

Eclipse GlassFish Network Listener performance can be enhanced by modifying settings on the
following Edit Network Listener tabs in the Administration Console:

51

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service
https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service
https://glassfish.org/docs/latest/administration-guide.pdf#administering-http-network-listeners

• General Settings

• HTTP Settings

• File Cache Settings

General Settings

For machines with only one network interface card (NIC), set the network address to the IP address
of the machine (for example, 192.18.80.23 instead of default 0.0.0.0). If you specify an IP address
other than 0.0.0.0, the server will make one less system call per connection. Specify an IP address
other than 0.0.0.0 for best possible performance. If the server has multiple NIC cards then create
multiple listeners for each NIC.

HTTP Settings

The following settings on the HTTP tab can significantly affect performance:

• Max Connections

• DNS Lookup Enabled

• Timeout

• Header Buffer Length

Max Connections

Max Connections controls the number of requests that a particular client can make over a keep-
alive connection. The range is any positive integer, and the default is 256.

Adjust this value based on the number of requests a typical client makes in your application. For
best performance specify quite a large number, allowing clients to make many requests.

The number of connections specified by Max Connections is divided equally among the keep alive
threads. If Max Connections is not equally divisible by Thread Count, the server can allow slightly
more than Max Connections simultaneous keep alive connections.

DNS Lookup Enabled

This setting specifies whether the server performs DNS (domain name service) lookups on clients
that access the server. When DNS lookup is not enabled, when a client connects, the server knows
the client’s IP address but not its host name (for example, it knows the client as 198.95.251.30,
rather than www.xyz.com). When DNS lookup is enabled, the server will resolve the client’s IP
address into a host name for operations like access control, common gateway interface (CGI)
programs, error reporting, and access logging.

If the server responds to many requests per day, reduce the load on the DNS or NIS (Network
Information System) server by disabling DNS lookup. Enabling DNS lookup will increase the latency
and load on the system, so modify this setting with caution.

52

Timeout

Timeout determines the maximum time (in seconds) that the server holds open an HTTP keep alive
connection. A client can keep a connection to the server open so that multiple requests to one
server can be serviced by a single network connection. Since the number of open connections that
the server can handle is limited, a high number of open connections will prevent new clients from
connecting.

The default time out value is 30 seconds. Thus, by default, the server will close the connection if idle
for more than 30 seconds. The maximum value for this parameter is 300 seconds (5 minutes).

The proper value for this parameter depends upon how much time is expected to elapse between
requests from a given client. For example, if clients are expected to make requests frequently then,
set the parameter to a high value; likewise, if clients are expected to make requests rarely, then set
it to a low value.

Both HTTP 1.0 and HTTP 1.1 support the ability to send multiple requests across a single HTTP
session. A server can receive hundreds of new HTTP requests per second. If every request was
allowed to keep the connection open indefinitely, the server could become overloaded with
connections. On Unix/Linux systems, this could easily lead to a file table overflow.

The Eclipse GlassFish’s Keep Alive system, which is affected by the Timeout setting, addresses this
problem. A waiting keep alive connection has completed processing the previous request, and is
waiting for a new request to arrive on the same connection. The server maintains a counter for the
maximum number of waiting keep-alive connections. If the server has more than the maximum
waiting connections open when a new connection waits for a keep-alive request, the server closes
the oldest connection. This algorithm limits the number of open waiting keep-alive connections.

If your system has extra CPU cycles, incrementally increase the keep alive settings and monitor
performance after each increase. When performance saturates (stops improving), then stop
increasing the settings.

Header Buffer Length

The size (in bytes) of the buffer used by each of the request processing threads for reading the
request data from the client.

Adjust the value based on the actual request size and observe the impact on performance. In most
cases the default should suffice. If the request size is large, increase this parameter.

File Cache Settings

The Eclipse GlassFish uses a file cache to serve static information faster. The file cache contains
information about static files such as HTML, CSS, image, or text files. Enabling the HTTP file cache
will improve performance of applications that contain static files.

The following settings on the File Cache tab can significantly affect performance:

• Max File Count

• Max Age

53

Max File Count

Max File Count determines how many files are in the cache. If the value is too big, the server caches
little-needed files, which wastes memory. If the value is too small, the benefit of caching is lost. Try
different values of this attribute to find the optimal solution for specific applications—generally, the
effects will not be great.

Max Age

This parameter controls how long cached information is used after a file has been cached. An entry
older than the maximum age is replaced by a new entry for the same file.

If your Web site’s content changes infrequently, increase this value for improved performance. Set
the maximum age by entering or changing the value in the Maximum Age field of the File Cache
Configuration page in the web-based Admin Console for the HTTP server node and selecting the File
Caching Tab.

Set the maximum age based on whether the content is updated (existing files are modified) on a
regular schedule or not. For example, if content is updated four times a day at regular intervals,
you could set the maximum age to 21600 seconds (6 hours). Otherwise, consider setting the
maximum age to the longest time you are willing to serve the previous version of a content file
after the file has been modified.

Transport Settings
The Acceptor Threads property for the Transport service specifies how many threads you want in
accept mode on a listen socket at any time. It is a good practice to set this to less than or equal to the
number of CPUs in your system.

In the Eclipse GlassFish, acceptor threads on an HTTP Listener accept connections and put them
onto a connection queue. Session threads then pick up connections from the queue and service the
requests. The server posts more session threads if required at the end of the request.

See "Administering HTTP Network Listeners" in Eclipse GlassFish Administration Guide for
instructions on modifying the Acceptor Threads property. If using the Administration Console, the
Acceptor Threads property is available on the Configurations>configuration-name>Network
Config>Transports>tcp page.

Thread Pool Settings
You can tune thread pool settings by following the instructions in "Administering Thread Pools" in
Eclipse GlassFish Administration Guide. If using the Administration Console Thread Pool settings
are available on the Configurations>configuration-name>Thread Pools>thread-pool-name page.

The following thread pool settings can have significant effects on Eclipse GlassFish performance:

• Max Thread Pool Size

• Min Thread Pool Size

54

https://glassfish.org/docs/latest/administration-guide.pdf#administering-http-network-listeners-1
https://glassfish.org/docs/latest/administration-guide.pdf#administering-thread-pools

Max Thread Pool Size

The Max Thread Pool Size parameter specifies the maximum number of simultaneous requests the
server can handle. The default value is 5. When the server has reached the limit or request threads,
it defers processing new requests until the number of active requests drops below the maximum
amount. Increasing this value will reduce HTTP response latency times.

In practice, clients frequently connect to the server and then do not complete their requests. In
these cases, the server waits a length of time specified by the Timeout parameter.

Also, some sites do heavyweight transactions that take minutes to complete. Both of these factors
add to the maximum simultaneous requests that are required. If your site is processing many
requests that take many seconds, you might need to increase the number of maximum
simultaneous requests.

Adjust the thread count value based on your load and the length of time for an average request. In
general, increase this number if you have idle CPU time and requests that are pending; decrease it
if the CPU becomes overloaded. If you have many HTTP 1.0 clients (or HTTP 1.1 clients that
disconnect frequently), adjust the timeout value to reduce the time a connection is kept open.

Suitable Request Max Thread Pool Size values range from 100 to 500, depending on the load. If your
system has extra CPU cycles, keep incrementally increasing thread count and monitor performance
after each incremental increase. When performance saturates (stops improving), then stop
increasing thread count.

Min Thread Pool Size

The Min Thread Pool Size property specifies the minimum number of threads the server initiates
upon startup. The default value is 2. Min Thread Pool Size represents a hard limit for the maximum
number of active threads that can run simultaneously, which can become a bottleneck for
performance.

Specifying the same value for minimum and maximum threads allows Eclipse GlassFish to use a
slightly more optimized thread pool. This configuration should be considered unless the load on the
server varies quite significantly.

ORB Settings
The Eclipse GlassFish includes a high performance and scalable CORBA Object Request Broker
(ORB). The ORB is the foundation of the EJB Container on the server.

For complete instructions on configuring ORB settings, refer to "Administering the Object Request
Broker (ORB)" in Eclipse GlassFish Administration Guide. Also refer to "RMI-IIOP Load Balancing
and Failover" in Eclipse GlassFish High Availability Administration Guide. You can also configure
most ORB settings through the Eclipse GlassFish Administration Console by navigating to the
Configurations>configuration-name> ORB node and then following the instructions in the
Administration Console online help.

The following topics are addressed here:

55

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-object-request-broker-orb
https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-object-request-broker-orb
https://glassfish.org/docs/latest/ha-administration-guide.pdf#rmi-iiop-load-balancing-and-failover
https://glassfish.org/docs/latest/ha-administration-guide.pdf#rmi-iiop-load-balancing-and-failover

• Overview

• How a Client Connects to the ORB

• Monitoring the ORB

• Tuning the ORB

Overview

The ORB is primarily used by EJB components via:

• RMI/IIOP path from an application client (or rich client) using the application client container.

• RMI/IIOP path from another Eclipse GlassFish instance ORB.

• RMI/IIOP path from another vendor’s ORB.

• In-process path from the Web Container or MDB (message driven beans) container.

When a server instance makes a connection to another server instance ORB, the first instance acts
as a client ORB. SSL over IIOP uses a fast optimized transport with high-performance native
implementations of cryptography algorithms.

It is important to remember that EJB local interfaces do not use the ORB. Using a local interface
passes all arguments by reference and does not require copying any objects.

How a Client Connects to the ORB

A rich client Java program performs a new initialContext() call which creates a client side ORB
instance. This in turn creates a socket connection to the Eclipse GlassFish IIOP port. The reader
thread is started on the server ORB to service IIOP requests from this client. Using the
initialContext, the client code does a lookup of an EJB deployed on the server. An IOR which is a
remote reference to the deployed EJB on the server is returned to the client. Using this object
reference, the client code invokes remote methods on the EJB.

InitialContext lookup for the bean and the method invocations translate the marshalling
application request data in Java into IIOP message(s) that are sent on the socket connection that
was created earlier on to the server ORB. The server then creates a response and sends it back on
the same connection. This data in the response is then un-marshalled by the client ORB and given
back to the client code for processing. The Client ORB shuts down and closes the connection when
the rich client application exits.

Monitoring the ORB

ORB statistics are disabled by default. To gather ORB statistics, enable monitoring with the
following asadmin command:

set serverInstance.iiop-service.orb.system.monitoringEnabled=true
reconfig serverInstance

If using the Administration Console, you can enable ORB monitoring on the

56

Configurations>configuration-name>Monitoring page. To view ORB monitoring statistics through
the Administration Console, navigate to the server (Admin Server) page and click the Monitor tab.
Refer to the Administration Console online help for complete instructions.

The following statistics are of particular interest when tuning the ORB:

• Connection Statistics

• Thread Pools

Connection Statistics

The following statistics are gathered on ORB connections:

• total-inbound-connections: Total inbound connections to ORB.

• total-outbound-connections: Total outbound connections from ORB.

Use the following command to get ORB connection statistics:

asadmin get --monitor
 serverInstance.iiop-service.orb.system.orb-connection.*

Thread Pools

The following statistics are gathered on ORB thread pools:

• thread-pool-size: Number of threads in ORB thread pool.

• waiting-thread-count: Number of thread pool threads waiting for work to arrive.

Use the following command to display ORB thread pool statistics:

asadmin get --monitor
 serverInstance.iiop-service.orb.system.orb-thread-pool.*

Tuning the ORB

Tune ORB performance by setting ORB parameters and ORB thread pool parameters. You can often
decrease response time by leveraging load-balancing, multiple shared connections, thread pool and
message fragment size. You can improve scalability by load balancing between multiple ORB
servers from the client, and tuning the number of connection between the client and the server.

The following topics are addressed here:

• Tunable ORB Parameters

• ORB Thread Pool Parameters

• Client ORB Properties

• Thread Pool Sizing

57

• Examining IIOP Messages

Tunable ORB Parameters

You can tune ORB parameters using the instructions in "Administering the Object Request Broker
(ORB)" in Eclipse GlassFish Administration Guide. If using the Administration Console, navigate to
the Configurations>configuration-name>ORB node and refer to the online help.

The following table summarizes the tunable ORB parameters.

Table 3-2 Tunable ORB Parameters

Path ORB Modules Server Settings

RMI/ IIOP from application
client to application server

communication
infrastructure, thread
pool

steady-thread-pool-size, max-thread-
pool-size, idle-thread-timeout-in-
seconds

RMI/ IIOP from ORB to Eclipse
GlassFish

communication
infrastructure, thread
pool

steady-thread-pool-size, max-thread-
pool-size, idle-thread-timeout-in-
seconds

RMI/ IIOP from a vendor ORB parts of communication
infrastructure, thread
pool

steady-thread-pool-size, max-thread-
pool-size, idle-thread-timeout-in-
seconds

In-process thread pool steady-thread-pool-size, max-thread-
pool-size, idle-thread-timeout-in-
seconds

ORB Thread Pool Parameters

The ORB thread pool contains a task queue and a pool of threads. Tasks or jobs are inserted into the
task queue and free threads pick tasks from this queue for execution. Do not set a thread pool size
such that the task queue is always empty. It is normal for a large application’s Max Pool Size to be
ten times the size of the current task queue.

The Eclipse GlassFish uses the ORB thread pool to:

• Execute every ORB request

• Trim EJB pools and caches

• Execute MDB requests

Thus, even when one is not using ORB for remote-calls (via RMI/ IIOP), set the size of the threadpool
to facilitate cleaning up the EJB pools and caches.

You can set ORB thread pool attributes using the instructions in "Administering Thread Pools" in
Eclipse GlassFish Administration Guide. If using the Administration Console, navigate to
Configurations>configuration-name> Thread Pools>thread-pool-name, where thread-pool-name is
the thread pool ID selected for the ORB. Thread pools have the following attributes that affect
performance.

58

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-object-request-broker-orb
https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-object-request-broker-orb
https://glassfish.org/docs/latest/administration-guide.pdf#administering-thread-pools

• Minimum Pool Size: The minimum number of threads in the ORB thread pool. Set to the average
number of threads needed at a steady (RMI/IIOP) load.

• Maximum Pool Size: The maximum number of threads in the ORB thread pool.

• Idle Timeout: Number of seconds to wait before removing an idle thread from pool. Allows
shrinking of the thread pool.

• Number of Work Queues

In particular, the maximum pool size is important to performance. For more information, see
Thread Pool Sizing.

Client ORB Properties

Specify the following properties as command-line arguments when launching the client program.
You do this by using the following syntax when starting the Java VM:

-Dproperty=value

The following topics are addressed here:

• Controlling Connections Between Client and Server ORB

• Limiting the Maximum Number of Client Connections

• Load Balancing

Controlling Connections Between Client and Server ORB

When using the default JDK ORB on the client, a connection is established from the client ORB to
the application server ORB every time an initial context is created. To pool or share these
connections when they are opened from the same process by adding to the configuration on the
client ORB.

-Djava.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory

Limiting the Maximum Number of Client Connections

You can specify the total maximum number of client connections on all ORB listener ports (TCP, SSL
and SSL with mutual authentication). When open client connections exceed the maximum value
you specify, the ORB rejects any new incoming client connections.

Set this value to support the expected number of simultaneous client connections, but not to exceed
the VM or system file descriptor limits. If the value is set too high, the ORB will continue accepting
new client connections, resulting in a "too many open files" error if the VM runs out of file
descriptors.

To specify the maximum number of client connections, set the configs.config.config-name.iiop-
service.orb.max-connections attribute to the number that you require:

59

asadmin> set configs.config.config-name.iiop-service.orb.max-connections=max-
connections

config-name

The name of the configuration in which the IIOP service is defined. For example, server-config is
the name for the configuration of the domain administration server (DAS).

max-connections

An integer that specifies the maximum number of client connections.

For updates to this value to take effect, restart Eclipse GlassFish.

The following example shows how to set the maximum number of client connections for the ORB in
the DAS to 512:

asadmin> set configs.config.server-config.iiop-service.orb.max-connections=512
configs.config.server-config.iiop-service.orb.max-connections=512
Command set executed successfully.

Load Balancing

For information on how to configure HTTP load balancing, see "Configuring HTTP Load Balancing"
in Eclipse GlassFish High Availability Administration Guide.

For information on how to configure RMI/IIOP for multiple application server instances in a cluster,
"RMI-IIOP Load Balancing and Failover" in Eclipse GlassFish High Availability Administration
Guide.

When tuning the client ORB for load-balancing and connections, consider the number of
connections opened on the server ORB. Start from a low number of connections and then increase
it to observe any performance benefits. A connection to the server translates to an ORB thread
reading actively from the connection (these threads are not pooled, but exist currently for the
lifetime of the connection).

Thread Pool Sizing

After examining the number of inbound and outbound connections as explained above, tune the
size of the thread pool appropriately. This can affect performance and response times significantly.

The size computation takes into account the number of client requests to be processed
concurrently, the resource (number of CPUs and amount of memory) available on the machine and
the response times required for processing the client requests.

Setting the size to a very small value can affect the ability of the server to process requests
concurrently, thus affecting the response times since requests will sit longer in the task queue. On
the other hand, having a large number of worker threads to service requests can also be
detrimental because they consume system resources, which increases concurrency. This can mean
that threads take longer to acquire shared structures in the EJB container, thus affecting response

60

https://glassfish.org/docs/latest/ha-administration-guide.pdf#configuring-http-load-balancing
https://glassfish.org/docs/latest/ha-administration-guide.pdf#rmi-iiop-load-balancing-and-failover

times.

The worker thread pool is also used for the EJB container’s housekeeping activity such as trimming
the pools and caches. This activity needs to be accounted for also when determining the size.
Having too many ORB worker threads is detrimental for performance since the server has to
maintain all these threads. The idle threads are destroyed after the idle thread timeout period.

Examining IIOP Messages

It is sometimes useful to examine the IIOP messages passed by the Eclipse GlassFish. To make the
server save IIOP messages to the server.log file, set the JVM option -Dcom.sun.CORBA.ORBDebug=giop.
Use the same option on the client ORB.

The following is an example of IIOP messages saved to the server log. Note: in the actual output,
each line is preceded by the timestamp, such as [29/Aug/2002:22:41:43] INFO (27179): CORE3282:
stdout.

 ++++++++++++++++++++++++++++++
 Message(Thread[ORB Client-side Reader, conn to 192.18.80.118:1050,5,main]):
createFromStream: type is 4 <
 MessageBase(Thread[ORB Client-side Reader, conn to 192.18.80.118:1050,5,main]):
Message GIOP version: 1.2
 MessageBase(Thread[ORB Client-side Reader, conn to 192.18.80.118:1050,5,main]):
ORB Max GIOP Version: 1.2
 Message(Thread[ORB Client-side Reader, conn to 192.18.80.118:1050,5,main]):
createFromStream: message construction complete.
 com.sun.corba.ee.internal.iiop.MessageMediator
(Thread[ORB Client-side Reader, conn to 192.18.80.118:1050,5,main]): Received message:
 ----- Input Buffer -----
 Current index: 0
 Total length : 340
 47 49 4f 50 01 02 00 04 0 0 00 01 48 00 00 00 05 GIOP.......H....


The flag -Dcom.sun.CORBA.ORBdebug=giop generates many debug messages in the
logs. This is used only when you suspect message fragmentation.

In this sample output above, the createFromStream type is shown as 4. This implies that the message
is a fragment of a bigger message. To avoid fragmented messages, increase the fragment size.
Larger fragments mean that messages are sent as one unit and not as fragments, saving the
overhead of multiple messages and corresponding processing at the receiving end to piece the
messages together.

If most messages being sent in the application are fragmented, increasing the fragment size is likely
to improve efficiency. On the other hand, if only a few messages are fragmented, it might be more
efficient to have a lower fragment size that requires smaller buffers for writing messages.

61

Resource Settings
Tuning JDBC and connector resources can significantly improve Eclipse GlassFish performance.

The following topics are addressed here:

• JDBC Connection Pool Settings

• Connector Connection Pool Settings

JDBC Connection Pool Settings

For optimum performance of database-intensive applications, tune the JDBC Connection Pools
managed by the Eclipse GlassFish. These connection pools maintain numerous live database
connections that can be reused to reduce the overhead of opening and closing database
connections. This section describes how to tune JDBC Connection Pools to improve performance.

J2EE applications use JDBC Resources to obtain connections that are maintained by the JDBC
Connection Pool. More than one JDBC Resource is allowed to refer to the same JDBC Connection
Pool. In such a case, the physical connection pool is shared by all the resources.

Refer to "Administering Database Connectivity" in Eclipse GlassFish Administration Guide for more
information about managing JDBC connection pools.

The following topics are addressed here:

• Monitoring JDBC Connection Pools

• Tuning JDBC Connection Pools

Monitoring JDBC Connection Pools

Statistics-gathering is disabled by default for JDBC Connection Pools. Refer to for instructions on
enabling JDBC monitoring in "Administering the Monitoring Service" in Eclipse GlassFish
Administration Guide. If using the Administration Console, JDBC monitoring can be enabled on the
Configurations>configuration-name>Monitoring page.

The following attributes are monitored:

• numConnFailedValidation (count) Number of connections that failed validation.

• numConnUsed (range) Number of connections that have been used.

• numConnFree (count) Number of free connections in the pool.

• numConnTimedOut (bounded range) Number of connections in the pool that have timed out.

To get JDBC monitoring statistics, use the following commands:

asadmin get --monitor=true
serverInstance.resources.jdbc-connection-pool.*asadmin get
--monitor=true serverInstance.resources.jdbc-connection-pool. poolName.* *

62

https://glassfish.org/docs/latest/administration-guide.pdf#administering-database-connectivity
https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service

To view JDBC monitoring statistics through the Administration Console, navigate to the server
(Admin Server) page and click the Monitor tab. Refer to the Administration Console online help for
complete instructions.

Tuning JDBC Connection Pools

Refer to "Administering Database Connectivity" in Eclipse GlassFish Administration Guide for
instructions on configuring JDBC connection pools. If using the Eclipse GlassFish Administration
Console by navigating to the Resources>JDBC>JDBC Connection Pools>jdbc-pool-name page and
then clicking the desired tab.

The following JDBC properites affect Eclipse GlassFish performance:

• Pool Size Settings

• Timeout Settings

• Isolation Level Settings

• Connection Validation Settings

Pool Size Settings

Pool Size settings can be configured in the Pool Settings section on the General tab in the Edit JDBC
Connection Pool page.

The following settings control the size of the connection pool:

• Initial and Mimimum Pool Size: Size of the pool when created, and its minimum allowable size.

• Maximum Pool Size: Upper limit of size of the pool.

• Pool Resize Quantity: Number of connections to be removed when the idle timeout expires.
Connections that have idled for longer than the timeout are candidates for removal. When the
pool size reaches the initial and minimum pool size, removal of connections stops.

The following table summarizes advantages and disadvantages to consider when sizing connection
pools.

Table 3-3 Connection Pool Sizing

Connection Pool Advantages Disadvantages

Small Connection
pool

Faster access on the connection
table.

May not have enough connections to
satisfy requests.

Requests may spend more time in the
queue.

Large Connection
pool

More connections to fulfill requests.

Requests will spend less (or no) time
in the queue

Slower access on the connection table.

Timeout Settings

63

https://glassfish.org/docs/latest/administration-guide.pdf#administering-database-connectivity

The following JDBC timeout settings can be configured on the in the Pool Settings section on the
General tab in the Edit JDBC Connection Pool page.

• Max Wait Time: Amount of time the caller (the code requesting a connection) will wait before
getting a connection timeout. The default is 60 seconds. A value of zero forces caller to wait
indefinitely.

To improve performance set Max Wait Time to zero (0). This essentially blocks the caller thread
until a connection becomes available. Also, this allows the server to alleviate the task of tracking
the elapsed wait time for each request and increases performance.

• Idle Timeout: Maximum time in seconds that a connection can remain idle in the pool. After this
time, the pool can close this connection. This property does not control connection timeouts on
the database server.

Keep this timeout shorter than the database server timeout (if such timeouts are configured on
the database), to prevent accumulation of unusable connection in Eclipse GlassFish.

For best performance, set Idle Timeout to zero (0) seconds, so that idle connections will not be
removed. This ensures that there is normally no penalty in creating new connections and
disables the idle monitor thread. However, there is a risk that the database server will reset a
connection that is unused for too long.

Isolation Level Settings

The following JDBC Isolation Level settings can be configured in the Transaction section on the
General tab in the Edit JDBC Connection Pool page.

• Transaction Isolation: Specifies the transaction isolation level of the pooled database
connections. If this parameter is unspecified, the pool uses the default isolation level provided
by the JDBC Driver.

• Isolation Level Guaranteed: Guarantees that every connection obtained from the pool has the
isolation specified for the Transaction Isolation level. Applicable only when the Transaction
Isolation level is specified. The default value is Guaranteed.

This setting can have some performance impact on some JDBC drivers. Set to false when certain
that the application does not change the isolation level before returning the connection.

Avoid specifying the Transaction Isolation level. If that is not possible, consider disabling the
Isolation Level Guaranteed option and then make sure applications do not programmatically alter
the connections; isolation level.

If you must specify a Transaction Isolation level, specify the best-performing level possible. The
isolation levels listed from best performance to worst are:

1. READ_UNCOMMITTED

2. READ_COMMITTED

3. REPEATABLE_READ

4. SERIALIZABLE

64

Choose the isolation level that provides the best performance, yet still meets the concurrency and
consistency needs of the application.

Connection Validation Settings

JDBC Connection Validation settings can be configured in the Connection Validation section on the
Advanced tab in the Edit JDBC Connection Pool page.

• Connection Validation Required: If enabled, the pool validates connections (checks to find out if
they are usable) before providing them to an application.

If possible, keep this option disabled. Requiring connection validation forces the server to apply
the validation algorithm every time the pool returns a connection, which adds overhead to the
latency of getConnection(). If the database connectivity is reliable, you can omit validation.

• Validation Method: Specifies the type of connection validation to perform. Must be one of the
following:

◦ auto-commit: Attempt to perform an auto-commit on the connection.

◦ metadata: Attempt to get metadata from the connection.

◦ table: Performing the query on a specified table. If this option is selected, Table Name must
also be set. Choosing this option may be necessary if the JDBC driver caches calls to
setAutoCommit() and getMetaData().

◦ custom-validation: Define a custom validation method.

• Table Name: Name of the table to query when the Validation Method is set to table.

• Close All Connections On Any Failure: Specify whether all connections in the pool should be
closed if a single validation check fails. This option is disabled by default. One attempt will be
made to re-establish failed connections.

Connector Connection Pool Settings

From a performance standpoint, connector connection pools are similar to JDBC connection pools.
Follow all the recommendations in the previous section, Tuning JDBC Connection Pools.

Transaction Support

You may be able to improve performance by overriding the default transaction support specified
for each connector connection pool.

For example, consider a case where an Enterprise Information System (EIS) has a connection
factory that supports local transactions with better performance than global transactions. If a
resource from this EIS needs to be mixed with a resource coming from another resource manager,
the default behavior forces the use of XA transactions, leading to lower performance. However, by
changing the EIS’s connector connection pool to use LocalTransaction transaction support and
leveraging the Last Agent Optimization feature previously described, you could leverage the better-
performing EIS LocalTransaction implementation. For more information on LAO, see Configure
JDBC Resources as One-Phase Commit Resources.

65

You can specify transaction support when you create or edit a connector connection pool.

Also set transaction support using asadmin. For example, the following asadmin command could be
used to create a connector connection pool TESTPOOL with transaction-support set to LOCAL.

asadmin> create-connector-connection-pool --raname jdbcra
--connectiondefinition javax.sql.DataSource
-transactionsupport LocalTransaction
TESTPOOL

Load Balancer Settings
Eclipse GlassFish is compatible with the Apache HTTP server mod_jk module for load balancing.

Eclipse GlassFish load balancing configurations can vary widely depending on the needs of your
enterprise and are beyond the scope of this Performance Tuning Guide. For complete information
about configuring load balancing in Eclipse GlassFish, refer to the following documentation:

• "Configuring HTTP Load Balancing" in Eclipse GlassFish High Availability Administration Guide

• "RMI-IIOP Load Balancing and Failover" in Eclipse GlassFish High Availability Administration
Guide

66

https://glassfish.org/docs/latest/ha-administration-guide.pdf#configuring-http-load-balancing
https://glassfish.org/docs/latest/ha-administration-guide.pdf#rmi-iiop-load-balancing-and-failover

4 Tuning the Java Runtime System
The following topics are addressed here:

• Java Virtual Machine Settings

• Start Options

• Tuning High Availability Persistence

• Managing Memory and Garbage Collection

• Further Information

Java Virtual Machine Settings
Each JDK have own set of JVM options useful for tuning. The easiest way is to run the following
command and then consult the JDK’s documentation to understand all consequences.

JAVA_HOME/bin/java -XX:+UnlockDiagnosticVMOptions -XX:+PrintFlagsFinal -version

In some situations, performance can be improved by using large page sizes. For Ultrasparc CMT
systems, include the -XX:+UseLargePages and -XX:LargePageSizeInBytes=256m arguments with your
JVM tuning.

Tuning High Availability Persistence
If session s1 and s2 need to be replicated to an instance (backup server), the replication module
batches the replication messages to be sent to that instance instead of sending separate replication
messages. This improves performance. In configurations in which a lot of session replication is
performed, you may find better performance by tuning the
org.shoal.cache.transmitter.max.batch.size system property. This property determines the number
of replication messages that constitute one batch.

The default value for this property is 20. You can try setting it as high as 90, depending on system
loads. Like all system properties, this property is set with the -D flag in your Java arguments.

Managing Memory and Garbage Collection
The efficiency of any application depends on how well memory and garbage collection are
managed. The following sections provide information on optimizing memory and allocation
functions:

• Tuning the Garbage Collector

• Tracing Garbage Collection

• Other Garbage Collector Settings

• Tuning the Java Heap

67

• Rebasing DLLs on Windows

Tuning the Garbage Collector

Garbage collection (GC) reclaims the heap space previously allocated to objects no longer needed.
The process of locating and removing the dead objects can stall any application and consume as
much as 25 percent throughput.

Almost all Java Runtime Environments come with a generational object memory system and
sophisticated GC algorithms. A generational memory system divides the heap into a few carefully
sized partitions called generations. The efficiency of a generational memory system is based on the
observation that most of the objects are short lived. As these objects accumulate, a low memory
condition occurs forcing GC to take place.

The heap space is divided into the old and the new generation. The new generation includes the
new object space (eden), and two survivor spaces. The JVM allocates new objects in the eden space,
and moves longer lived objects from the new generation to the old generation.

The young generation uses a fast copying garbage collector which employs two semi-spaces
(survivor spaces) in the eden, copying surviving objects from one survivor space to the second.
Objects that survive multiple young space collections are tenured, meaning they are copied to the
tenured generation. The tenured generation is larger and fills up less quickly. So, it is garbage
collected less frequently; and each collection takes longer than a young space only collection.
Collecting the tenured space is also referred to as doing a full generation collection.

The frequent young space collections are quick (a few milliseconds), while the full generation
collection takes a longer (tens of milliseconds to a few seconds, depending upon the heap size).

Other GC algorithms, such as the Concurrent Mark Sweep (CMS) algorithm, are incremental. They
divide the full GC into several incremental pieces. This provides a high probability of small pauses.
This process comes with an overhead and is not required for enterprise web applications.

When the new generation fills up, it triggers a minor collection in which the surviving objects are
moved to the old generation. When the old generation fills up, it triggers a major collection which
involves the entire object heap.

HotSpot JDK uses thread local object allocation pools for lock-free, fast, and scalable object
allocation. So, custom object pooling is not often required. Consider pooling only if object
construction cost is high and significantly affects execution profiles.

Choosing the Garbage Collection Algorithm

The default collector for Java server class machines will optimize for throughput but be tolerant of
somewhat long pause times. If you would prefer to have minimal pause times at the expense of
some throughput and increased CPU usage, consider using the CMS collector.

To use the CMS collector

Follow this procedure.

68

1. Make sure that the system is not using 100 percent of its CPU.

2. Configure the CMS collector in the server instance.

To do this, add the following JVM options:

◦ -XX:+UseConcMarkSweepGC

◦ -XX:SoftRefLRUPolicyMSPerMB=1

Additional Information

Use the jstat utility to monitor Java Virtual Machine statistics. (See Further Information.)

For detailed information on tuning the garbage collector, see Java Garbage Collection Tuning (`
https://docs.oracle.com/en/java/javase/17/gctuning/introduction-garbage-collection-tuning.html`).

Tracing Garbage Collection

The two primary measures of garbage collection performance are throughput and pauses.
Throughput is the percentage of the total time spent on other activities apart from GC. Pauses are
times when an application appears unresponsive due to GC.

Two other considerations are footprint and promptness. Footprint is the working size of the JVM
process, measured in pages and cache lines. Promptness is the time between when an object
becomes dead, and when the memory becomes available. This is an important consideration for
distributed systems.

A particular generation size makes a trade-off between these four metrics. For example, a large
young generation likely maximizes throughput, but at the cost of footprint and promptness.
Conversely, using a small young generation and incremental GC will minimize pauses, and thus
increase promptness, but decrease throughput.

JVM diagnostic output will display information on pauses due to garbage collection. If you start the
server in verbose mode (use the command asadmin start-domain --verbose domain), then the
command line argument -verbose:gc prints information for every collection. Here is an example of
output of the information generated with this JVM flag:

[GC 50650K->21808K(76868K), 0.0478645 secs]
 [GC 51197K->22305K(76868K), 0.0478645 secs]
 [GC 52293K->23867K(76868K), 0.0478645 secs]
 [Full GC 52970K->1690K(76868K), 0.54789968 secs]

On each line, the first number is the combined size of live objects before GC, the second number is
the size of live objects after GC, the number in parenthesis is the total available space, which is the
total heap minus one of the survivor spaces. The final figure is the amount of time that the GC took.
This example shows three minor collections and one major collection. In the first GC, 50650 KB of
objects existed before collection and 21808 KB of objects after collection. This means that 28842 KB
of objects were dead and collected. The total heap size is 76868 KB. The collection process required
0.0478645 seconds.

69

https://docs.oracle.com/en/java/javase/17/gctuning/introduction-garbage-collection-tuning.html
https://docs.oracle.com/en/java/javase/17/gctuning/introduction-garbage-collection-tuning.html`

Other useful monitoring options include:

• -XX:+PrintGCDetails for more detailed logging information

• -Xloggc:file to save the information in a log file

Other Garbage Collector Settings

To specify the attributes for the Java virtual machine, use the Administration Console and set the
property under config-name > JVM settings (JVM options).

Setting the Maximum Permanent Generation

For applications that do not dynamically generate and load classes, the size of the permanent
generation does not affect GC performance. For applications that dynamically generate and load
classes (for example, JSP applications), the size of the permanent generation does affect GC
performance, since filling the permanent generation can trigger a Full GC. Tune the maximum
permanent generation with the -XX:MaxPermSize option.

Disabling Explicit Garbage Collection

Although applications can explicitly invoke GC with the System.gc() method, doing so is a bad idea
since this forces major collections, and inhibits scalability on large systems. It is best to disable
explicit GC by using the flag -XX:+DisableExplicitGC.



On Windows systems, setting the -XX:+DisableExplicitGC option might prevent the
renaming or removal of open application files. As a result, deployment,
redeployment, or other operations that attempt to rename or delete files might fail.

Application files can remain open because the files have been used by class
loaders to find classes or resources, or have been opened explicitly by Eclipse
GlassFish or application code but never explicitly closed. On Windows systems,
open files cannot be renamed or deleted. To overcome this limitation, Eclipse
GlassFish uses the System.gc() method to garbage collect the Java object that
corresponds to an open file. When the Java object that corresponds to an open file
is garbage collected, the object’s finalize method closes the open channel to the
file. Eclipse GlassFish can then delete or rename the file.

Setting the Frequency of Full Garbage Collection

Eclipse GlassFish uses RMI in the Administration module for monitoring. Garbage cannot be
collected in RMI-based distributed applications without occasional local collections, so RMI forces a
periodic full collection. Control the frequency of these collections with the property
-sun.rmi.dgc.client.gcInterval. For example, - java -Dsun.rmi.dgc.client.gcInterval=3600000
specifies explicit collection once per hour instead of the default rate of once per minute.

Tuning the Java Heap

This section discusses topics related to tuning the Java Heap for performance.

70

• Guidelines for Java Heap Sizing

• Heap Tuning Parameters

Guidelines for Java Heap Sizing

Maximum heap size depends on maximum address space per process. The following table shows
the maximum per-process address values for various platforms:

Table 4-1 Maximum Address Space Per Process

Operating System Maximum Address Space Per
Process

Oracle/Redhat/Ubuntu Linux 32-bit 4 GB

Oracle/Redhat/Ubuntu Linux 64-bit Terabytes

Windows XP/2008/7 2 GB

Solaris x86 (32-bit) 4 GB

Solaris 32-bit 4 GB

Solaris 64-bit Terabytes

Maximum heap space is always smaller than maximum address space per process, because the
process also needs space for stack, libraries, and so on. To determine the maximum heap space that
can be allocated, use a profiling tool to examine the way memory is used. Gauge the maximum
stack space the process uses and the amount of memory taken up libraries and other memory
structures. The difference between the maximum address space and the total of those values is the
amount of memory that can be allocated to the heap.

You can improve performance by increasing your heap size or using a different garbage collector.
In general, for long-running server applications, use the Java SE throughput collector on machines
with multiple processors (-XX:+AggressiveHeap) and as large a heap as you can fit in the free
memory of your machine.

Heap Tuning Parameters

You can control the heap size with the following JVM parameters:

• -Xmsvalue

• -Xmxvalue

• -XX:MinHeapFreeRatio=minimum

• -XX:MaxHeapFreeRatio=maximum

• -XX:NewRatio=ratio

• -XX:NewSize=size

• -XX:MaxNewSize=size

• -XX:+AggressiveHeap

71

The -Xms and -Xmx parameters define the minimum and maximum heap sizes, respectively. Since GC
occurs when the generations fill up, throughput is inversely proportional to the amount of the
memory available. By default, the JVM grows or shrinks the heap at each GC to try to keep the
proportion of free space to the living objects at each collection within a specific range. This range is
set as a percentage by the parameters -XX:MinHeapFreeRatio=`minimum and `-
XX:MaxHeapFreeRatio=`maximum; and the total size bounded by `-Xms and -Xmx.

Set the values of -Xms and -Xmx equal to each other for a fixed heap size. When the heap grows or
shrinks, the JVM must recalculate the old and new generation sizes to maintain a predefined
NewRatio.

The NewSize and MaxNewSize parameters control the new generation’s minimum and maximum size.
Regulate the new generation size by setting these parameters equal. The bigger the younger
generation, the less often minor collections occur. The size of the young generation relative to the
old generation is controlled by NewRatio. For example, setting -XX:NewRatio=3 means that the ratio
between the old and young generation is 1:3, the combined size of eden and the survivor spaces
will be fourth of the heap.

By default, the Eclipse GlassFish is invoked with the Java HotSpot Server JVM. The default NewRatio
for the Server JVM is 2: the old generation occupies 2/3 of the heap while the new generation
occupies 1/3. The larger new generation can accommodate many more short-lived objects,
decreasing the need for slow major collections. The old generation is still sufficiently large enough
to hold many long-lived objects.

To size the Java heap:

• Decide the total amount of memory you can afford for the JVM. Accordingly, graph your own
performance metric against young generation sizes to find the best setting.

• Make plenty of memory available to the young generation. The default is calculated from
NewRatio and the -Xmx setting.

• Larger eden or younger generation spaces increase the spacing between full GCs. But young
space collections could take a proportionally longer time. In general, keep the eden size
between one fourth and one third the maximum heap size. The old generation must be larger
than the new generation.

For up-to-date defaults, see Java HotSpot VM Options (https://www.oracle.com/java/technologies/
javase/vmoptions-jsp.html).

Example 4-1 Heap Configuration on Solaris

This is an exmple heap configuration used by Eclipse GlassFish on Solaris for large applications:

-Xms3584m
-Xmx3584m
-verbose:gc
-Dsun.rmi.dgc.client.gcInterval=3600000

Survivor Ratio Sizing

72

https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html

The SurvivorRatio parameter controls the size of the two survivor spaces. For example,
-XX:SurvivorRatio=6 sets the ratio between each survivor space and eden to be 1:6, each survivor
space will be one eighth of the young generation. The default for Solaris is 32. If survivor spaces are
too small, copying collection overflows directly into the old generation. If survivor spaces are too
large, they will be empty. At each GC, the JVM determines the number of times an object can be
copied before it is tenured, called the tenure threshold. This threshold is chosen to keep the
survivor space half full.

Use the option -XX:+PrintTenuringDistribution to show the threshold and ages of the objects in the
new generation. It is useful for observing the lifetime distribution of an application.

Rebasing DLLs on Windows

When the JVM initializes, it tries to allocate its heap using the -Xms setting. The base addresses of
Eclipse GlassFish DLLs can restrict the amount of contiguous address space available, causing JVM
initialization to fail. The amount of contiguous address space available for Java memory varies
depending on the base addresses assigned to the DLLs. You can increase the amount of contiguous
address space available by rebasing the Eclipse GlassFish DLLs.

To prevent load address collisions, set preferred base addresses with the rebase utilty that comes
with Visual Studio and the Platform SDK. Use the rebase utility to reassign the base addresses of the
Eclipse GlassFish DLLs to prevent relocations at load time and increase the available process
memory for the Java heap.

There are a few Eclipse GlassFish DLLs that have non-default base addresses that can cause
collisions. For example:

• The nspr libraries have a preferred address of 0x30000000.

• The icu libraries have the address of 0x4A?00000.

Move these libraries near the system DLLs (msvcrt.dll is at 0x78000000) to increase the available
maximum contiguous address space substantially. Since rebasing can be done on any DLL, rebase
to the DLLs after installing the Eclipse GlassFish.

To rebase the Eclipse GlassFish’s DLLs

Before You Begin

To perform rebasing, you need:

• Windows 2000

• Visual Studio and the Microsoft Framework SDK rebase utility

1. Make as-install\ bin the default directory.

cd as-install\bin

2. Enter this command:

73

rebase -b 0x6000000 *.dll

3. Use the dependencywalker utility to make sure the DLLs were rebased correctly.

For more information, see the Dependency Walker website
(http://www.dependencywalker.com).

4. Increase the size for the Java heap, and set the JVM Option accordingly on the JVM Settings
page in the Admin Console.

5. Restart the Eclipse GlassFish.

Example 4-2 Heap Configuration on Windows

This is an example heap configuration used by Eclipse GlassFish for heavy server-centric
applications, on Windows, as set in the domain.xml file.

<jvm-options> -Xms1400m </jvm-options>
<jvm-options> -Xmx1400m </jvm-options>

See Also

For more information on rebasing, see MSDN documentation for rebase utility
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/rebase.asp).

Further Information
For more information on the jstat command, see:

• The jstat Command (https://docs.oracle.com/en/java/javase/17/docs/specs/man/jstat.html)

74

http://www.dependencywalker.com
http://www.dependencywalker.com
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/rebase.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/rebase.asp
https://docs.oracle.com/en/java/javase/17/docs/specs/man/jstat.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/jstat.html

5 Tuning the Operating System and Platform
This chapter discusses tuning the operating system (OS) for optimum performance. It discusses the
following topics:

• Server Scaling

• Solaris 10 Platform-Specific Tuning Information

• Tuning for the Solaris OS

• Tuning for Solaris on x86

• Tuning for Linux platforms

• Tuning UltraSPARC CMT-Based Systems

Server Scaling
This section provides recommendations for optimal performance scaling server for the following
server subsystems:

• Processors

• Memory

• Disk Space

• Networking

• UDP Buffer Sizes

Processors

The Eclipse GlassFish automatically takes advantage of multiple CPUs. In general, the effectiveness
of multiple CPUs varies with the operating system and the workload, but more processors will
generally improve dynamic content performance.

Static content involves mostly input/output (I/O) rather than CPU activity. If the server is tuned
properly, increasing primary memory will increase its content caching and thus increase the
relative amount of time it spends in I/O versus CPU activity. Studies have shown that doubling the
number of CPUs increases servlet performance by 50 to 80 percent.

Memory

See the section Hardware and Software Requirements in the Eclipse GlassFish Release Notes for
specific memory recommendations for each supported operating system.

Disk Space

It is best to have enough disk space for the OS, document tree, and log files. In most cases 2GB total
is sufficient.

Put the OS, swap/paging file, Eclipse GlassFish logs, and document tree each on separate hard

75

drives. This way, if the log files fill up the log drive, the OS does not suffer. Also, its easy to tell if the
OS paging file is causing drive activity, for example.

OS vendors generally provide specific recommendations for how much swap or paging space to
allocate. Based on Oracle testing, Eclipse GlassFish performs best with swap space equal to RAM,
plus enough to map the document tree.

Networking

To determine the bandwidth the application needs, determine the following values:

• The number of peak concurrent users (N peak) the server needs to handle.

• The average request size on your site, r. The average request can include multiple documents.
When in doubt, use the home page and all its associated files and graphics.

• Decide how long, t, the average user will be willing to wait for a document at peak utilization.

Then, the bandwidth required is:

Npeakr / t

For example, to support a peak of 50 users with an average document size of 24 Kbytes, and
transferring each document in an average of 5 seconds, requires 240 Kbytes (1920 Kbit/s). So the
site needs two T1 lines (each 1544 Kbit/s). This bandwidth also allows some overhead for growth.

The server’s network interface card must support more than the WAN to which it is connected. For
example, if you have up to three T1 lines, you can get by with a 10BaseT interface. Up to a T3 line
(45 Mbit/s), you can use 100BaseT. But if you have more than 50 Mbit/s of WAN bandwidth, consider
configuring multiple 100BaseT interfaces, or look at Gigabit Ethernet technology.

UDP Buffer Sizes

Eclipse GlassFish uses User Datagram Protocol (UDP) for the transmission of multicast messages to
Eclipse GlassFish instances in a cluster. For peak performance from a Eclipse GlassFish cluster that
uses UDP multicast, limit the need to retransmit UDP messages. To limit the need to retransmit UDP
messages, set the size of the UDP buffer to avoid excessive UDP datagram loss.

To Determine an Optimal UDP Buffer Size

The size of UDP buffer that is required to prevent excessive UDP datagram loss depends on many
factors, such as:

• The number of instances in the cluster

• The number of instances on each host

• The number of processors

• The amount of memory

• The speed of the hard disk for virtual memory

If only one instance is running on each host in your cluster, the default UDP buffer size should

76

suffice. If several instances are running on each host, determine whether the UDP buffer is large
enough by testing for the loss of UDP packets.


On Linux systems, the default UDP buffer size might be insufficient even if only
one instance is running on each host. In this situation, set the UDP buffer size as
explained in To Set the UDP Buffer Size on Linux Systems.

1. Ensure that no Eclipse GlassFish clusters are running.

If necessary, stop any running clusters as explained in "To Stop a Cluster" in Eclipse GlassFish
High Availability Administration Guide.

2. Determine the absolute number of lost UDP packets when no clusters are running.

How you determine the number of lost packets depends on the operating system. For example:

◦ On Linux systems, use the netstat -su command and look for the packet receive errors
count in the Udp section.

◦ On AIX systems, use the netstat -s command and look for the fragments dropped (dup or
out of space) count in the ip section.

3. Start all the clusters that are configured for your installation of Eclipse GlassFish.

Start each cluster as explained in "To Start a Cluster" in Eclipse GlassFish High Availability
Administration Guide.

4. Determine the absolute number of lost UDP packets after the clusters are started.

5. If the difference in the number of lost packets is significant, increase the size of the UDP buffer.

To Set the UDP Buffer Size on Linux Systems

On Linux systems, a default UDP buffer size is set for the client, but not for the server. Therefore, on
Linux systems, the UDP buffer size might have to be increased. Setting the UDP buffer size involves
setting the following kernel parameters:

• net.core.rmem_max

• net.core.wmem_max

• net.core.rmem_default

• net.core.wmem_default

Set the kernel parameters in the /etc/sysctl.conf file or at runtime.

If you set the parameters in the /etc/sysctl.conf file, the settings are preserved when the system is
rebooted. If you set the parameters at runtime, the settings are not preserved when the system is
rebooted.

• To set the parameters in the /etc/sysctl.conf file, add or edit the following lines in the file:

net.core.rmem_max=rmem-max

77

https://glassfish.org/docs/latest/ha-administration-guide.pdf#to-stop-a-cluster
https://glassfish.org/docs/latest/ha-administration-guide.pdf#to-start-a-cluster

net.core.wmem_max=wmem-max
net.core.rmem_default=rmem-default
net.core.wmem_default=wmem-default

• To set the parameters at runtime, use the sysctl command.

$ /sbin/sysctl -w net.core.rmem_max=rmem-max \
net.core.wmem_max=wmem-max \
net.core.rmem_default=rmem-default \
net.core.wmem_default=wmem-default

Example 5-1 Setting the UDP Buffer Size in the /etc/sysctl.conf File

This example shows the lines in the /etc/sysctl.conf file for setting the kernel parameters for
controlling the UDP buffer size to 524288.

net.core.rmem_max=524288
net.core.wmem_max=524288
net.core.rmem_default=524288
net.core.wmem_default=524288

Example 5-2 Setting the UDP Buffer Size at Runtime

This example sets the kernel parameters for controlling the UDP buffer size to 524288 at runtime.

$ /sbin/sysctl -w net.core.rmem_max=524288 \
net.core.wmem_max=52428 \
net.core.rmem_default=52428 \
net.core.wmem_default=524288
net.core.rmem_max = 524288
net.core.wmem_max = 52428
net.core.rmem_default = 52428
net.core.wmem_default = 524288

Solaris 10 Platform-Specific Tuning Information
Solaris Dynamic Tracing (DTrace) is a comprehensive dynamic tracing framework for the Solaris
Operating System (OS). You can use the DTrace Toolkit to monitor the system. The DTrace Toolkit is
available through the OpenSolaris project from the DTraceToolkit page
(http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit).

Tuning for the Solaris OS
• Tuning Parameters

• File Descriptor Setting

78

http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit

Tuning Parameters

Tuning Solaris TCP/IP settings benefits programs that open and close many sockets. Since the
Eclipse GlassFish operates with a small fixed set of connections, the performance gain might not be
significant.

The following table shows Solaris tuning parameters that affect performance and scalability
benchmarking. These values are examples of how to tune your system for best performance.

Table 5-1 Tuning Parameters for Solaris

Parameter Scope Default Tuned Comments

rlim_fd_max /etc/system 65536 65536 Limit of process open file
descriptors. Set to account for
expected load (for associated
sockets, files, and pipes if any).

rlim_fd_cur /etc/system 1024 8192

sq_max_size /etc/system 2 0 Controls streams driver queue
size; setting to 0 makes it
infinite so the performance
runs won’t be hit by lack of
buffer space. Set on clients too.
Note that setting sq_max_size to
0 might not be optimal for
production systems with high
network traffic.

tcp_close_wait_interval ndd /dev/tcp 240000 60000 Set on clients too.

tcp_time_wait_interval ndd /dev/tcp 240000 60000 Set on clients too.

tcp_conn_req_max_q ndd /dev/tcp 128 1024

tcp_conn_req_max_q0 ndd /dev/tcp 1024 4096

tcp_ip_abort_interval ndd /dev/tcp 480000 60000

tcp_keepalive_interval ndd /dev/tcp 7200000 900000 For high traffic web sites, lower
this value.

tcp_rexmit_interval_initi
al

ndd /dev/tcp 3000 3000 If retransmission is greater
than 30-40%, you should
increase this value.

tcp_rexmit_interval_max ndd /dev/tcp 240000 10000

tcp_rexmit_interval_min ndd /dev/tcp 200 3000

tcp_smallest_anon_port ndd /dev/tcp 32768 1024 Set on clients too.

tcp_slow_start_initial ndd /dev/tcp 1 2 Slightly faster transmission of
small amounts of data.

tcp_xmit_hiwat ndd /dev/tcp 8129 32768 Size of transmit buffer.

79

Parameter Scope Default Tuned Comments

tcp_recv_hiwat ndd /dev/tcp 8129 32768 Size of receive buffer.

tcp_conn_hash_size ndd /dev/tcp 512 8192 Size of connection hash table.
See Sizing the Connection Hash
Table.

Sizing the Connection Hash Table

The connection hash table keeps all the information for active TCP connections. Use the following
command to get the size of the connection hash table:

ndd -get /dev/tcp tcp_conn_hash

This value does not limit the number of connections, but it can cause connection hashing to take
longer. The default size is 512.

To make lookups more efficient, set the value to half of the number of concurrent TCP connections
that are expected on the server. You can set this value only in /etc/system, and it becomes effective
at boot time.

Use the following command to get the current number of TCP connections.

netstat -nP tcp|wc -l

File Descriptor Setting

On the Solaris OS, setting the maximum number of open files property using ulimit has the biggest
impact on efforts to support the maximum number of RMI/IIOP clients.

To increase the hard limit, add the following command to /etc/system and reboot it once:

set rlim_fd_max = 8192

Verify this hard limit by using the following command:

ulimit -a -H

Once the above hard limit is set, increase the value of this property explicitly (up to this limit) using
the following command:

ulimit -n 8192

Verify this limit by using the following command:

80

ulimit -a

For example, with the default ulimit of 64, a simple test driver can support only 25 concurrent
clients, but with ulimit set to 8192, the same test driver can support 120 concurrent clients. The test
driver spawned multiple threads, each of which performed a JNDI lookup and repeatedly called the
same business method with a think (delay) time of 500 ms between business method calls,
exchanging data of about 100 KB. These settings apply to RMI/IIOP clients on the Solaris OS.

Tuning for Solaris on x86
The following are some options to consider when tuning Solaris on x86 for Eclipse GlassFish:

• File Descriptors

• IP Stack Settings

Some of the values depend on the system resources available. After making any changes to
/etc/system, reboot the machines.

File Descriptors

Add (or edit) the following lines in the /etc/system file:

set rlim_fd_max=65536
set rlim_fd_cur=65536
set sq_max_size=0
set tcp:tcp_conn_hash_size=8192
set autoup=60
set pcisch:pci_stream_buf_enable=0

These settings affect the file descriptors.

IP Stack Settings

Add (or edit) the following lines in the /etc/system file:

set ip:tcp_squeue_wput=1
set ip:tcp_squeue_close=1
set ip:ip_squeue_bind=1
set ip:ip_squeue_worker_wait=10
set ip:ip_squeue_profile=0

These settings tune the IP stack.

To preserve the changes to the file between system reboots, place the following changes to the
default TCP variables in a startup script that gets executed when the system reboots:

81

ndd -set /dev/tcp tcp_time_wait_interval 60000
ndd -set /dev/tcp tcp_conn_req_max_q 16384
ndd -set /dev/tcp tcp_conn_req_max_q0 16384
ndd -set /dev/tcp tcp_ip_abort_interval 60000
ndd -set /dev/tcp tcp_keepalive_interval 7200000
ndd -set /dev/tcp tcp_rexmit_interval_initial 4000
ndd -set /dev/tcp tcp_rexmit_interval_min 3000
ndd -set /dev/tcp tcp_rexmit_interval_max 10000
ndd -set /dev/tcp tcp_smallest_anon_port 32768
ndd -set /dev/tcp tcp_slow_start_initial 2
ndd -set /dev/tcp tcp_xmit_hiwat 32768
ndd -set /dev/tcp tcp_recv_hiwat 32768

Tuning for Linux platforms
To tune for maximum performance on Linux, you need to make adjustments to the following:

• Startup Files

• File Descriptors

• Virtual Memory

• Network Interface

• Disk I/O Settings

• TCP/IP Settings

Startup Files

The following parameters must be added to the /etc/rc.d/rc.local file that gets executed during
system startup.

<-- begin
#max file count updated ~256 descriptors per 4Mb.
Specify number of file descriptors based on the amount of system RAM.
echo "6553"> /proc/sys/fs/file-max
#inode-max 3-4 times the file-max
#file not present!!!!!
#echo"262144"> /proc/sys/fs/inode-max
#make more local ports available
echo 1024 25000> /proc/sys/net/ipv4/ip_local_port_range
#increase the memory available with socket buffers
echo 2621143> /proc/sys/net/core/rmem_max
echo 262143> /proc/sys/net/core/rmem_default
#above configuration for 2.4.X kernels
echo 4096 131072 262143> /proc/sys/net/ipv4/tcp_rmem
echo 4096 13107262143> /proc/sys/net/ipv4/tcp_wmem
#disable "RFC2018 TCP Selective Acknowledgements," and
"RFC1323 TCP timestamps" echo 0> /proc/sys/net/ipv4/tcp_sack

82

echo 0> /proc/sys/net/ipv4/tcp_timestamps
#double maximum amount of memory allocated to shm at runtime
echo "67108864"> /proc/sys/kernel/shmmax
#improve virtual memory VM subsystem of the Linux
echo "100 1200 128 512 15 5000 500 1884 2"> /proc/sys/vm/bdflush
#we also do a sysctl
sysctl -p /etc/sysctl.conf
-- end -->

Additionally, create an /etc/sysctl.conf file and append it with the following values:

<-- begin
#Disables packet forwarding
net.ipv4.ip_forward = 0
#Enables source route verification
net.ipv4.conf.default.rp_filter = 1
#Disables the magic-sysrq key
kernel.sysrq = 0
fs.file-max=65536
vm.bdflush = 100 1200 128 512 15 5000 500 1884 2
net.ipv4.ip_local_port_range = 1024 65000
net.core.rmem_max= 262143
net.core.rmem_default = 262143
net.ipv4.tcp_rmem = 4096 131072 262143
net.ipv4.tcp_wmem = 4096 131072 262143
net.ipv4.tcp_sack = 0
net.ipv4.tcp_timestamps = 0
kernel.shmmax = 67108864

File Descriptors

You may need to increase the number of file descriptors from the default. Having a higher number
of file descriptors ensures that the server can open sockets under high load and not abort requests
coming in from clients.

Start by checking system limits for file descriptors with this command:

cat /proc/sys/fs/file-max
8192

The current limit shown is 8192. To increase it to 65535, use the following command (as root):

echo "65535"> /proc/sys/fs/file-max

To make this value to survive a system reboot, add it to /etc/sysctl.conf and specify the maximum
number of open files permitted:

83

fs.file-max = 65535

Note that the parameter is not proc.sys.fs.file-max, as one might expect.

To list the available parameters that can be modified using sysctl:

sysctl -a

To load new values from the sysctl.conf file:

sysctl -p /etc/sysctl.conf

To check and modify limits per shell, use the following command:

limit

The output will look something like this:

cputime unlimited
filesize unlimited
datasize unlimited
stacksize 8192 kbytes
coredumpsize 0 kbytes
memoryuse unlimited
descriptors 1024
memorylocked unlimited
maxproc 8146
openfiles 1024

The openfiles and descriptors show a limit of 1024. To increase the limit to 65535 for all users, edit
/etc/security/limits.conf as root, and modify or add the nofile setting (number of file) entries:

* soft nofile 65535
* hard nofile 65535

The character “*” is a wildcard that identifies all users. You could also specify a user ID instead.

Then edit /etc/pam.d/login and add the line:

session required /lib/security/pam_limits.so

On Red Hat, you also need to edit /etc/pam.d/sshd and add the following line:

84

session required /lib/security/pam_limits.so

On many systems, this procedure will be sufficient. Log in as a regular user and try it before doing
the remaining steps. The remaining steps might not be required, depending on how pluggable
authentication modules (PAM) and secure shell (SSH) are configured.

Virtual Memory

To change virtual memory settings, add the following to /etc/rc.local:

echo 100 1200 128 512 15 5000 500 1884 2> /proc/sys/vm/bdflush

For more information, view the man pages for bdflush.

Network Interface

To ensure that the network interface is operating in full duplex mode, add the following entry into
/etc/rc.local:

mii-tool -F 100baseTx-FD eth0

where eth0 is the name of the network interface card (NIC).

Disk I/O Settings

To tune disk I/O performance for non SCSI disks

1. Test the disk speed.

Use this command:

/sbin/hdparm -t /dev/hdX

2. Enable direct memory access (DMA).

Use this command:

/sbin/hdparm -d1 /dev/hdX

3. Check the speed again using the hdparm command.

Given that DMA is not enabled by default, the transfer rate might have improved considerably.
In order to do this at every reboot, add the /sbin/hdparm -d1 /dev/hdX line to

85

/etc/conf.d/local.start, /etc/init.d/rc.local, or whatever the startup script is called.

For information on SCSI disks, see: System Tuning for Linux Servers — SCSI
(http://people.redhat.com/alikins/system_tuning.html#scsi).

TCP/IP Settings

To tune the TCP/IP settings

1. Add the following entry to /etc/rc.local

echo 30> /proc/sys/net/ipv4/tcp_fin_timeout
echo 60000> /proc/sys/net/ipv4/tcp_keepalive_time
echo 15000> /proc/sys/net/ipv4/tcp_keepalive_intvl
echo 0> /proc/sys/net/ipv4/tcp_window_scaling

2. Add the following to /etc/sysctl.conf

Disables packet forwarding
net.ipv4.ip_forward = 0
Enables source route verification
net.ipv4.conf.default.rp_filter = 1
Disables the magic-sysrq key
kernel.sysrq = 0
net.ipv4.ip_local_port_range = 1204 65000
net.core.rmem_max = 262140
net.core.rmem_default = 262140
net.ipv4.tcp_rmem = 4096 131072 262140
net.ipv4.tcp_wmem = 4096 131072 262140
net.ipv4.tcp_sack = 0
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_window_scaling = 0
net.ipv4.tcp_keepalive_time = 60000
net.ipv4.tcp_keepalive_intvl = 15000
net.ipv4.tcp_fin_timeout = 30

3. Add the following as the last entry in /etc/rc.local

sysctl -p /etc/sysctl.conf

4. Reboot the system.

5. Use this command to increase the size of the transmit buffer:

tcp_recv_hiwat ndd /dev/tcp 8129 32768

86

http://people.redhat.com/alikins/system_tuning.html#scsi
http://people.redhat.com/alikins/system_tuning.html#scsi

Tuning UltraSPARC CMT-Based Systems
Use a combination of tunable parameters and other parameters to tune UltraSPARC CMT-based
systems. These values are an example of how you might tune your system to achieve the desired
result.

Tuning Operating System and TCP Settings

The following table shows the operating system tuning for Solaris 10 used when benchmarking for
performance and scalability on UtraSPARC CMT-based systems (64-bit systems).

Table 5-2 Tuning 64-bit Systems for Performance Benchmarking

Parameter Scope Default Tuned Comments

rlim_fd_max /etc/system 65536 260000 Process open file descriptors
limit; should account for the
expected load (for the
associated sockets, files, pipes
if any).

hires_tick /etc/system 1

sq_max_size /etc/system 2 0 Controls streams driver queue
size; setting to 0 makes it
infinite so the performance
runs won’t be hit by lack of
buffer space. Set on clients
too. Note that setting
sq_max_size to 0 might not be
optimal for production
systems with high network
traffic.

ip:ip_squeue_bind 0

ip:ip_squeue_fanout 1

ipge:ipge_taskq_disable /etc/system 0

ipge:ipge_tx_ring_size /etc/system 2048

ipge:ipge_srv_fifo_depth /etc/system 2048

ipge:ipge_bcopy_thresh /etc/system 384

ipge:ipge_dvma_thresh /etc/system 384

ipge:ipge_tx_syncq /etc/system 1

tcp_conn_req_max_q ndd /dev/tcp 128 3000

tcp_conn_req_max_q0 ndd /dev/tcp 1024 3000

tcp_max_buf ndd /dev/tcp 4194304

tcp_cwnd_max ndd/dev/tcp 2097152

87

Parameter Scope Default Tuned Comments

tcp_xmit_hiwat ndd /dev/tcp 8129 400000 To increase the transmit
buffer.

tcp_recv_hiwat ndd /dev/tcp 8129 400000 To increase the receive buffer.

Note that the IPGE driver version is 1.25.25.

Disk Configuration

If HTTP access is logged, follow these guidelines for the disk:

• Write access logs on faster disks or attached storage.

• If running multiple instances, move the logs for each instance onto separate disks as much as
possible.

• Enable the disk read/write cache. Note that if you enable write cache on the disk, some writes
might be lost if the disk fails.

• Consider mounting the disks with the following options, which might yield better disk
performance: nologging, directio, noatime.

Network Configuration

If more than one network interface card is used, make sure the network interrupts are not all going
to the same core. Run the following script to disable interrupts:

allpsr=`/usr/sbin/psrinfo | grep -v off-line | awk '{ print $1 }'`
 set $allpsr
 numpsr=$#
 while [$numpsr -gt 0];
 do
 shift
 numpsr=`expr $numpsr - 1`
 tmp=1
 while [$tmp -ne 4];
 do
 /usr/sbin/psradm -i $1
 shift
 numpsr=`expr $numpsr - 1`
 tmp=`expr $tmp + 1`
 done
 done

Put all network interfaces into a single group. For example:

$ifconfig ipge0 group webserver
$ifconfig ipge1 group webserver

88

	Eclipse GlassFish Performance Tuning Guide, Release 7
	Eclipse GlassFish
	Preface
	Eclipse GlassFish Documentation Set
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names

	1 Overview of Eclipse GlassFish Performance Tuning
	Process Overview
	Performance Tuning Sequence

	Understanding Operational Requirements
	Application Architecture
	Security Requirements
	High Availability Clustering, Load Balancing, and Failover
	Hardware Resources
	Administration

	General Tuning Concepts
	Capacity Planning
	User Expectations

	Further Information

	2 Tuning Your Application
	Java Programming Guidelines
	Avoid Serialization and Deserialization
	Use StringBuilder to Concatenate Strings
	Assign null to Variables That Are No Longer Needed
	Declare Methods as final Only If Necessary
	Declare Constants as static final
	Avoid Finalizers
	Declare Method Arguments final
	Synchronize Only When Necessary
	Use DataHandlers for SOAP Attachments

	Java Server Page and Servlet Tuning
	Suggested Coding Practices

	EJB Performance Tuning
	Goals
	Monitoring EJB Components
	General Guidelines
	Using Local and Remote Interfaces
	Improving Performance of EJB Transactions
	Using Special Techniques
	Tuning Tips for Specific Types of EJB Components
	JDBC and Database Access
	Tuning Message-Driven Beans

	3 Tuning the Eclipse GlassFish
	Using the Eclipse GlassFish Performance Tuner
	Deployment Settings
	Disable Auto-Deployment
	Use Pre-compiled JavaServer Pages
	Disable Dynamic Application Reloading

	Logger Settings
	General Settings
	Log Levels

	Web Container Settings
	Session Properties: Session Timeout
	Manager Properties: Reap Interval
	Disable Dynamic JSP Reloading

	EJB Container Settings
	Monitoring the EJB Container
	Tuning the EJB Container

	Java Message Service Settings
	Transaction Service Settings
	Monitoring the Transaction Service
	Tuning the Transaction Service

	HTTP Service Settings
	Monitoring the HTTP Service
	HTTP Service Access Logging

	Network Listener Settings
	General Settings
	HTTP Settings
	File Cache Settings

	Transport Settings
	Thread Pool Settings
	Max Thread Pool Size
	Min Thread Pool Size

	ORB Settings
	Overview
	How a Client Connects to the ORB
	Monitoring the ORB
	Tuning the ORB

	Resource Settings
	JDBC Connection Pool Settings
	Connector Connection Pool Settings

	Load Balancer Settings

	4 Tuning the Java Runtime System
	Java Virtual Machine Settings
	Tuning High Availability Persistence
	Managing Memory and Garbage Collection
	Tuning the Garbage Collector
	Tracing Garbage Collection
	Other Garbage Collector Settings
	Tuning the Java Heap
	Rebasing DLLs on Windows

	Further Information

	5 Tuning the Operating System and Platform
	Server Scaling
	Processors
	Memory
	Disk Space
	Networking
	UDP Buffer Sizes

	Solaris 10 Platform-Specific Tuning Information
	Tuning for the Solaris OS
	Tuning Parameters
	File Descriptor Setting

	Tuning for Solaris on x86
	File Descriptors
	IP Stack Settings

	Tuning for Linux platforms
	Startup Files
	File Descriptors
	Virtual Memory
	Network Interface
	Disk I/O Settings
	TCP/IP Settings

	Tuning UltraSPARC CMT-Based Systems
	Tuning Operating System and TCP Settings
	Disk Configuration
	Network Configuration

