
Eclipse GlassFish High Availability
Administration Guide, Release 7



Eclipse GlassFish
High Availability Administration Guide

Release 7

Contributed 2018 - 2024

This book describes thehigh-availability features in Eclipse GlassFish, including converged load
balancing, HTTP load balancing, clusters, session persistence and failover.

Eclipse GlassFish High Availability Administration Guide, Release 7

Copyright © 2013, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

1

http://www.eclipse.org/legal/epl-2.0


Preface



This documentation is part of the Java Enterprise Edition contribution to the
Eclipse Foundation and is not intended for use in relation to Java Enterprise
Edition or Orace GlassFish. The documentation is in the process of being revised to
reflect the new Jakarta EE branding. Additional changes will be made as
requirements and procedures evolve for Jakarta EE. Where applicable, references
to Jakarta EE or Java Enterprise Edition should be considered references to Jakarta
EE.

Please see the Title page for additional license information.

This book describes the high-availability features in Eclipse GlassFish, including converged load
balancing, HTTP load balancing, clusters, session persistence and failover.

This preface contains information about and conventions for the entire Eclipse GlassFish (Eclipse
GlassFish) documentation set.

Eclipse GlassFish 7 is developed through the GlassFish project open-source community at
http://glassfish.java.net/. The GlassFish project provides a structured process for developing the
Eclipse GlassFish platform that makes the new features of the Jakarta EE platform available faster,
while maintaining the most important feature of Java EE: compatibility. It enables Java developers
to access the Eclipse GlassFish source code and to contribute to the development of the Eclipse
GlassFish. The GlassFish project is designed to encourage communication between Oracle engineers
and the community.

Eclipse GlassFish Documentation Set
The Eclipse GlassFish documentation set describes deployment planning and system installation.
For an introduction to Eclipse GlassFish, refer to the books in the order in which they are listed in
the following table.

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based
summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide Explains how to get started with the Eclipse GlassFish product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of Eclipse GlassFish.
This guide also describes differences between adjacent product
releases and configuration options that can result in incompatibility
with the product specifications.

Deployment Planning Guide Explains how to build a production deployment of Eclipse GlassFish
that meets the requirements of your system and enterprise.

2

http://glassfish.java.net/
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/quick-start-guide.pdf#GSQSG
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/upgrade-guide.pdf#GSUPG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG


Book Title Description

Administration Guide Explains how to configure, monitor, and manage Eclipse GlassFish
subsystems and components from the command line by using the
asadmin utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Security Guide Provides instructions for configuring and administering Eclipse
GlassFish security.

Application Deployment
Guide

Explains how to assemble and deploy applications to the Eclipse
GlassFish and provides information about deployment descriptors.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Jakarta EE platform) applications that are intended to run
on the Eclipse GlassFish. These applications follow the open Java
standards model for Jakarta EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Embedded Server Guide Explains how to run applications in embedded Eclipse GlassFish and
to develop applications in which Eclipse GlassFish is embedded.

High Availability
Administration Guide

Explains how to configure Eclipse GlassFish to provide higher
availability and scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of Eclipse GlassFish.

Troubleshooting Guide Describes common problems that you might encounter when using
Eclipse GlassFish and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using
Eclipse GlassFish.

Reference Manual Provides reference information in man page format for Eclipse
GlassFish administration commands, utility commands, and related
concepts.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue
Administration Guide

Explains how to set up and manage a Message Queue messaging
system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue
for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions
(JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing
Java messaging applications (Java clients) that work with Eclipse
GlassFish.

3

https://glassfish.org/docs/latest/administration-guide.pdf#GSADG
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/embedded-server-guide.pdf#GSESG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG
https://glassfish.org/docs/latest/troubleshooting-guide.pdf#GSTSG
https://glassfish.org/docs/latest/error-messages-reference.pdf#GSEMR
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html


Book Title Description

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers
working with Message Queue who want to use the C language
binding to the Message Queue messaging service to send, receive,
and process Message Queue messages.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a
real name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to
be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

Symbol Description Example Meaning

[ ] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

4

https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html


Symbol Description Example Meaning

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Placeholder Description Default Value

as-install Represents the base installation
directory for Eclipse GlassFish.

In configuration files, as-install
is represented as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating
system, Linux operating system, and Mac OS
operating system:

user’s-home-directory/glassfish7/glassfish

Installations on the Windows operating system:

SystemDrive:\glassfish7\glassfish

as-install-
parent

Represents the parent of the
base installation directory for
Eclipse GlassFish.

Installations on the Oracle Solaris operating
system, Linux operating system, and Mac
operating system:

user’s-home-directory/glassfish7

Installations on the Windows operating system:

SystemDrive:\glassfish7

domain-
root-dir

Represents the directory in
which a domain is created by
default.

as-install/domains/

domain-dir Represents the directory in
which a domain’s configuration
is stored.

In configuration files, domain-
dir is represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instance-dir Represents the directory for a
server instance.

domain-dir/instance-name

5



1 High Availability in Eclipse GlassFish
This chapter describes the high availability features in Eclipse GlassFish 7.

The following topics are addressed here:

• Overview of High Availability

• How Eclipse GlassFish Provides High Availability

• Recovering from Failures

• More Information

Overview of High Availability
High availability applications and services provide their functionality continuously, regardless of
hardware and software failures. To make such reliability possible, Eclipse GlassFish provides
mechanisms for maintaining application state data between clustered Eclipse GlassFish instances.
Application state data, such as HTTP session data, stateful EJB sessions, and dynamic cache
information, is replicated in real time across server instances. If any one server instance goes
down, the session state is available to the next failover server, resulting in minimum application
downtime and enhanced transactional security.

Eclipse GlassFish provides the following high availability features:

• Load Balancing With the Apache mod_jk or mod_proxy_ajp Module

• High Availability Session Persistence

• High Availability Java Message Service

• RMI-IIOP Load Balancing and Failover

Load Balancing With the Apache mod_jk or mod_proxy_ajp Module

A common load balancing configuration for Eclipse GlassFish 7 is to use the Apache HTTP Server as
the web server front-end, and the Apache mod_jk or mod_proxy_ajp module as the connector between
the web server and Eclipse GlassFish. See Configuring Eclipse GlassFish with Apache HTTP Server
and mod_jk and Configuring Eclipse GlassFish with Apache HTTP Server and mod_proxy_ajp for more
information.

High Availability Session Persistence

Eclipse GlassFish provides high availability of HTTP requests and session data (both HTTP session
data and stateful session bean data).

Jakarta EE applications typically have significant amounts of session state data. A web shopping
cart is the classic example of a session state. Also, an application can cache frequently-needed data
in the session object. In fact, almost all applications with significant user interactions need to
maintain session state. Both HTTP sessions and stateful session beans (SFSBs) have session state
data.

6



Preserving session state across server failures can be important to end users. If the Eclipse
GlassFish instance hosting the user session experiences a failure, the session state can be recovered,
and the session can continue without loss of information. High availability is implemented in
Eclipse GlassFish by means of in-memory session replication on Eclipse GlassFish instances running
in a cluster.

For more information about in-memory session replication in Eclipse GlassFish, see How Eclipse
GlassFish Provides High Availability. For detailed instructions on configuring high availability
session persistence, see Configuring High Availability Session Persistence and Failover.

High Availability Java Message Service

Eclipse GlassFish supports the Java Message Service (JMS) API and JMS messaging through its built-
in jmsra resource adapter communicating with Open Message Queue as the JMS provider. This
combination is often called the JMS Service.

The JMS service makes JMS messaging highly available as follows:

Message Queue Broker Clusters

By default, when a GlassFish cluster is created, the JMS service automatically configures a
Message Queue broker cluster to provide JMS messaging services, with one clustered broker
assigned to each cluster instance. This automatically created broker cluster is configurable to
take advantage of the two types of broker clusters, conventional and enhanced, supported by
Message Queue.
Additionally, Message Queue broker clusters created and managed using Message Queue itself
can be used as external, or remote, JMS hosts. Using external broker clusters provides additional
deployment options, such as deploying Message Queue brokers on different hosts from the
GlassFish instances they service, or deploying different numbers of Message Queue brokers and
GlassFish instances.
For more information about Message Queue clustering, see Using Message Queue Broker
Clusters With Eclipse GlassFish.

Connection Failover

The use of Message Queue broker clusters allows connection failover in the event of a broker
failure. If the primary JMS host (Message Queue broker) in use by a GlassFish instance fails,
connections to the failed JMS host will automatically fail over to another host in the JMS host list,
allowing messaging operations to continue and maintaining JMS messaging semantics.
For more information about JMS connection failover, see Connection Failover.

RMI-IIOP Load Balancing and Failover

With RMI-IIOP load balancing, IIOP client requests are distributed to different server instances or
name servers, which spreads the load evenly across the cluster, providing scalability. IIOP load
balancing combined with EJB clustering and availability also provides EJB failover.

When a client performs a JNDI lookup for an object, the Naming Service essentially binds the
request to a particular server instance. From then on, all lookup requests made from that client are
sent to the same server instance, and thus all EJBHome objects will be hosted on the same target
server. Any bean references obtained henceforth are also created on the same target host. This

7



effectively provides load balancing, since all clients randomize the list of target servers when
performing JNDI lookups. If the target server instance goes down, the lookup or EJB method
invocation will failover to another server instance.

IIOP Load balancing and failover happens transparently. No special steps are needed during
application deployment. If the Eclipse GlassFish instance on which the application client is
deployed participates in a cluster, the Eclipse GlassFish finds all currently active IIOP endpoints in
the cluster automatically. However, a client should have at least two endpoints specified for
bootstrapping purposes, in case one of the endpoints has failed.

For more information on RMI-IIOP load balancing and failover, see RMI-IIOP Load Balancing and
Failover.

How Eclipse GlassFish Provides High Availability
Eclipse GlassFish provides high availability through the following subcomponents and features:

• Storage for Session State Data

• Highly Available Clusters

Storage for Session State Data

Storing session state data enables the session state to be recovered after the failover of a server
instance in a cluster. Recovering the session state enables the session to continue without loss of
information. Eclipse GlassFish supports in-memory session replication on other servers in the
cluster for maintaining HTTP session and stateful session bean data.

In-memory session replication is implemented in Eclipse GlassFish 7 as an OSGi module. Internally,
the replication module uses a consistent hash algorithm to pick a replica server instance within a
cluster of instances. This allows the replication module to easily locate the replica or replicated data
when a container needs to retrieve the data.

The use of in-memory replication requires the Group Management Service (GMS) to be enabled. For
more information about GMS, see Group Management Service.

If server instances in a cluster are located on different hosts, ensure that the following
prerequisites are met:

• To ensure that GMS and in-memory replication function correctly, the hosts must be on the
same subnet.

• To ensure that in-memory replication functions correctly, the system clocks on all hosts in the
cluster must be synchronized as closely as possible.

Highly Available Clusters

A highly available cluster integrates a state replication service with clusters and load balancer.

 When implementing a highly available cluster, use a load balancer that includes

8



session-based stickiness as part of its load-balancing algorithm. Otherwise, session
data can be misdirected or lost. An example of a load balancer that includes
session-based stickiness is the Loadbalancer Plug-In available in Eclipse GlassFish.

Clusters, Instances, Sessions, and Load Balancing

Clusters, server instances, load balancers, and sessions are related as follows:

• A server instance is not required to be part of a cluster. However, an instance that is not part of
a cluster cannot take advantage of high availability through transfer of session state from one
instance to other instances.

• The server instances within a cluster can be hosted on one or multiple hosts. You can group
server instances across different hosts into a cluster.

• A particular load balancer can forward requests to server instances on multiple clusters. You
can use this ability of the load balancer to perform an online upgrade without loss of service.
For more information, see Upgrading in Multiple Clusters.

• A single cluster can receive requests from multiple load balancers. If a cluster is served by more
than one load balancer, you must configure the cluster in exactly the same way on each load
balancer.

• Each session is tied to a particular cluster. Therefore, although you can deploy an application on
multiple clusters, session failover will occur only within a single cluster.

The cluster thus acts as a safe boundary for session failover for the server instances within the
cluster. You can use the load balancer and upgrade components within the Eclipse GlassFish
without loss of service.

Protocols for Centralized Cluster Administration

Eclipse GlassFish uses the secure shell (SSH) to ensure that clusters that span multiple hosts can be
administered centrally. To perform administrative operations on Eclipse GlassFish instances that
are remote from the domain administration server (DAS), the DAS must be able to communicate
with those instances. If an instance is running, the DAS connects to the running instance directly.
For example, when you deploy an application to an instance, the DAS connects to the instance and
deploys the application to the instance.

However, the DAS cannot connect to an instance to perform operations on an instance that is not
running, such as creating or starting the instance. For these operations, the DAS uses SSH to contact
a remote host and administer instances there. SSH provides confidentiality and security for data
that is exchanged between the DAS and remote hosts.


The use of SSH to enable centralized administration of remote instances is
optional. If the use of SSH is not feasible in your environment, you can administer
remote instances locally.

For more information, see Enabling Centralized Administration of Eclipse GlassFish Instances.

9



Recovering from Failures
You can use various techniques to manually recover individual subcomponents after hardware
failures such as disk crashes.

The following topics are addressed here:

• Recovering the Domain Administration Server

• Recovering Eclipse GlassFish Instances

• Recovering the HTTP Load Balancer and Web Server

• Recovering Message Queue

Recovering the Domain Administration Server

Loss of the Domain Administration Server (DAS) affects only administration. Eclipse GlassFish
clusters and standalone instances, and the applications deployed to them, continue to run as before,
even if the DAS is not reachable

Use any of the following methods to recover the DAS:

• Back up the domain periodically, so you have periodic snapshots. After a hardware failure, re-
create the DAS on a new host, as described in "Re-Creating the Domain Administration Server
(DAS)" in Eclipse GlassFish Administration Guide.

• Put the domain installation and configuration on a shared and robust file system (NFS for
example). If the primary DAS host fails, a second host is brought up with the same IP address
and will take over with manual intervention or user supplied automation.

• Zip the Eclipse GlassFish installation and domain root directory. Restore it on the new host,
assigning it the same network identity.

Recovering Eclipse GlassFish Instances

Eclipse GlassFish provide tools for backing up and restoring Eclipse GlassFish instances. For more
information, see To Resynchronize an Instance and the DAS Offline.

Recovering the HTTP Load Balancer and Web Server

There are no explicit commands to back up only a web server configuration. Simply zip the web
server installation directory. After failure, unzip the saved backup on a new host with the same
network identity. If the new host has a different IP address, update the DNS server or the routers.


This assumes that the web server is either reinstalled or restored from an image
first.

The Load Balancer Plug-In (plugins directory) and configurations are in the web server installation
directory, typically /opt/SUNWwbsvr. The web-install/web-instance/config directory contains the
loadbalancer.xml file.

10

https://glassfish.org/docs/latest/administration-guide.pdf#re-creating-the-domain-administration-server-das
https://glassfish.org/docs/latest/administration-guide.pdf#re-creating-the-domain-administration-server-das


Recovering Message Queue

When a Message Queue broker becomes unavailable, the method you use to restore the broker to
operation depends on the nature of the failure that caused the broker to become unavailable:

• Power failure or failure other than disk storage

• Failure of disk storage

Additionally, the urgency of restoring an unavailable broker to operation depends on the type of
the broker:

• Standalone Broker. When a standalone broker becomes unavailable, both service availability
and data availability are interrupted. Restore the broker to operation as soon as possible to
restore availability.

• Broker in a Conventional Cluster. When a broker in a conventional cluster becomes
unavailable, service availability continues to be provided by the other brokers in the cluster.
However, data availability of the persistent data stored by the unavailable broker is
interrupted. Restore the broker to operation to restore availability of its persistent data.

• Broker in an Enhanced Cluster. When a broker in an enhanced cluster becomes unavailable,
service availability and data availability continue to be provided by the other brokers in the
cluster. Restore the broker to operation to return the cluster to its previous capacity.

Recovering From Power Failure and Failures Other Than Disk Storage

When a host is affected by a power failure or failure of a non-disk component such as memory,
processor or network card, restore Message Queue brokers on the affected host by starting the
brokers after the failure has been remedied.

To start brokers serving as Embedded or Local JMS hosts, start the GlassFish instances the brokers
are servicing. To start brokers serving as Remote JMS hosts, use the imqbrokerd Message Queue
utility.

Recovering from Failure of Disk Storage

Message Queue uses disk storage for software, configuration files and persistent data stores. In a
default GlassFish installation, all three of these are generally stored on the same disk: the Message
Queue software in as-install-parent/mq, and broker configuration files and persistent data stores
(except for the persistent data stores of enhanced clusters, which are housed in highly available
databases) in domain-dir/imq. If this disk fails, restoring brokers to operation is impossible unless
you have previously created a backup of these items. To create such a backup, use a utility such as
zip, gzip or tar to create archives of these directories and all their content. When creating the
backup, you should first quiesce all brokers and physical destinations, as described in "Quiescing a
Broker" and "Pausing and Resuming a Physical Destination" in Open Message Queue Administration
Guide, respectively. Then, after the failed disk is replaced and put into service, expand the backup
archive into the same location.

Restoring the Persistent Data Store From Backup. For many messaging applications, restoring a
persistent data store from backup does not produce the desired results because the backed up store
does not represent the content of the store when the disk failure occurred. In some applications, the

11

https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/broker-management.html#GMADG00522
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/broker-management.html#GMADG00522
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/message-delivery.html#GMADG00533


persistent data changes rapidly enough to make backups obsolete as soon as they are created. To
avoid issues in restoring a persistent data store, consider using a RAID or SAN data storage solution
that is fault tolerant, especially for data stores in production environments.

More Information
For information about planning a high-availability deployment, including assessing hardware
requirements, planning network configuration, and selecting a topology, see the Eclipse GlassFish
Deployment Planning Guide. This manual also provides a high-level introduction to concepts such
as:

• Eclipse GlassFish components such as node agents, domains, and clusters

• IIOP load balancing in a cluster

• Message queue failover

For more information about developing applications that take advantage of high availability
features, see the Eclipse GlassFish Application Development Guide.

For information on how to configure and tune applications and Eclipse GlassFish for best
performance with high availability, see the Eclipse GlassFish Performance Tuning Guide, which
discusses topics such as:

• Tuning persistence frequency and persistence scope

• Checkpointing stateful session beans

• Configuring the JDBC connection pool

• Session size

• Configuring load balancers for best performance

12

https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG


2 Enabling Centralized Administration of
Eclipse GlassFish Instances
Eclipse GlassFish uses the secure shell (SSH) to ensure that clusters that span multiple hosts can be
administered centrally. To perform administrative operations on Eclipse GlassFish instances that
are remote from the domain administration server (DAS), the DAS must be able to communicate
with those instances. If an instance is running, the DAS connects to the running instance directly.
For example, when you deploy an application to an instance, the DAS connects to the instance and
deploys the application to the instance.

However, the DAS cannot connect to an instance to perform operations on an instance that is not
running, such as creating or starting the instance. For these operations, the DAS uses SSH to contact
a remote host and administer instances there. SSH provides confidentiality and security for data
that is exchanged between the DAS and remote hosts.


The use of SSH to enable centralized administration of remote instances is
optional. If the use of SSH is not feasible in your environment, you can administer
remote instances locally.

The following topics are addressed here:

• About Centralized Administration of Eclipse GlassFish Instances

• Setting Up Cygwin SSH on Windows

• Setting Up the MKS Toolkit on Windows

• Setting Up SSH on UNIX and Linux Systems

• Testing the SSH Setup on a Host

• Setting Up SSH User Authentication

• Installing and Removing Eclipse GlassFish Software on Multiple Hosts

About Centralized Administration of Eclipse GlassFish
Instances
The use of SSH to enable centralized administration of remote instances is optional and is required
only for specific operations. Instances local to the DAS can be administered without SSH. If SSH is
not practicable in your environment, you can administer remote instances locally.

Determining Whether to Enable Centralized Administration

Before setting up a Eclipse GlassFish cluster, use the following considerations to determine whether
to enable centralized administration of remote instances:

• If you are planning a large cluster of many instances, consider enabling centralized
administration of instances in the cluster. Centralized administration of instances simplifies the
administration of the cluster by enabling you to perform all administrative operations on the

13



cluster and its instances from the DAS.

• If you are planning a small cluster of few instances, consider whether enabling centralized
administration requires more effort than logging in to individual hosts to administer remote
instances locally.

How you administer instances and the nodes on which they resides varies depending on whether
and how centralized administration is enabled. The following table provides cross-references to
instructions for administering nodes and instances depending on the protocol that is used for
enabling centralized administration, if any.

Protocol Node Administration Instructions Instance Administration Instructions

SSH Creating, Listing, Testing, and Deleting
SSH Nodes

Administering Eclipse GlassFish Instances
Centrally

None Creating, Listing, and Deleting CONFIG
Nodes

Administering Eclipse GlassFish Instances
Locally

Considerations for Using SSH for Centralized Administration

In a typical Eclipse GlassFish deployment, the DAS acts as the SSH client, and hosts where instances
reside act as SSH servers. The SSH Server Daemon sshd must be running on hosts where instances
reside, but is not required to be running on the DAS host. The DAS uses its own SSH client for
communicating with hosts where instances reside. However, to generate keys and test SSH setup, a
native SSH client must be installed on the DAS host.

The requirements for SSH configuration and user management are different for each operating
system on which Eclipse GlassFish is supported. Therefore, the use of SSH for centralized
administration involves using SSH tools to configure SSH on the operating system that you are
using.

On UNIX and Linux systems, SSH is typically installed and preconfigured, and requires minimal
additional setup. On Windows systems, additional setup is required to install and configure an SSH
provider.

Obtaining SSH Software

On UNIX and Linux systems, SSH software is typically installed as part of the base operating system.

However, on Windows systems, you must install one of the following SSH providers:

• Cygwin (http://www.cygwin.com/) release 1.7.6

• MKS Toolkit for Developers (http://www.mkssoftware.com) release 9.2

Determining the SSH User

Before setting up SSH, decide which SSH user Eclipse GlassFish will use when connecting to remote
hosts. For the following reasons, administration is simplest if the SSH user is the user that starts the
DAS:

14

http://www.cygwin.com/
http://www.cygwin.com/
http://www.mkssoftware.com
http://www.mkssoftware.com


• For public key authentication, the user that starts the DAS must be able to read the SSH user’s
private key file.

• Remote instances are started as the SSH user.

• By default, the DAS assumes that the SSH user is the user that is running the DAS.

Requirements for the SSH User’s Environment

The environment of the SSH user on any remote host to which the user will connect must meet the
requirements that are stated in "Paths and Environment Settings for the JDK Software" in Eclipse
GlassFish Release Notes.

The SSH user’s environment on a host is set by the environment set-up files that are run when the
user uses SSH to run a command on the host. You must ensure that these files set up the SSH user’s
environment correctly.

The files that are run when the user uses SSH to run a command are different than the files that are
run when the user logs in to a host. For example, in the bash shell, .profile and .bashrc are run
when the user logs in, but only .bashrc is run when the user runs a command. Therefore, in the
bash shell, you must ensure that .bashrc contains the required environment settings for the SSH
user.

File Access Permissions on UAC-Enabled Windows Systems



The User Account Control (UAC)(http://technet.microsoft.com/en-us/library/
cc709691%28WS.10%29.aspx) feature is available only on some versions of the
Windows operating system, for example, Windows 7, Windows Vista, and
Windows 2008.

You might be using a UAC-enabled Windows system and choose to store files for Eclipse GlassFish
instances in a directory other than the SSH user’s home directory. In this situation, the SSH user
must have native (that is, nonvirtual) read and write access to the file system where the instances
are to be stored. The OS-level administrator has such access by default. You can also configure the
system to grant such access to other users. For more information, see the documentation for the
Windows operating system.

Setting Up Cygwin SSH on Windows
Set up Cygwin SSH on the DAS host and on all hosts where instances in your cluster will reside.

The following topics are addressed here:

• To Download and Install Cygwin

• To Set the Path for Windows and for the Cygwin Shell

• To Set the Home Directory for the Cygwin SSH User

• To Configure and Start the Cygwin SSH Server Daemon sshd

15

https://glassfish.org/docs/latest/release-notes.pdf#paths-and-environment-settings-for-the-jdk-software
http://technet.microsoft.com/en-us/library/cc709691%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc709691%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc709691%28WS.10%29.aspx


To Download and Install Cygwin

For centralized Eclipse GlassFish administration, a basic Cygwin installation that includes the SSH
client and the SSH server daemon sshd is sufficient. The default installation options are sufficient to
create such a basic installation.

1. Log in as a user with Administrator privileges.

2. Create the folder C:\cygwin.

3. From the Cygwin home page (http://www.cygwin.com/), download and save the setup.exe file to
your desktop.

4. Run the setup.exe file.

5. Select the default for the following options:

◦ Install from Internet

◦ Install Root Directory: C:\cygwin

◦ Install for All Users

6. Specify a folder for the local package directory that is not the Cygwin root folder, for example,
C:\cygwin\packages.

7. Specify the connection method.
For example, if the host is connected to the Internet through a proxy server, specify the proxy
server.

8. Select the mirror site from which to download the software.

9. Select the openssh package for installation.

1. Under the Net category, search for openssh.

2. Locate the openssh package and click Skip.
The package is selected.

3. Click Next.
Any unsatisfied dependencies are listed.

10. Leave the Select Required Packages option selected and click Next
The packages are installed.

11. Click Finish.

See Also

For detailed information about installing Cygwin, see "Internet Setup" in Cygwin User’s Guide
(http://cygwin.com/cygwin-ug-net/setup-net.html#internet-setup).

To Set the Path for Windows and for the Cygwin Shell

To enable Eclipse GlassFish tools to find commands for SSH, each user’s path for Windows and for
the Cygwin shell must contain the following directories:

• The Cygwin bin directory, for example C:\cygwin\bin

16

http://www.cygwin.com/
http://www.cygwin.com/
http://cygwin.com/cygwin-ug-net/setup-net.html#internet-setup
http://cygwin.com/cygwin-ug-net/setup-net.html#internet-setup


• The bin directory of the JDK software

1. Log in as a user with Administrator privileges. Logging in as a user with Administrator
privileges ensures that the change applies to all users.

2. In the System Information control panel, click Advanced>Environment Variables.

3. Add the following directories to the Path environment variable:

◦ The Cygwin bin directory, for example C:\cygwin\bin

◦ The bin directory of the JDK software

To Set the Home Directory for the Cygwin SSH User

The SSH Server Daemon sshd locates a user’s home directory from the configuration in the user
database, not from environment variables such as HOME. To ensure that all Eclipse GlassFish
commands can run without errors, each SSH user must be configured to have a home directory.

Each user on a Windows host where SSH is set up potentially has two home directories:

• Windows home directory. Eclipse GlassFish commands, which are run in a Windows command
window, use the Windows home directory.

• SSH home directory. SSH commands, which are run in a shell such as bash or ksh, use the SSH
home directory.

If these home directories are different, Eclipse GlassFish and SSH each locate a user’s .ssh directory
in different directories. To simplify the set up of SSH, configure each user’s home directory for SSH
and Windows to be the same directory. A disadvantage of this approach is that the SSH home
directory has spaces in its path name. Spaces in path names are cumbersome in the UNIX
environment.

1. Log in as a user with Administrator privileges.

2. In the c:\cygwin\etc\passwd file, edit the home directory setting for the SSH user to specify the
user’s home directory for Windows.

To Configure and Start the Cygwin SSH Server Daemon sshd

Before You Begin

Ensure that the following prerequisites are met:

• A user account is created for each user that will log in to the host through SSH.

• A password is set for each user account.

The SSH server daemon sshd disallows authentication of any user for whose account a password is
not set.

1. Double-click the Cygwin icon. A Cygwin terminal is started.

2. If necessary, set the password for your user account.

1. Run the passwd command as follows:

17



$ passwd user-name

user-name

The user name for your account.

2. Type a password. The password for your Windows account is also set.

3. Configure SSH on the host.

1. Run the ssh-host-config command.

$ ssh-host-config


If you are using Windows XP, specify the -y option of ssh-host-config to
answer yes to all prompts. If you run ssh-host-config with the -y option,
omit Step b.

2. Ensure that the StrictModes and PubkeyAuthentication options are set to yes in the file
/etc/ssh_config.
The file /etc/ssh_config can also be accessed as /cygdrive/c/cygwin/etc/sshd_config.

4. Start the SSH server daemon sshd.

$ net start sshd

5. Confirm that the SSH server daemon sshd is running.

$ cygrunsrv --query sshd
 Service             : sshd
 Display name        : CYGWIN sshd
 Current State       : Running
 Controls Accepted   : Stop
 Command             : /usr/sbin/sshd -D

Next Steps

After you have completed the setup of SSH on a host, test the setup on the host as explained in
Testing the SSH Setup on a Host.

Setting Up the MKS Toolkit on Windows
Set up the MKS Toolkit on the DAS host and on all hosts where instances in your cluster will reside.

The following topics are addressed here:

• To Install the MKS Toolkit

18



• To Set the Path for Windows and for the MKS Toolkit Shell

• To Set the Home Directory for the MKS Toolkit SSH User

• To Configure and Start the MKS Toolkit SSH Server Daemon sshd

To Install the MKS Toolkit

For centralized Eclipse GlassFish administration, the default installation of the MKS Toolkit is
sufficient.

Follow the instructions in the MKS Toolkit product documentation to install OpenSSH from the MKS
Toolkit with default installation options.

See Also

For detailed information about installing MKS Toolkit, see "Installing MKS Toolkit" in MKS Toolkit
v9.4 Release Notes (http://www.mkssoftware.com/docs/rn/relnotes_tk94.asp#install).

To Set the Path for Windows and for the MKS Toolkit Shell

To enable Eclipse GlassFish tools to find commands for SSH, each user’s path for Windows and for
the MKS Toolkit shell must contain the following directories:

• The MKS Toolkit bin directory, for example C:\Program Files\MKS Toolkit\mksnt

• The bin directory of the JDK software

The MKS Toolkit installer automatically adds the MKS Toolkit bin directory to the path. However,
you must add the bin directory of the JDK software to the path yourself.

1. Log in as a user with Administrator privileges.

Logging in as a user with Administrator privileges ensures that the change applies to all users.

2. In the System Information control panel, click Advanced>Environment Variables.

3. Add the bin directory of the JDK software to the Path environment variable.

To Set the Home Directory for the MKS Toolkit SSH User

The SSH Server Daemon sshd locates a user’s home directory from the configuration in the user
database, not from environment variables such as HOME. To ensure that all Eclipse GlassFish
commands can run without errors, each SSH user must be configured to have a home directory.

Each user on a Windows host where SSH is set up potentially has two home directories:

• Windows home directory. Eclipse GlassFish commands, which are run in a Windows command
window, use the Windows home directory.

• SSH home directory. SSH commands, which are run in a shell such as bash or ksh, use the SSH
home directory.

If these home directories are different, Eclipse GlassFish and SSH each locate a user’s .ssh directory

19

http://www.mkssoftware.com/docs/rn/relnotes_tk94.asp#install
http://www.mkssoftware.com/docs/rn/relnotes_tk94.asp#install


in different directories. To simplify the set up of SSH, configure each user’s home directory for SSH
and Windows to be the same directory. A disadvantage of this approach is that the SSH home
directory has spaces in its path name. Spaces in path names are cumbersome in the UNIX
environment.

1. Compare the pairs of settings for Windows and the MKS Toolkit that are listed in the following
table.

Windows Environment Variable MKS Toolkit Field

HOMEPATH Home Directory

HOMEDRIVE Home Directory Drive

1. In a Windows command window, determine the values of the HOMEPATH and HOMEDRIVE
environment variables.

2. In an MKS Toolkit shell, determine the current settings of the Home Directory and Home
Directory Drive fields for the user.

$ userinfo user-name

user-name

The user name for the user whose home directory you are setting, for example
Administrator.

2. If the settings do not match, update setting of each MKS Toolkit field to match its corresponding
Windows environment variable.
If the settings match, no further action is required.
To update the settings, run the following command in an MKS Toolkit shell:

$ userinfo -u -fHomeDirDrive:"drive" -fHomeDir:"path" user-name

drive

The drive identifier of the disk drive on which the user’s Windows home directory resides,
for example, C:.

path

The path to the user’s Windows home directory, for example,
\Documents and Settings\Administrator.

user-name

The user name for the user whose home directory you are setting, for example
Administrator.


Do not set the HOME environment variable explicitly. If Home Directory and
Home Directory Drive are set correctly, the HOME environment variable
specifies the correct path by default.

20



3. In an MKS Toolkit shell, confirm that the settings were updated.

$ userinfo user-name

user-name

The user name for the user whose home directory you are setting, for example
Administrator.

4. Log out of the host and log in to the host again.

5. Confirm that the home directories are the same as explained in Step 1.

Example 2-1 Setting the Home Directory for the MKS Toolkit User

This example sets the home directory for the MKS Toolkit user Administrator to
C:\Documents and Settings\Administrator.

$ userinfo -u -fHomeDirDrive:"C:"
-fHomeDir:"\Documents and Settings\Administrator" Administrator

To Configure and Start the MKS Toolkit SSH Server Daemon sshd


Do not set the command shell to cmd.exe. The use of SSH for centralized Eclipse
GlassFish administration requires a shell in the style of a UNIX shell.

1. From the Programs menu, choose MKS Toolkit>Configuration>Configuration Information.

2. Enable password authentication and strict modes.

1. Click the Secure Shell Service tab.

2. Select the Password Authentication option.

3. Click Advanced settings.

4. Click the Login tab.

5. Deselect the Strict Modes option.

3. If you are using SSH key-file authentication, enable MKSAUTH password authentication.

1. Click the Authentication tab.

2. Under Enable/Disable Password using MKSAUTH, type the user’s password and click the
Enable.

4. Start the SSH server daemon sshd.

5. Confirm that the SSH server daemon sshd is running.

$ service query MKSSecureSH
Name:           MKS Secure Shell Service
Service Type:   WIN32_OWN_PROCESS

21



Current State:  RUNNING
Controls Accepted:      ACCEPT_STOP
Check Point:    0
Wait Hint:      0
Start Type:     AUTO_START
Error Control:  IGNORE
Path:           "C:\Program Files\MKS Toolkit\bin\secshd.exe"
Dependency:     NuTCRACKERService
Dependency:     tcpip
Service Start Name:     LocalSystem

Next Steps

After you have completed the setup of SSH on a host, test the setup on the host as explained in
Testing the SSH Setup on a Host.

Setting Up SSH on UNIX and Linux Systems
Setting up SSH on UNIX and Linux systems involves verifying that the SSH server daemon sshd is
running and, if necessary, starting this daemon. Set up SSH on the DAS host and on all hosts where
instances in your cluster will reside.

On UNIX and Linux systems, SSH software is typically installed as part of the base operating system.
If SSH is not installed, download and install the appropriate OpenSSH (http://www.openssh.com/)
SSH package for your operating system.

How to set up SSH on UNIX and Linux systems depends on the flavor of the operating system that
you are running, as explained in the following sections:

• To Set Up SSH on MacOS Systems

• To Set Up SSH on Linux systems

To Set Up SSH on MacOS Systems

1. Open System Preferences and click Sharing.
The Sharing window opens.

2. Ensure that Remote Login is selected in the Service list.

3. Ensure that either of the following is allowed access:

◦ All Users

◦ The user that running the DAS or instance

4. (MacOS 10.6 systems only) Ensure that the SSH server daemon sshd allows password
authentication.
On MacOS 10.5 systems, the SSH server daemon sshd allows password authentication by default.
However, on MacOS 10.6 systems, the SSH server daemon sshd disallows password
authentication by default.

1. Edit the configuration file /etc/sshd_config to set the PasswordAuthentication option to yes.

22

http://www.openssh.com/
http://www.openssh.com/


2. Stop the SSH server daemon sshd.

$ sudo launchctl stop com.openssh.sshd

3. Start the SSH server daemon sshd.

$ sudo launchctl start com.openssh.sshd

Next Steps

After you have completed the setup of SSH on a host, test the setup on the host as explained in
Testing the SSH Setup on a Host.

To Set Up SSH on Linux systems

1. Ensure that the following options in the configuration file /etc/ssh/sshd_config are set to yes:

◦ StrictModes

◦ PubkeyAuthentication

2. Determine if the SSH server daemon sshd is running.

$ /sbin/service sshd status

3. If the SSH server daemon sshd is not running, start this daemon.

If the daemon is running, no further action is required.

$ /sbin/service sshd start

Example 2-2 Determining if the sshd Daemon Is Running on a Linux System

This example confirms that the SSH server daemon sshd is running on a Linux system.

$ /sbin/service sshd status
openssh-daemon (pid  2373) is running...

Next Steps

After you have completed the setup of SSH on a host, test the setup on the host as explained in
Testing the SSH Setup on a Host.

Testing the SSH Setup on a Host
After setting up SSH on a host, test the setup to ensure that you can use SSH to contact the host from

23



another host. Testing the SSH setup on a host verifies that the SSH server daemon sshd is running
and that the SSH user has a valid user account on the host.

If you cannot use SSH to contact the host, troubleshoot the SSH setup before setting up SSH user
authentication.

To Test the SSH Setup on a Host

1. From another host, use SSH to log in into the host that you are testing as the SSH user.

$ ssh -l user-name host-name

user-name

The user name for the SSH user’s account on the host.

host-name

The host name of the host that you are logging in to.

2. In response to the prompt, type your password.

If this step succeeds, your setup of SSH is complete.

The first time that you connect to a host, you might be warned that the authenticity cannot be
established and be asked if you want to continue connection. If you trust the host, answer yes to
connect to the host.

Troubleshooting

To obtain diagnostic information, use the -v option of the command-line SSH client and the -d
option of the SSH server daemon sshd. How to start the SSH server daemon sshd manually depends
on the operating system and SSH provider that you are using.

If the SSH server daemon sshd is set up on a host that has a firewall, ensure that a rule is defined to
allow inbound traffic on the SSH port. The default SSH port is port 22.

If your connection is refused, the SSH server daemon sshd is not running and you must start the
daemon. For instructions, see the following sections:

• To Configure and Start the Cygwin SSH Server Daemon sshd

• To Configure and Start the MKS Toolkit SSH Server Daemon sshd

If your connection is accepted, but you cannot log in, ensure that the SSH user has a valid user
account on the host.

Next Steps

After testing the SSH setup, set up SSH user authentication to enable SSH to authenticate users
without prompting for a password. For more information, see Setting Up SSH User Authentication.

24



Setting Up SSH User Authentication
When a Eclipse GlassFish subcommand uses SSH to log in to a remote host, Eclipse GlassFish must
be able to authenticate the SSH user. Setting up SSH user authentication ensures that this
requirement is met.

Before setting up SSH user authentication, determine the authentication scheme to use. If SSH is
already deployed at your site, the authentication scheme to use might already be chosen for you.

The following table lists the authentication schemes that Eclipse GlassFish supports. The table also
lists the advantages and disadvantages of each authentication scheme.

Authentication Scheme Advantages Disadvantages

Public key without encryption Eclipse GlassFish provides tools
to simplify set up.

SSH must be configured to
locate users' key files in the
correct location. File access
permissions for key files and
the directory that contains the
key files must be set correctly.

Public key with passphrase-
protected encryption

This scheme is more secure
than public key authentication
without encryption.

SSH must be configured to
locate users' key files in the
correct location. File access
permissions for key files and
the directory that contains the
key files must be set correctly.
For each SSH user, Eclipse
GlassFish password aliases are
required for the encryption
passphrase.

Password No SSH configuration is
required to locate key files or to
ensure that file access
permissions are correct.

For each SSH user, Eclipse
GlassFish password aliases are
required for the SSH password.

The following topics are addressed here:

• To Set Up Public Key Authentication Without Encryption

• To Set Up Encrypted Public Key Authentication

• To Set Up Password Authentication

To Set Up Public Key Authentication Without Encryption

Use the setup-ssh subcommand in local mode to set up public key authentication without
encryption. This subcommand enables you to set up public key authentication on multiple hosts in
a single operation.

The setup-ssh subcommand generates a key pair and distributes the public key file to specified

25



hosts. The private key file and the public key file are protected only by the file system’s file access
permissions. If you require additional security, set up public key authentication with passphrase-
protected encryption as explained in To Set Up Encrypted Public Key Authentication.

Before You Begin

Ensure that the following prerequisites are met:

• SSH is set up on each host where you are setting up public key authentication. For more
information, see the following sections:

◦ Setting Up Cygwin SSH on Windows

◦ Setting Up the MKS Toolkit on Windows

◦ Setting Up SSH on UNIX and Linux Systems

• Only the SSH user has write access to the following files and directories on each host where you
are setting up public key authentication:

◦ The SSH user’s home directory

◦ The ~/.ssh directory

◦ The authorized_key file

If other users can write to these files and directories, the secure service might not trust the
authorized_key file and might disallow public key authentication.

1. Generate an SSH key pair and distribute the public key file to the hosts where you are
setting up public key authentication.


Only the options that are required to complete this task are provided in
this step. For information about all the options for setting up an SSH
key, see the setup-ssh(1) help page.

asadmin> setup-ssh [--sshuser sshuser] host-list

sshuser

The SSH user for which you are generating the SSH key pair. If you are running the
subcommand as the SSH user, you may omit this option.

host-list

A space-separated list of the names of the hosts where the SSH public key is to be
distributed.

2. After generating the SSH key pair, the subcommand uses SSH to log in to each host in
host-list as the SSH user to distribute the public key. Each time a password is required to
log in to a host, you are prompted for the SSH user’s password.

In response to each prompt for a password, type the SSH user’s password.

Example 2-3 Setting Up Public Key Authentication Without Encryption

26

https://glassfish.org/docs/latest/reference-manual.pdf#setup-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#setup-ssh


This example generates and sets up an SSH key for the user gfuser on the hosts sua01 and sua02. The
command is run by the user gfuser.

asadmin> setup-ssh --generatekey=true sua01 sua02
Enter SSH password for gfuser@sua01>
Created directory /home/gfuser/.ssh
/usr/bin/ssh-keygen successfully generated the identification /home/gfuser/.ssh/id_rsa
Copied keyfile /home/gfuser/.ssh/id_rsa.pub to gfuser@sua01
Successfully connected to gfuser@sua01 using keyfile /home/gfuser/.ssh/id_rsa
Copied keyfile /home/gfuser/.ssh/id_rsa.pub to gfuser@sua02
Successfully connected to gfuser@sua02 using keyfile /home/gfuser/.ssh/id_rsa
Command setup-ssh executed successfully.

Next Steps

After setting up public key authentication, test the setup by using ssh to log in as the SSH user to
each host where the public key was distributed. For each host, log in first with the unqualified host
name and then with the fully qualified name. If SSH does not prompt for password, public key
authentication is set up correctly on the host.

If you are prompted for a password, verify that the public key file was copied correctly to the SSH
user’s authorized_keys file.

Troubleshooting

Setup might fail because file access permissions in the SSH user’s home directory are too
permissive. In this situation, ensure that the file access permissions in the SSH user’s home
directory meet the requirements for performing this procedure.

If you have set the file access permissions in the SSH user’s home directory correctly, setup might
still fail if you are using the MKS Toolkit. In this situation, correct the problem in one of the
following ways:

• On each remote host, copy the public key file to the SSH user’s ~/.ssh directory and import the
file. To import the file, select the Secure Service tab in the MKS configuration GUI and click
Passwordless.

• Disable strict modes.

See Also

• Setting Up Cygwin SSH on Windows

• Setting Up the MKS Toolkit on Windows

• Setting Up SSH on UNIX and Linux Systems

• setup-ssh(1)

You can also view the full syntax and options of the subcommand by typing asadmin help setup-ssh
at the command line.

27

https://glassfish.org/docs/latest/reference-manual.pdf#setup-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#setup-ssh


To Set Up Encrypted Public Key Authentication

Encrypted key file authentication uses an encrypted private key file that is protected with a
passphrase. This passphrase must be provided to use the private key to unlock the public key. If you
require encrypted public key authentication, you must use the SSH utility ssh-keygen to generate an
SSH key pair with an encrypted private key. You can then use the setup-ssh subcommand to
distribute the public key file to specified hosts.

To use the encrypted key file, Eclipse GlassFish requires the passphrase with which the key file was
encrypted. To provide this passphrase securely to Eclipse GlassFish, create a Eclipse GlassFish
password alias to represent the passphrase and store this alias in a password file that is passed to
the asadmin utility.


Only the options that are required to complete this task are provided in each step.
For information about all the options for the commands and subcommands in this
task, see their help pages or man pages.

Before You Begin

Ensure that the following prerequisites are met:

• SSH is set up on each host where you are setting up public key authentication. For more
information, see the following sections:

◦ Setting Up Cygwin SSH on Windows

◦ Setting Up the MKS Toolkit on Windows

◦ Setting Up SSH on UNIX and Linux Systems

• Only the SSH user has write access to the following files and directories on each host where you
are setting up public key authentication:

◦ The SSH user’s home directory

◦ The ~/.ssh directory

◦ The authorized_key file

If other users can write to these files and directories, the secure service might not trust the
authorized_key file and might disallow public key authentication.

1. Generate an SSH key pair with an encrypted private key file.

Use the SSH utility ssh-keygen for this purpose.

$ ssh-keygen -t type

type

The algorithm that is to be used for the key and which must be rsa, dsa, or rsa1.

The ssh-keygen utility prompts you for a file in which to save the key.

28

https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ssh-keygen-1


2. To simplify the distribution of the key file, accept the default file.

The ssh-keygen utility prompts you for a passphrase.

3. In response to the prompt, type your choice of passphrase for encrypting the private key
file.

4. The ssh-keygen utility prompts you to type the passphrase again.

In response to the prompt, type the passphrase that you set in Step 3.

5. Distribute the public key file to the hosts where you are setting up public key
authentication.

Use the setup-ssh asadmin subcommand for this purpose.

$ asadmin setup-ssh --generatekey=false host-list

host-list

A space-separated list of the names of the hosts where the SSH public key is to be
distributed.

The subcommand uses SSH to log in to each host in host-list as the SSH user to
distribute the public key. Each time a passphrase or a password is required to log in to
a host, you are prompted for the passphrase or the SSH user’s password.

6. In response to each prompt, type the requested information.

▪ In response to each prompt for a passphrase, type the passphrase that you set in
Step 3.

▪ In response to each prompt for a password, type the SSH user’s password.

7. Create a Eclipse GlassFish password alias for the passphrase that you set in Step 3.

1. Ensure that the DAS is running.
Remote subcommands require a running server.

2. Run the create-password-alias asadmin subcommand.

$ asadmin create-password-alias alias-name

alias-name

Your choice of name for the alias that you are creating.

The create-password-alias subcommand prompts you to type the passphrase for
which you are creating an alias.

3. In response to the prompt, type the passphrase that you set in Step 3.

The create-password-alias subcommand prompts you to type the passphrase again.

29

https://glassfish.org/docs/latest/reference-manual.pdf#setup-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias


4. In response to the prompt, type the passphrase that you set in Step 3 again.

8. Create a plain text file that contains the following entry for the passphrase alias:

AS_ADMIN_SSHKEYPASSPHRASE=${ALIAS=alias-name}

alias-name

The alias name that you specified in Step 7.


When you create an SSH node, pass this file as the --passwordfile
option of the asadmin utility. For more information, see To Create an
SSH Node.

Example 2-4 Setting Up Encrypted Public Key Authentication

This example generates an SSH key pair with an encrypted private key for the user gfadmin and
distributes the public key to the hosts sj01 and ja02. The example also creates an alias that is named
ssh-key-passphrase for the private key’s passphrase.

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/gfadmin/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/gfadmin/.ssh/id_rsa.
Your public key has been saved in /home/gfadmin/.ssh/id_rsa.pub.
The key fingerprint is:
db:b5:f6:0d:fe:16:33:91:20:64:90:1a:84:66:f5:d0 gfadmin@dashost
$ asadmin setup-ssh --generatekey=false sj01 sj02
Key /home/gfadmin/.ssh/id_rsa is encrypted
Enter key passphrase>
Enter SSH password for gfadmin@sj01>
Copied keyfile /home/gfadmin/.ssh/id_rsa.pub to gfadmin@sj01
Successfully connected to gfadmin@sj01 using keyfile /home/gfadmin/.ssh/id_rsa
Successfully connected to gfadmin@sj02 using keyfile /home/gfadmin/.ssh/id_rsa
SSH public key authentication is already configured for gfadmin@sj02
Command setup-ssh executed successfully.
$ asadmin create-password-alias ssh-key-passphrase
Enter the alias password>
Enter the alias password again>
Command create-password-alias executed successfully.

The entry in the password file for the ssh-key-passphrase alias is as follows:

AS_ADMIN_SSHKEYPASSPHRASE=${ALIAS=ssh-key-passphrase}

Troubleshooting

30



Setup might fail because file access permissions in the SSH user’s home directory are too
permissive. In this situation, ensure that the file access permissions in the SSH user’s home
directory meet the requirements for performing this procedure.

If you have set the file access permissions in the SSH user’s home directory correctly, setup might
still fail if you are using the MKS Toolkit. In this situation, correct the problem in one of the
following ways:

• On each remote host, copy the public key file to the SSH user’s ~/.ssh directory and import the
file. To import the file, select the Secure Service tab in the MKS configuration GUI and click
Passwordless.

• Disable strict modes.

See Also

• Setting Up Cygwin SSH on Windows

• Setting Up the MKS Toolkit on Windows

• Setting Up SSH on UNIX and Linux Systems

• asadmin(1M)

• create-password-alias(1)

• setup-ssh(1)

• ssh-keygen(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help create-password-alias

• asadmin help setup-ssh

To Set Up Password Authentication

To use SSH to log in to a remote host, Eclipse GlassFish requires the SSH user’s password. To
provide this password securely to Eclipse GlassFish, create a Eclipse GlassFish password alias to
represent the password and store this alias in a password file that is passed to the asadmin utility.

Before You Begin

Ensure that SSH is set up on each host where you are setting up password authentication. For more
information, see the following sections:

• Setting Up Cygwin SSH on Windows

• Setting Up the MKS Toolkit on Windows

• Setting Up SSH on UNIX and Linux Systems

1. Ensure that the DAS is running.
Remote subcommands require a running server.

31

https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias
https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias
https://glassfish.org/docs/latest/reference-manual.pdf#setup-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#setup-ssh
https://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ssh-keygen-1
https://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ssh-keygen-1
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin


2. Create an alias for the SSH user’s password.


Only the options that are required to complete this task are provided in this
step. For information about all the options for creating a password alias,
see the create-password-alias(1) help page.

asadmin> create-password-alias alias-name

alias-name

Your choice of name for the alias that you are creating.

3. The create-password-alias subcommand prompts you to type the password for which you
are creating an alias.
In response to the prompt, type the SSH user’s password.
The create-password-alias subcommand prompts you to type the password again.

4. In response to the prompt, type the SSH user’s password again.

5. Create a plain text file that contains the following entry for the password alias:

AS_ADMIN_SSHPASSWORD=${ALIAS=alias-name}

alias-name

The alias name that you specified in Step 2.


When you create an SSH node, pass this file as the --passwordfile option of the
asadmin utility. For more information, see To Create an SSH Node.

Example 2-5 Creating an Alias for the SSH User’s Password

This example creates an alias that is named ssh-password for the SSH user’s password.

$ asadmin create-password-alias ssh-password
Enter the alias password>
Enter the alias password again>
Command create-password-alias executed successfully.

The entry in the password file for the ssh-password alias is as follows:

AS_ADMIN_SSHPASSWORD=${ALIAS=ssh-password}

See Also

• Setting Up Cygwin SSH on Windows

• Setting Up the MKS Toolkit on Windows

32

https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias
https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias


• Setting Up SSH on UNIX and Linux Systems

• asadmin(1M)

• create-password-alias(1)

You can also view the full syntax and options of the subcommand by typing asadmin help create-
password-alias at the command line.

Installing and Removing Eclipse GlassFish Software on
Multiple Hosts
Eclipse GlassFish software must be installed on all hosts where Eclipse GlassFish will run. How to
install Eclipse GlassFish software on multiple hosts depends on the degree of control that you
require over the installation on each host.

• If you require complete control over the installation on each host, install the software from a
Eclipse GlassFish distribution on each host individually. For more information, see Eclipse
GlassFish Installation Guide.

• If the same set up on each host is acceptable, copy an existing Eclipse GlassFish installation to
the hosts. For more information, see To Copy a Eclipse GlassFish Installation to Multiple Hosts.

Eclipse GlassFish also enables you to remove Eclipse GlassFish software from multiple hosts in a
single operation. For more information, see To Remove Eclipse GlassFish Software From Multiple
Hosts.

The following topics are addressed here:

• To Copy a Eclipse GlassFish Installation to Multiple Hosts

• To Remove Eclipse GlassFish Software From Multiple Hosts

To Copy a Eclipse GlassFish Installation to Multiple Hosts

Use the install-node-ssh subcommand in local mode to copy an installation of Eclipse GlassFish
software to multiple hosts.

Before You Begin

Ensure that SSH is set up on the host where you are running the subcommand and on each host
where you are copying the Eclipse GlassFish software.

Run the appropriate subcommand for the protocol that is set up for communication between the
hosts.

• If SSH is set up for communication between the hosts, run the install-node-ssh subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for copying an installation of Eclipse
GlassFish software, see the install-node-ssh(1) help page.

33

https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias
https://glassfish.org/docs/latest/reference-manual.pdf#create-password-alias
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/reference-manual.pdf#install-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#install-node-ssh


asadmin> install-node-ssh host-list

host-list

A space-separated list of the names of the hosts where you are copying the installation of
Eclipse GlassFish software.

Example 2-6 Copying a Eclipse GlassFish Installation to Multiple SSH-Enabled Hosts

This example copies the Eclipse GlassFish software on the host where the subcommand is run to
the default location on the SSH-enabled hosts sj03.example.com and sj04.example.com.

asadmin> install-node-ssh sj03.example.com sj04.example.com
Created installation zip /home/gfuser/glassfish2339538623689073993.zip
Successfully connected to gfuser@sj03.example.com using keyfile /home/gfuser
/.ssh/id_rsa
Copying /home/gfuser/glassfish2339538623689073993.zip (81395008 bytes) to
sj03.example.com:/export/glassfish7
Installing glassfish2339538623689073993.zip into sj03.example.com:/export/glassfish7
Removing sj03.example.com:/export/glassfish7/glassfish2339538623689073993.zip
Fixing file permissions of all files under sj03.example.com:/export/glassfish7/bin
Successfully connected to gfuser@sj04.example.com using keyfile /home/gfuser
/.ssh/id_rsa
Copying /home/gfuser/glassfish2339538623689073993.zip (81395008 bytes) to
sj04.example.com:/export/glassfish7
Installing glassfish2339538623689073993.zip into sj04.example.com:/export/glassfish7
Removing sj04.example.com:/export/glassfish7/glassfish2339538623689073993.zip
Fixing file permissions of all files under sj04.example.com:/export/glassfish7/bin
Command install-node-ssh executed successfully

See Also

• install-node-ssh(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help install-node-ssh

To Remove Eclipse GlassFish Software From Multiple Hosts

Use the uninstall-node-ssh subcommand in local mode to remove Eclipse GlassFish software from
multiple hosts.

Before You Begin

Ensure that the following prerequisites are met:

• SSH is set up on the host where you are running the subcommand and on each host from which
you are removing the Eclipse GlassFish software.

34

https://glassfish.org/docs/latest/reference-manual.pdf#install-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#install-node-ssh


• No process is accessing the parent of the base installation directory for the Eclipse GlassFish
software or any subdirectory of this directory.

• The parent of the base installation directory for the Eclipse GlassFish software is the same on
each host from which you are removing the Eclipse GlassFish software.

• For hosts that use SSH for remote communication, the configuration of the following items is
the same on each host:

◦ SSH port

◦ SSH user

◦ SSH key file

Run the appropriate subcommand for the protocol that is set up for communication between the
hosts.

• If SSH is set up for communication between the hosts, run the uninstall-node-ssh subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for removing Eclipse GlassFish
software, see the uninstall-node-ssh(1) help page.

asadmin> uninstall-node-ssh host-list

host-list

A space-separated list of the names of the hosts from which you are removing Eclipse
GlassFish software.

Example 2-7 Removing Eclipse GlassFish Software From Multiple SSH-Enabled Hosts

This example removes Eclipse GlassFish software on the SSH-enabled hosts sj03.example.com and
sj04.example.com from the default location.

asadmin> uninstall-node-ssh sj03 sj04
Successfully connected to gfuser@sj03.example.com using keyfile /home/gfuser
/.ssh/id_rsa
Successfully connected to gfuser@sj04.example.com using keyfile /home/gfuser
/.ssh/id_rsa
Command uninstall-node-ssh executed successfully.

See Also

• uninstall-node-ssh(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help uninstall-node-ssh

35

https://glassfish.org/docs/latest/reference-manual.pdf#uninstall-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#uninstall-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#uninstall-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#uninstall-node-ssh


3 Administering Eclipse GlassFish Nodes
A node represents a host on which the Eclipse GlassFish software is installed. A node must exist for
every host on which Eclipse GlassFish instances reside. A node’s configuration contains information
about the host such as the name of the host and the location where the Eclipse GlassFish is installed
on the host.

The following topics are addressed here:

• Types of Eclipse GlassFish Nodes

• Creating, Listing, Testing, and Deleting SSH Nodes

• Creating, Listing, and Deleting CONFIG Nodes

• Updating and Changing the Type of a Node

Types of Eclipse GlassFish Nodes
Each Eclipse GlassFish node is one of the following types of node:

SSH

An SSH node supports communication over secure shell (SSH). If SSH is set up and you plan to
administer your Eclipse GlassFish instances centrally, the instances must reside on SSH nodes.
An SSH node’s configuration contains the information that is required to connect to the host
through SSH. This information includes, for example, the user name of the SSH user and the port
number for SSH connections to the host.

CONFIG

A CONFIG node does not support remote communication. If SSH is not set up and you plan to
administer your instances locally, the instances can reside on CONFIG nodes. You cannot use
CONFIG nodes for instances that you plan to administer centrally.
Each domain contains a predefined CONFIG node that is named localhost-domain, where domain
is the name of the domain. On the host where the domain administration server (DAS) is
running, this node represents the local host.

Creating, Listing, Testing, and Deleting SSH Nodes
An SSH node supports communication over SSH. If SSH is set up and you plan to administer your
Eclipse GlassFish instances centrally, the instances must reside on SSH nodes. For information about
setting up SSH, see Enabling Centralized Administration of Eclipse GlassFish Instances.

Eclipse GlassFish enables you to create SSH nodes for use by instances, obtain information about SSH
nodes, test if SSH nodes are reachable, and delete SSH nodes that are no longer required.

The following topics are addressed here:

• To Create an SSH Node

• To List SSH Nodes in a Domain

36



• To Test if an SSH Node is Reachable

• To Delete an SSH Node

To Create an SSH Node

Use the create-node-ssh subcommand in remote mode to create an SSH node.

Before You Begin

Ensure that the SSH user can use SSH to log in to the host that the node will represent. By default,
the create-node-ssh subcommand validates the node’s parameters and the SSH connection to the
host. If the SSH user cannot use SSH to log in to the host, the validation fails.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the create-node-ssh subcommand.



Only the options that are required to complete this task are provided in this
step. For information about all the options for configuring the node, see the
create-node-ssh(1) help page.

If you are using password authentication for the SSH user, you must specify a
password file through the --passwordfile option of the asadmin utility. For more
information about SSH user authentication, see Setting Up SSH User
Authentication.

asadmin> create-node-ssh --nodehost node-host [--installdir install-dir ]
node-name

node-host

The name of the host that the node represents. The name of the host must be specified.
Otherwise, an error occurs.

install-dir

The full path to the parent of the base installation directory of the Eclipse GlassFish software
on the host, for example, /export/glassfish7/. If the Eclipse GlassFish software is installed in
the same directory on the node’s host and the DAS host, you can omit this option.

node-name

Your choice of name for the node that you are creating.

Example 3-1 Creating an SSH Node

This example creates the SSH node sj01 to represent the host sj01.example.com. The Eclipse GlassFish
software is installed in the same directory on the DAS host and on the host sj01.example.com.

asadmin> create-node-ssh --nodehost sj01.example.com sj01

37

https://glassfish.org/docs/latest/reference-manual.pdf#create-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#create-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin


Command create-node-ssh executed successfully.

Troubleshooting

The create-node-ssh subcommand might fail to create the node and report the error Illegal sftp
packet len. If this error occurs, ensure that no the startup file on the remote host displays text for
noninteractive shells. Examples of startup files are .bashrc, .cshrc, .login, and .profile.

The SSH session interprets any text message that is displayed during login as a file-transfer protocol
packet. Therefore, any statement in a startup file that displays text messages corrupts the SSH
session, causing this error.

See Also

create-node-ssh(1)

You can also view the full syntax and options of the subcommand by typing asadmin help create-
node-ssh at the command line.

Next Steps

After creating a node, you can create instances on the node as explained in the following sections:

• To Create an Instance Centrally

• To Create an Instance Locally

To List SSH Nodes in a Domain

Use the list-nodes-ssh subcommand in remote mode to obtain information about existing SSH
nodes in a domain.


To obtain information about all existing nodes in a domain, use the list-nodes
subcommand.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the list-nodes-ssh subcommand.

asadmin> list-nodes-ssh

Example 3-2 Listing Basic Information About All SSH Nodes in a Domain

This example lists the name, type, and host of all SSH nodes in the current domain.

asadmin> list-nodes-ssh
sj01  SSH  sj01.example.com
sj02  SSH  sj02.example.com
Command list-nodes-ssh executed successfully.

38

https://glassfish.org/docs/latest/reference-manual.pdf#create-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#create-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-ssh


Example 3-3 Listing Detailed Information About All SSH Nodes in a Domain

This example lists detailed information about all SSH nodes in the current domain.

asadmin> list-nodes-ssh --long=true
NODE NAME   TYPE   NODE HOST          INSTALL DIRECTORY    REFERENCED BY
sj01        SSH    sj01.example.com   /export/glassfish7   pmd-i1
sj02        SSH    sj02.example.com   /export/glassfish7   pmd-i2
Command list-nodes-ssh executed successfully.

See Also

• list-nodes(1)

• list-nodes-ssh(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help list-nodes

• asadmin help list-nodes-ssh

To Test if an SSH Node is Reachable

Use the ping-node-ssh subcommand in remote mode to test if an SSH node is reachable.

Before You Begin

Ensure that SSH is configured on the host where the DAS is running and on the host that the node
represents.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the ping-node-ssh subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for testing the node, see the ping-
node-ssh(1) help page.

asadmin> ping-node-ssh node-name

node-name

The name of the node to test.

Example 3-4 Testing if an SSH Node Is Reachable

This example tests if the SSH node sj01 is reachable.

39

https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#ping-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#ping-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#ping-node-ssh


asadmin> ping-node-ssh sj01
Successfully made SSH connection to node sj01 (sj01.example.com)
Command ping-node-ssh executed successfully.

See Also

ping-node-ssh(1)

You can also view the full syntax and options of the subcommand by typing asadmin help ping-
node-ssh at the command line.

To Delete an SSH Node

Use the delete-node-ssh subcommand in remote mode to delete an SSH node.

Deleting a node removes the node from the configuration of the DAS. The node’s directories and
files are deleted when the last Eclipse GlassFish instance that resides on the node is deleted.

Before You Begin

Ensure that no Eclipse GlassFish instances reside on the node that you are deleting. For information
about how to delete an instance, see the following sections.

• To Delete an Instance Centrally

• To Delete an Instance Locally

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Confirm that no instances reside on the node that you are deleting.

asadmin> list-nodes-ssh --long=true

3. Run the delete-node-ssh subcommand.

asadmin> delete-node-ssh node-name

node-name

The name of the node that you are deleting.

Example 3-5 Deleting an SSH Node

This example confirms that no instances reside on the SSH node sj01 and deletes the node sj01.

asadmin> list-nodes-ssh --long=true
NODE NAME   TYPE   NODE HOST          INSTALL DIRECTORY    REFERENCED BY
sj01        SSH    sj01.example.com   /export/glassfish7
sj02        SSH    sj02.example.com   /export/glassfish7   pmd-i2
Command list-nodes-ssh executed successfully.

40

https://glassfish.org/docs/latest/reference-manual.pdf#ping-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#ping-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#delete-node-ssh


asadmin> delete-node-ssh sj01
Command delete-node-ssh executed successfully.

See Also

• To Delete an Instance Centrally

• To Delete an Instance Locally

• delete-node-ssh(1)

• list-nodes-ssh(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help delete-node-ssh

• asadmin help list-nodes-ssh

Creating, Listing, and Deleting CONFIG Nodes
A CONFIG node does not support remote communication. If SSH is not set up and you plan to
administer your instances locally, the instances can reside on CONFIG nodes. You cannot use CONFIG
nodes for instances that you plan to administer centrally.

Eclipse GlassFish enables you to create CONFIG nodes for use by instances, obtain information about
CONFIG nodes, and delete CONFIG nodes that are no longer required.

The following topics are addressed here:

• To Create a CONFIG Node

• To List CONFIG Nodes in a Domain

• To Delete a CONFIG Node

To Create a CONFIG Node

Use the create-node-config command in remote mode to create a CONFIG node.



If you create an instance locally on a host for which no nodes are defined, you can
create the instance without creating a node beforehand. In this situation, Eclipse
GlassFish creates a CONFIG node for you. The name of the node is the unqualified
name of the host. For more information, see To Create an Instance Locally.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the create-node-config subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for configuring the node, see the
create-node-config(1) help page.

41

https://glassfish.org/docs/latest/reference-manual.pdf#delete-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#delete-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#create-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#create-node-config


asadmin> create-node-config [--nodehost node-host] [--installdir install-dir ]
node-name

node-host

The name of the host that the node represents. You may omit this option. The name of the
host can be determined when instances that reside on the node are created.

install-dir

The full path to the parent of the base installation directory of the Eclipse GlassFish software
on the host, for example, /export/glassfish7/. You may omit this option. The installation
directory can be determined when instances that reside on the node are created.

node-name

Your choice of name for the node that you are creating.

Example 3-6 Creating a CONFIG Node

This example creates the CONFIG node cfg01. The host that the node represents and the installation
directory of the Eclipse GlassFish software on the host are to be determined when instances are
added to the node.

asadmin> create-node-config cfg01
Command create-node-config executed successfully.

See Also

create-node-config(1)

You can also view the full syntax and options of the subcommand by typing asadmin help create-
node-config at the command line.

Next Steps

After creating a node, you can create instances on the node as explained in To Create an Instance
Locally.

To List CONFIG Nodes in a Domain

Use the list-nodes-config subcommand in remote mode to obtain information about existing
CONFIG nodes in a domain.


To obtain information about all existing nodes in a domain, use the list-nodes
subcommand.

1. Ensure that the DAS is running.

Remote subcommands require a running server.

42

https://glassfish.org/docs/latest/reference-manual.pdf#create-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#create-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes


2. Run the list-nodes-config subcommand.

asadmin> list-nodes-config

Example 3-7 Listing Basic Information About All CONFIG Nodes in a Domain

This example lists the name, type, and host of all CONFIG nodes in the current domain.

asadmin> list-nodes-config
localhost-domain1  CONFIG  localhost
cfg01  CONFIG  cfg01.example.com
cfg02  CONFIG  cfg02.example.com
Command list-nodes-config executed successfully.

Example 3-8 Listing Detailed Information About All CONFIG Nodes in a Domain

This example lists detailed information about all CONFIG nodes in the current domain.

asadmin> list-nodes-config --long=true
NODE NAME           TYPE     NODE HOST            INSTALL DIRECTORY    REFERENCED BY
localhost-domain1   CONFIG   localhost            /export/glassfish7
cfg01               CONFIG   cfg01.example.com    /export/glassfish7   yml-i1
cfg02               CONFIG   cfg02.example.com    /export/glassfish7   yml-i2
Command list-nodes-config executed successfully.

See Also

• list-nodes(1)

• list-nodes-config(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help list-nodes

• asadmin help list-nodes-config

To Delete a CONFIG Node

Use the delete-node-config subcommand in remote mode to delete a CONFIG node.

Deleting a node removes the node from the configuration of the DAS. The node’s directories and
files are deleted when the last Eclipse GlassFish instance that resides on the node is deleted.

Before You Begin

Ensure that no Eclipse GlassFish instances reside on the node that you are deleting. For information
about how to delete an instance that resides on a CONFIG node, see To Delete an Instance Locally.

43

https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-config
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-config
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-config


1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Confirm that no instances reside on the node that you are deleting.

asadmin> list-nodes-config --long=true

3. Run the delete-node-config subcommand.

asadmin> delete-node-config node-name

node-name

The name of the node that you are deleting.

Example 3-9 Deleting a CONFIG Node

This example confirms that no instances reside on the CONFIG node cfg01 and deletes the node cfg01.

asadmin> list-nodes-config --long=true
NODE NAME           TYPE     NODE HOST           INSTALL DIRECTORY    REFERENCED BY
localhost-domain1   CONFIG   localhost           /export/glassfish7
cfg01               CONFIG   cfg01.example.com   /export/glassfish7
cfg02               CONFIG   cfg02.example.com   /export/glassfish7   yml-i2
Command list-nodes-config executed successfully.
asadmin> delete-node-config cfg01
Command delete-node-config executed successfully.

See Also

• To Delete an Instance Locally

• delete-node-config(1)

• list-nodes-config(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help delete-node-config

• asadmin help list-nodes-config

Updating and Changing the Type of a Node
Eclipse GlassFish enables you to update the configuration data of any node and to change the type
of a node.

The following topics are addressed here:

• To Update an SSH Node

44

https://glassfish.org/docs/latest/reference-manual.pdf#delete-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#delete-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#delete-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-config
https://glassfish.org/docs/latest/reference-manual.pdf#list-nodes-config


• To Update a CONFIG Node

• To Change the Type of a Node

To Update an SSH Node

Use the update-node-ssh subcommand in remote mode to update an SSH node.

Options of this subcommand specify the new values of the node’s configuration data. If you omit an
option, the existing value is unchanged.

Before You Begin

Ensure that the following prerequisites are met:

• SSH is configured on the host where the DAS is running and on the host that the node
represents.

• The node that you are updating exists.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the update-node-ssh subcommand.

asadmin> update-node-ssh options node-name

options

Options of the update-node-ssh subcommand for changing the node’s configuration data.
For information about these options, see the update-node-ssh(1) help page.

node-name

The name of the SSH node to update.

Example 3-10 Updating an SSH Node

This example updates the host that the node sj01 represents to adc01.example.com.

asadmin> update-node-ssh --nodehost adc01.example.com sj01
Command update-node-ssh executed successfully.

See Also

update-node-ssh(1)

You can also view the full syntax and options of the subcommand by typing asadmin help update-
node-ssh at the command line.

To Update a CONFIG Node

Use the update-node-config subcommand in remote mode to update a CONFIG node.

45

https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh


Options of this subcommand specify the new values of the node’s configuration data. If you omit an
option, the existing value is unchanged.

Before You Begin

Ensure that the node that you are updating exists.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the update-node-config subcommand.

asadmin> uupdate-node-config options node-name

options

Options of the update-node-config subcommand for changing the node’s configuration data.
For information about these options, see the update-node-config(1) help page.

node-name

The name of the CONFIG node to update.

Example 3-11 Updating a CONFIG Node

This example updates the host that the node cfg02 represents to adc02.example.com.

asadmin> update-node-config --nodehost adc02.example.com cfg02
Command update-node-config executed successfully.

See Also

update-node-config(1)

You can also view the full syntax and options of the subcommand by typing asadmin help update-
node-config at the command line.

To Change the Type of a Node

The subcommands for updating a node can also be used to change the type of a node.

Changing the type of a CONFIG node enables remote communication for the node. The type of the
node after the change determines the protocol over which the node is enabled for remote
communication:

• An SSH node is enabled for communication over SSH.

As part of the process of changing the type of a node, you can also change other configuration data
for the node.

Options of the subcommands for updating a node specify the new values of the node’s
configuration data. For most options, if you omit the option, the existing value is unchanged.

46

https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config


However, default values are applied in the following situations:

• Any of the following options of the update-node-ssh subcommand is omitted:

◦ --sshport

◦ --sshuser

◦ --sshkeyfile


Changing an SSH node to a CONFIG node disables remote communication for the
node.

Before You Begin

Ensure that the following prerequisites are met:

• SSH is configured on the host where the DAS is running and on the host that the node
represents.

• The node the type of which you are changing exists.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the appropriate subcommand for updating a node, depending on the type of the node
after the change.

▪ To change the type of a node to SSH, run the update-node-ssh subcommand on the node.

asadmin> update-node-ssh [options] config-node-name

options

Options of the update-node-ssh subcommand for changing the node’s configuration
data. For information about these options, see the update-node-ssh(1) help page.

config-node-name

The name of the CONFIG node to change.

▪ To change the type of a node to CONFIG, run the update-node-config subcommand on the
node.

asadmin> update-node-config [options] ssh-node-name

options

Options of the update-node-config subcommand for changing the node’s configuration
data. For information about these options, see the update-node-config(1) help page.

ssh-node-name

The name of the SSH node to change.

Example 3-12 Changing a CONFIG Node to an SSH Node

47

https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config


This example changes the CONFIG node cfg02 to an SSH node.

asadmin> update-node-ssh cfg02
Command update-node-ssh executed successfully.

See Also

• update-node-config(1)

• update-node-ssh(1)

You can also view the full syntax and options of the subcommand by typing the following
commands at the command line.

• asadmin help update-node-config

• asadmin help update-node-ssh

48

https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-config
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh
https://glassfish.org/docs/latest/reference-manual.pdf#update-node-ssh


4 Administering Eclipse GlassFish Clusters
A cluster is a collection of Eclipse GlassFish instances that work together as one logical entity. A
cluster provides a runtime environment for one or more Java Platform, Enterprise Edition (Jakarta
EE) applications. A cluster provides high availability through failure protection, scalability, and load
balancing.

The Group Management Service (GMS) enables instances to participate in a cluster by detecting
changes in cluster membership and notifying instances of the changes. To ensure that GMS can
detect changes in cluster membership, a cluster’s GMS settings must be configured correctly.

The following topics are addressed here:

• About Eclipse GlassFish Clusters

• Group Management Service

• Creating, Listing, and Deleting Clusters

About Eclipse GlassFish Clusters
A cluster is a named collection of Eclipse GlassFish instances that share the same applications,
resources, and configuration information. For information about Eclipse GlassFish instances, see
Administering Eclipse GlassFish Instances.

Eclipse GlassFish enables you to administer all the instances in a cluster as a single unit from a
single host, regardless of whether the instances reside on the same host or different hosts. You can
perform the same operations on a cluster that you can perform on an unclustered instance, for
example, deploying applications and creating resources.

A cluster provides high availability through failure protection, scalability, and load balancing.

• Failure protection. If an instance or a host in a cluster fails, Eclipse GlassFish detects the failure
and recovers the user session state. If a load balancer is configured for the cluster, the load
balancer redirects requests from the failed instance to other instances in the cluster. Because
the same applications and resources are on all instances in the cluster, an instance can fail over
to any other instance in the cluster.

To enable the user session state to be recovered, each instance in a cluster sends in-memory
state data to another instance. As state data is updated in any instance, the data is replicated.

• Scalability. If increased capacity is required, you can add instances to a cluster with no
disruption in service. When an instance is added or removed, the changes are handled
automatically.

• Load balancing. If instances in a cluster are distributed among different hosts, the workload can
be distributed among the hosts to increase overall system throughput.

49



Group Management Service
The Group Management Service (GMS) is an infrastructure component that is enabled for the
instances in a cluster. When GMS is enabled, if a clustered instance fails, the cluster and the
Domain Administration Server (DAS) are aware of the failure and can take action when failure
occurs. Many features of Eclipse GlassFish depend upon GMS. For example, GMS is used by the in-
memory session replication, transaction service, and timer service features.

GMS is a core service of the Shoal framework. For more information about Shoal, visit the Project
Shoal home page (https://shoal.dev.java.net/).

The following topics are addressed here:

• Protocols and Transports for GMS

• GMS Configuration Settings

• Dotted Names for GMS Settings

• To Preconfigure Nondefault GMS Configuration Settings

• To Change GMS Settings After Cluster Creation

• To Check the Health of Instances in a Cluster

• To Validate That Multicast Transport Is Available for a Cluster

• Discovering a Cluster When Multicast Transport Is Unavailable

• Using the Multi-Homing Feature With GMS

Protocols and Transports for GMS

You can specify that GMS should use one of the following combinations of protocol and transport
for broadcasting messages:

• User Datagram Protocol (UDP) multicast

• Transmission Control Protocol (TCP) without multicast

Even if GMS should use UDP multicast for broadcasting messages, you must ensure that TCP is
enabled. On Windows systems, enabling TCP involves enabling a protocol and port for security
when a firewall is enabled.

If GMS should use UDP multicast for broadcasting messages and if Eclipse GlassFish instances in a
cluster are located on different hosts, the following conditions must be met:

• The DAS host and all hosts for the instances must be on the same subnet.

• UDP multicast must be enabled for the network. To test whether multicast is enabled, use the
validate-multicast(1) subcommand.

If GMS should use TCP without multicast, you must configure GMS to locate the instances to use for
discovering the cluster. For more information, see Discovering a Cluster When Multicast Transport
Is Unavailable.

50

http://shoal.dev.java.net/
http://shoal.dev.java.net/
https://shoal.dev.java.net/
https://glassfish.org/docs/latest/reference-manual.pdf#validate-multicast
https://glassfish.org/docs/latest/reference-manual.pdf#validate-multicast



If you do not configure GMS to locate the instances to use for discovering a cluster,
GMS uses UDP multicast by default.

GMS Configuration Settings

Eclipse GlassFish has the following types of GMS settings:

• GMS cluster settings — These are determined during cluster creation. For more information
about these settings, see To Create a Cluster.

• GMS configuration settings — These are determined during configuration creation and are
explained here.

The following GMS configuration settings are used in GMS for group discovery and failure
detection:

group-discovery-timeout-in-millis

Indicates the amount of time (in milliseconds) an instance’s GMS module will wait during
instance startup for discovering other members of the group.

The `group-discovery-timeout-in-millis` timeout value should be set to
the default or higher. The default is 5000.

max-missed-heartbeats

Indicates the maximum number of missed heartbeats that the health monitor counts before the
instance can be marked as a suspected failure. GMS also tries to make a peer-to-peer connection
with the suspected member. If the maximum number of missed heartbeats is exceeded and
peer-to-peer connection fails, the member is marked as a suspected failure. The default is 3.

heartbeat-frequency-in-millis

Indicates the frequency (in milliseconds) at which a heartbeat is sent by each server instance to
the cluster.
The failure detection interval is the max-missed-heartbeats multiplied by the heartbeat-
frequency-in-millis. Therefore, the combination of defaults, 3 multiplied by 2000 milliseconds,
results in a failure detection interval of 6 seconds.
Lowering the value of heartbeat-frequency-in-millis below the default would result in more
frequent heartbeat messages being sent out from each member. This could potentially result in
more heartbeat messages in the network than a system needs for triggering failure detection
protocols. The effect of this varies depending on how quickly the deployment environment
needs to have failure detection performed. That is, the (lower) number of retries with a lower
heartbeat interval would make it quicker to detect failures.
However, lowering this value could result in false positives because you could potentially detect
a member as failed when, in fact, the member’s heartbeat is reflecting the network load from
other parts of the server. Conversely, a higher timeout interval results in fewer heartbeats in the
system because the time interval between heartbeats is longer. As a result, failure detection
would take a longer. In addition, a startup by a failed member during this time results in a new
join notification but no failure notification, because failure detection and verification were not

51



completed.
The default is 2000.

verify-failure-waittime-in-millis

Indicates the verify suspect protocol’s timeout used by the health monitor. After a member is
marked as suspect based on missed heartbeats and a failed peer-to-peer connection check, the
verify suspect protocol is activated and waits for the specified timeout to check for any further
health state messages received in that time, and to see if a peer-to-peer connection can be made
with the suspect member. If not, then the member is marked as failed and a failure notification
is sent. The default is 1500.

verify-failure-connect-timeout-in-millis

Indicates the time it takes for the GMS to detect a hardware or network failure of a server
instance. Be careful not to set this value too low. The smaller this timeout value is, the greater
the chance of detecting false failures. That is, the instance has not failed but doesn’t respond
within the short window of time. The default is 10000.

The heartbeat frequency, maximum missed heartbeats, peer-to-peer connection-based failure
detection, and the verify timeouts are all needed to ensure that failure detection is robust and
reliable in Eclipse GlassFish.

For the dotted names for each of these GMS configuration settings, see Dotted Names for GMS
Settings. For the steps to specify these settings, see To Preconfigure Nondefault GMS Configuration
Settings.

Dotted Names for GMS Settings

Below are sample get subcommands to get all the GMS configuration settings (attributes associated
with the referenced mycfg configuration) and GMS cluster settings (attributes and properties
associated with a cluster named mycluster).

asadmin> get "configs.config.mycfg.group-management-service.*"
configs.config.mycfg.group-management-service.failure-detection.heartbeat-frequency-
in-millis=2000
configs.config.mycfg.group-management-service.failure-detection.max-missed-
heartbeats=3
configs.config.mycfg.group-management-service.failure-detection.verify-failure-
connect-timeout-in-millis=10000
configs.config.mycfg.group-management-service.failure-detection.verify-failure-
waittime-in-millis=1500
configs.config.mycfg.group-management-service.group-discovery-timeout-in-millis=5000

asadmin> get clusters.cluster.mycluster
clusters.cluster.mycluster.config-ref=mycfg
clusters.cluster.mycluster.gms-bind-interface-address=${GMS-BIND-INTERFACE-ADDRESS-
mycluster}
clusters.cluster.mycluster.gms-enabled=true
clusters.cluster.mycluster.gms-multicast-address=228.9.245.47
clusters.cluster.mycluster.gms-multicast-port=9833

52

https://glassfish.org/docs/latest/reference-manual.pdf#get


clusters.cluster.mycluster.name=mycluster

asadmin> get "clusters.cluster.mycluster.property.*"
clusters.cluster.mycluster.property.GMS_LISTENER_PORT=${GMS_LISTENER_PORT-mycluster}
clusters.cluster.mycluster.property.GMS_MULTICAST_TIME_TO_LIVE=4
clusters.cluster.mycluster.property.GMS_LOOPBACK=false
clusters.cluster.mycluster.property.GMS_TCPSTARTPORT=9090
clusters.cluster.mycluster.property.GMS_TCPENDPORT=9200

The last get subcommand displays only the properties that have been explicitly set.

For the steps to specify these settings, see To Preconfigure Nondefault GMS Configuration Settings
and To Change GMS Settings After Cluster Creation.

To Preconfigure Nondefault GMS Configuration Settings

You can preconfigure GMS with values different than the defaults without requiring a restart of the
DAS and the cluster.

1. Create a configuration using the copy-config subcommand.

For example:

asadmin> copy-config default-config mycfg

For more information, see To Create a Named Configuration.

2. Set the values for the new configuration’s GMS configuration settings.

For example:

asadmin> set configs.config.mycfg.group-management-service.group-discovery-timeout-
in-millis=8000
asadmin> set configs.config.mycfg.group-management-service.failure-detection.max-
missed-heartbeats=5

For a complete list of the dotted names for these settings, see Dotted Names for GMS Settings.

3. Create the cluster so it uses the previously created configuration.

For example:

asadmin> create-cluster --config mycfg mycluster

You can also set GMS cluster settings during this step. For more information, see To Create a
Cluster.

53

https://glassfish.org/docs/latest/reference-manual.pdf#copy-config


4. Create server instances for the cluster.

For example:

asadmin> create-instance --node localhost --cluster mycluster instance01

asadmin> create-instance --node localhost --cluster mycluster instance02

5. Start the cluster.

For example:

asadmin> start-cluster mycluster

See Also

You can also view the full syntax and options of a subcommand by typing asadmin help
subcommand at the command line.

To Change GMS Settings After Cluster Creation

To avoid the need to restart the DAS and the cluster, configure GMS configuration settings before
cluster creation as explained in To Preconfigure Nondefault GMS Configuration Settings.

To avoid the need to restart the DAS and the cluster, configure the GMS cluster settings during
cluster creation as explained in To Create a Cluster.

Changing any GMS settings using the set subcommand after cluster creation requires a domain
administration server (DAS) and cluster restart as explained here.

1. Ensure that the DAS and cluster are running.

Remote subcommands require a running server.

2. Use the get subcommand to determine the settings to change.

For example:

asadmin> get "configs.config.mycfg.group-management-service.*"
configs.config.mycfg.group-management-service.failure-detection.heartbeat-
frequency-in-millis=2000
configs.config.mycfg.group-management-service.failure-detection.max-missed-
heartbeats=3
configs.config.mycfg.group-management-service.failure-detection.verify-failure-
connect-timeout-in-millis=10000
configs.config.mycfg.group-management-service.failure-detection.verify-failure-
waittime-in-millis=1500
configs.config.mycfg.group-management-service.group-discovery-timeout-in-

54

https://glassfish.org/docs/latest/reference-manual.pdf#get


millis=5000

For a complete list of the dotted names for these settings, see Dotted Names for GMS Settings.

3. Use the set subcommand to change the settings.

For example:

asadmin> set configs.config.mycfg.group-management-service.group-discovery-timeout-
in-millis=6000

4. Use the get subcommand again to confirm that the changes were made.

For example:

asadmin> get configs.config.mycfg.group-management-service.group-discovery-timeout-
in-millis

5. Restart the DAS.

For example:

asadmin> stop-domain domain1

asadmin> start-domain domain1

6. Restart the cluster.

For example:

asadmin> stop-cluster mycluster

asadmin> start-cluster mycluster

See Also

You can also view the full syntax and options of a subcommand by typing asadmin help
subcommand at the command line.

To Check the Health of Instances in a Cluster

The get-health subcommand only works when GMS is enabled. This is the quickest way to evaluate
the health of a cluster and to detect if cluster is properly operating; that is, all members of the
cluster are running and visible to DAS.

If multicast is not enabled for the network, all instances could be running (as shown by the list-

55

https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances


instances subcommand), yet isolated from each other. The get-health subcommand does not show
the instances if they are running but cannot discover each other due to multicast not being
configured properly. See To Validate That Multicast Transport Is Available for a Cluster.

1. Ensure that the DAS and cluster are running.

Remote subcommands require a running server.

2. Check whether server instances in a cluster are running by using the get-health subcommand.

Example 4-1 Checking the Health of Instances in a Cluster

This example checks the health of a cluster named cluster1.

asadmin> get-health cluster1
instance1 started since Wed Sep 29 16:32:46 EDT 2010
instance2 started since Wed Sep 29 16:32:45 EDT 2010
Command get-health executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help get-
health at the command line.

To Validate That Multicast Transport Is Available for a Cluster

Before You Begin

To test a specific multicast address, multicast port, or bind interface address, get this information
beforehand using the get subcommand. Use the following subcommand to get the multicast address
and port for a cluster named c1:

asadmin> get clusters.cluster.c1
clusters.cluster.c1.config-ref=mycfg
clusters.cluster.c1.gms-bind-interface-address=${GMS-BIND-INTERFACE-ADDRESS-c1}
clusters.cluster.c1.gms-enabled=true
clusters.cluster.c1.gms-multicast-address=228.9.174.162
clusters.cluster.c1.gms-multicast-port=5383
clusters.cluster.c1.name=c1

Use the following subcommand to get the bind interface address of a server instance named i1 that
belongs to a cluster named c1, if this system property has been set:

asadmin> get servers.server.i1.system-property.GMS-BIND-INTERFACE-ADDRESS-c1
servers.server.i1.system-property.GMS-BIND-INTERFACE-ADDRESS-c1.name=GMS-BIND-
INTERFACE-ADDRESS-c1
servers.server.i1.system-property.GMS-BIND-INTERFACE-ADDRESS-c1.value=10.12.152.30

56

https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#get-health


For information on how to set this system property, see Using the Multi-Homing Feature With GMS.



Do not run the validate-multicast subcommand using the DAS and cluster’s
multicast address and port values while the DAS and cluster are running. Doing so
results in an error.

The validate-multicast subcommand must be run at the same time on two or
more machines to validate whether multicast messages are being received
between the machines.

Check whether multicast transport is available for a cluster by using the validate-multicast
subcommand.

Example 4-2 Validating That Multicast Transport Is Available for a Cluster

This example checks whether multicast transport is available for a cluster named c1.

Run from host sr1:

asadmin> validate-multicast
Will use port 2048
Will use address 228.9.3.1
Will use bind interface null
Will use wait period 2,000 (in milliseconds)

Listening for data...
Sending message with content "sr1" every 2,000 milliseconds
Received data from sr1 (loopback)
Received data from sr2
Exiting after 20 seconds. To change this timeout, use the --timeout command line
option.
Command validate-multicast executed successfully.

Run from host sr2:

asadmin> validate-multicast
Will use port 2048
Will use address 228.9.3.1
Will use bind interface null
Will use wait period 2,000 (in milliseconds)

Listening for data...
Sending message with content "sr2" every 2,000 milliseconds
Received data from sr2 (loopback)
Received data from sr1
Exiting after 20 seconds. To change this timeout, use the --timeout command line
option.
Command validate-multicast executed successfully.

57

https://glassfish.org/docs/latest/reference-manual.pdf#validate-multicast


Next Steps

As long as all machines see each other, multicast is validated to be working properly across the
machines. If the machines are not seeing each other, set the --bindaddress option explicitly to
ensure that all machines are using interface on same subnet, or increase the --timetolive option
from the default of 4. If these changes fail to resolve the multicast issues, ask the network
administrator to verify that the network is configured so the multicast messages can be seen
between all the machines used to run the cluster.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help get-
health at the command line.

Discovering a Cluster When Multicast Transport Is Unavailable

When multicast transport is unavailable, Eclipse GlassFish instances that are joining a cluster
cannot rely on broadcast messages from GMS to discover the cluster. Instead, an instance that is
joining a cluster uses a running instance or the DAS in the cluster to discover the cluster.

Therefore, when multicast transport is unavailable, you must provide the locations of instances in
the cluster to use for discovering the cluster. You are not required to provide the locations of all
instances in the cluster. However, for an instance to discover the cluster, at least one instance
whose location you provide must be running. To increase the probability of finding a running
instance, provide the locations of several instances.

If the DAS will be left running after the cluster is started, provide the location of the DAS first in the
list of instances. When a cluster is started, the DAS is running before any of the instances in the
cluster are started.

The locations of the instances to use for discovering a cluster are part of the configuration data that
you provide when creating the cluster. How to provide this data depends on how instances are
distributed, as explained in the following subsections:

• To Discover a Cluster When Multiple Instances in a Cluster are Running on a Host

• To Discover a Cluster When Each Instance in a Cluster Is Running on a Different Host

To Discover a Cluster When Multiple Instances in a Cluster are Running on a Host

If multiple instances in the same cluster are running on a host, you must provide a list of uniform
resource indicators (URIs). Each URI must locate a Eclipse GlassFish instance or the DAS in the
cluster.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Create a system property to represent the port number of the port on which the DAS listens for
messages from GMS for the cluster.

Use the create-system-properties subcommand for this purpose.

58

https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties


asadmin> create-system-properties GMS_LISTENER_PORT-cluster-name=gms-port

cluster-name

The name of the cluster to which the messages from GMS apply.

gms-port

The port number of the port on which the DAS listens for messages from GMS.

3. Restart the DAS.

4. When creating the cluster, set the GMS_DISCOVERY_URI_LIST property to a comma-separated list of
URIs that locate instances to use for discovering the cluster.

asadmin> create-cluster --properties GMS_DISCOVERY_URI_LIST=uri-list cluster-name

uri-list

A comma-separated list of URIs that locate a Eclipse GlassFish instance or the DAS in the
cluster.
The format of each URI in the list is as follows:
scheme://host-name-or -IP-address:port

◦ scheme is the URI scheme, which is tcp.

◦ host-name-or -IP-address is the host name or IP address of the host on which the instance
is running.

◦ port is the port number of the port on which the instance will listen for messages from
GMS.

cluster-name

The name of the cluster that you are creating.

 For complete instructions for creating a cluster, see To Create a Cluster.

5. When you add each instance to the cluster, set the system property GMS_LISTENER_PORT-
clustername for the instance.

◦ To create the instance centrally, run the following command:

asadmin> create-instance --node node-name
--systemproperties GMS_LISTENER_PORT-cluster-name=gms-port --cluster  cluster-
name instance-name

◦ To create the instance locally, run the following command:

asadmin> create-local-instance
--systemproperties GMS_LISTENER_PORT-cluster-name=gms-port --cluster  cluster-

59



name instance-name

node-name

The name of an existing Eclipse GlassFish node on which the instance is to reside. For
more information about nodes, see Administering Eclipse GlassFish Nodes.

cluster-name

The name of the cluster to which the you are adding the instance.

gms-port

The port number of the port on which the instance listens for messages from GMS.

instance-name

The name of the instance that you are creating.



For full instructions for adding an instance to a cluster, see the following
sections:

▪ To Create an Instance Centrally

▪ To Create an Instance Locally

Example 4-3 Discovering a Cluster When Multiple Instances are Running on a Host

This example creates a cluster that is named tcpcluster for which GMS is not using multicast for
broadcasting messages.

The cluster contains the instances instance101 and instance102. These instances reside on the host
whose IP address is 10.152.23.224 and listen for GMS events on ports 9091 and 9092. The DAS is also
running on this host and listens for GMS events on port 9090.

Instances that are joining the cluster will use the DAS and the instances instance101 and instance102
to discover the cluster.

asadmin> create-system-properties GMS_LISTENER_PORT-tcpcluster=9090
Command create-system-properties executed successfully.
asadmin> restart-domain
Successfully restarted the domain
Command restart-domain executed successfully.
asadmin> create-cluster --properties GMS_DISCOVERY_URI_LIST=
tcp'\\:'//10.152.23.224'\\:'9090,
tcp'\\:'//10.152.23.224'\\:'9091,
tcp'\\:'//10.152.23.224'\\:'9092 tcpcluster
Command create-cluster executed successfully.
asadmin> create-local-instance
--systemproperties GMS_LISTENER_PORT-tcpcluster=9091 --cluster tcpcluster
instance101
Rendezvoused with DAS on localhost:4848.
Port Assignments for server instance instance101:

60



JMX_SYSTEM_CONNECTOR_PORT=28686
JMS_PROVIDER_PORT=27676
HTTP_LISTENER_PORT=28080
ASADMIN_LISTENER_PORT=24848
JAVA_DEBUGGER_PORT=29009
IIOP_SSL_LISTENER_PORT=23820
IIOP_LISTENER_PORT=23700
OSGI_SHELL_TELNET_PORT=26666
HTTP_SSL_LISTENER_PORT=28181
IIOP_SSL_MUTUALAUTH_PORT=23920
Command create-local-instance executed successfully.
asadmin> create-local-instance
--systemproperties GMS_LISTENER_PORT-tcpcluster=9092 --cluster tcpcluster
instance102
Rendezvoused with DAS on localhost:4848.
Using DAS host localhost and port 4848 from existing das.properties for node
localhost-domain1. To use a different DAS, create a new node using
create-node-ssh or create-node-config. Create the instance with the new node and
correct host and port:
asadmin --host das_host --port das_port create-local-instance --node node_name
instance_name.
Port Assignments for server instance instance102:
JMX_SYSTEM_CONNECTOR_PORT=28687
JMS_PROVIDER_PORT=27677
HTTP_LISTENER_PORT=28081
ASADMIN_LISTENER_PORT=24849
JAVA_DEBUGGER_PORT=29010
IIOP_SSL_LISTENER_PORT=23821
IIOP_LISTENER_PORT=23701
OSGI_SHELL_TELNET_PORT=26667
HTTP_SSL_LISTENER_PORT=28182
IIOP_SSL_MUTUALAUTH_PORT=23921
Command create-local-instance executed successfully.

See Also

• create-system-properties(1)

• To Create a Cluster

• To Create an Instance Centrally

• To Create an Instance Locally

To Discover a Cluster When Each Instance in a Cluster Is Running on a Different Host

If all instances in a cluster and the DAS are running on different hosts, you can specify the locations
of instances to use for discovering the cluster as follows:

• By specifying a list of host names or Internet Protocol (IP) addresses. Each host name or IP
address must locate a host on which the DAS or a Eclipse GlassFish instance in the cluster is
running. Instances that are joining the cluster will use the DAS or the instances to discover the

61

https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties
https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties


cluster.

• By generating the list of locations automatically. The generated list contains the locations of the
DAS and all instances in the cluster.

Multiple instances on the same host cannot be members of the same cluster.

1. Ensure that the DAS is running.

Remote subcommands require a running server.

2. When creating the cluster, set the properties of the cluster as follows:

◦ Set the GMS_DISCOVERY_URI_LIST property to one of the following values:

▪ A comma-separated list of IP addresses or host names on which the DAS or the instances
to use for discovering the cluster are running.

The list can contain a mixture of IP addresses and host names.

▪ The keyword generate.

◦ Set the GMS_LISTENER_PORT property to a port number that is unique for the cluster in the
domain.

If you are specifying a list of IP addresses or host names, type the following command:

asadmin> create-cluster --properties GMS_DISCOVERY_URI_LIST=host-list:
GMS_LISTENER_PORT=gms-port cluster-name

If you are specifying the keyword generate, type the following command:

asadmin> create-cluster --properties GMS_DISCOVERY_URI_LIST=generate:
GMS_LISTENER_PORT=gms-port cluster-name

host-list

A comma-separated list of IP addresses or host names on which the DAS or the instances
to use for discovering the cluster are running.

gms-port

The port number of the port on which the cluster listens for messages from GMS.

cluster-name

The name of the cluster that you are creating.

 For complete instructions for creating a cluster, see To Create a Cluster.

Example 4-4 Discovering a Cluster by Specifying a List of IP Addresses

This example creates a cluster that is named ipcluster for which GMS is not using multicast for

62



broadcasting messages. The instances to use for discovering the cluster are located through a list of
IP addresses. In this example, one instance in the cluster is running on each host and the DAS is
running on a separate host. The cluster listens for messages from GMS on port 9090.

asadmin> create-cluster --properties 'GMS_DISCOVERY_URI_LIST=
10.152.23.225,10.152.23.226,10.152.23.227,10.152.23.228:
GMS_LISTENER_PORT=9090' ipcluster
Command create-cluster executed successfully.

Example 4-5 Discovering a Cluster by Generating a List of Locations of Instances

This example creates a cluster that is named gencluster for which GMS is not using multicast for
broadcasting messages. The list of locations of instances to use for discovering the cluster is
generated automatically. In this example, one instance in the cluster is running on each host and
the DAS is running on a separate host. The cluster listens for messages from GMS on port 9090.

asadmin> create-cluster --properties 'GMS_DISCOVERY_URI_LIST=generate:
GMS_LISTENER_PORT=9090' gencluster
Command create-cluster executed successfully.

Next Steps

After creating the cluster, add instances to the cluster as explained in the following sections:

• To Create an Instance Centrally

• To Create an Instance Locally

See Also

• To Create a Cluster

• To Create an Instance Centrally

• To Create an Instance Locally

Using the Multi-Homing Feature With GMS

Multi-homing enables Eclipse GlassFish clusters to be used in an environment that uses multiple
Network Interface Cards (NICs). A multi-homed host has multiple network connections, of which
the connections may or may not be the on same network. Multi-homing provides the following
benefits:

• Provides redundant network connections within the same subnet. Having multiple NICs
ensures that one or more network connections are available for communication.

• Supports communication across two or more different subnets. The DAS and all server
instances in the same cluster must be on the same subnet for GMS communication, however.

• Binds to a specific IPv4 address and receives GMS messages in a system that has multiple IP
addresses configured. The responses for GMS messages received on a particular interface will

63



also go out through that interface.

• Supports separation of external and internal traffic.

Traffic Separation Using Multi-Homing

You can separate the internal traffic resulting from GMS from the external traffic. Traffic
separation enables you plan a network better and augment certain parts of the network, as
required.

Consider a simple cluster, c1, with three instances, i101, i102, and i103. Each instance runs on a
different machine. In order to separate the traffic, the multi-homed machine should have at least
two IP addresses belonging to different networks. The first IP as the external IP and the second one
as internal IP. The objective is to expose the external IP to user requests, so that all the traffic from
the user requests would be through them. The internal IP is used only by the cluster instances for
internal communication through GMS. The following procedure describes how to set up traffic
separation.

To configure multi-homed machines for GMS without traffic separation, skip the steps or
commands that configure the EXTERNAL-ADDR system property, but perform the others.

To avoid having to restart the DAS or cluster, perform the following steps in the specified order.

To set up traffic separation, follow these steps:

1. Create the system properties EXTERNAL-ADDR and GMS-BIND-INTERFACE-ADDRESS-c1 for the DAS.

◦ asadmin create-system-properties target server EXTERNAL-ADDR=192.155.35.4

◦ asadmin create-system-properties target server GMS-BIND-INTERFACE-ADDRESS-c1=10.12.152.20

2. Create the cluster with the default settings.

Use the following command:

asadmin create-cluster c1

A reference to a system property for GMS traffic is already set up by default in the gms-bind-
interface-address cluster setting. The default value of this setting is ${GMS-BIND-INTERFACE-
ADDRESS-cluster-name}.

3. When creating the clustered instances, configure the external and GMS IP addresses.

Use the following commands: * asadmin create-instance node localhost cluster c1
systemproperties EXTERNAL-ADDR=192.155.35.5:GMS-BIND-INTERFACE-ADDRESS-c1=10.12.152.30 i101
* asadmin create-instance node localhost cluster c1 systemproperties EXTERNAL-
ADDR=192.155.35.6:GMS-BIND-INTERFACE-ADDRESS-c1=10.12.152.40 i102 * asadmin create-instance
node localhost cluster c1 systemproperties EXTERNAL-ADDR=192.155.35.7:GMS-BIND-INTERFACE-
ADDRESS-c1=10.12.152.50 i103

4. Set the address attribute of HTTP listeners to refer to the EXTERNAL-ADDR system properties.

64



Use the following commands:

asadmin set c1-config.network-config.network-listeners.network-listener.http-
1.address=\${EXTERNAL-ADDR}
asadmin set c1-config.network-config.network-listeners.network-listener.http-
2.address=\${EXTERNAL-ADDR}

Creating, Listing, and Deleting Clusters
Eclipse GlassFish enables you to create clusters, obtain information about clusters, and delete
clusters that are no longer required.

The following topics are addressed here:

• To Create a Cluster

• To List All Clusters in a Domain

• To Delete a Cluster

To Create a Cluster

Use the create-cluster subcommand in remote mode to create a cluster.

To ensure that the GMS can detect changes in cluster membership, a cluster’s GMS settings must be
configured correctly. To avoid the need to restart the DAS and the cluster, configure a cluster’s GMS
settings when you create the cluster. If you change GMS settings for an existing cluster, the DAS and
the cluster must be restarted to apply the changes.

When you create a cluster, Eclipse GlassFish automatically creates a Message Queue cluster for the
Eclipse GlassFish cluster. For more information about Message Queue clusters, see Using Message
Queue Broker Clusters With Eclipse GlassFish.

Before You Begin

If the cluster is to reference an existing named configuration, ensure that the configuration exists.
For more information, see To Create a Named Configuration. If you are using a named
configuration to preconfigure GMS settings, ensure that these settings have the required values in
the named configuration. For more information, see To Preconfigure Nondefault GMS
Configuration Settings.

If you are configuring the cluster’s GMS settings when you create the cluster, ensure that you have
the following information:

• The address on which GMS listens for group events

• The port number of the communication port on which GMS listens for group events

• The maximum number of iterations or transmissions that a multicast message for GMS events
can experience before the message is discarded

• The lowest port number in the range of ports from which GMS selects a TCP port on which to

65



listen

• The highest port number in the range of ports from which GMS selects a TCP port on which to
listen

If the DAS is running on a multihome host, ensure that you have the Internet Protocol (IP) address
of the network interface on the DAS host to which GMS binds.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the create-cluster subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for configuring the cluster, see the
create-cluster(1) help page.

◦ If multicast transport is available, run the create-cluster subcommand as follows:

asadmin> create-cluster --config configuration
--multicastaddress multicast-address --multicastport multicast-port
--properties GMS_MULTICAST_TIME_TO_LIVE=max-iterations:
GMS_TCPSTARTPORT=start-port:GMS_TCPENDPORT=end-port cluster-name

◦ If multicast transport is not available, run the create-cluster subcommand as follows:

asadmin> create-cluster --config configuration
--properties GMS_DISCOVERY_URI_LIST=discovery-instances:
GMS_LISTENER_PORT=gms-port
cluster-name

configuration

An existing named configuration that the cluster is to reference.

multicast-address

The address on which GMS listens for group events.

multicast-port

The port number of the communication port on which GMS listens for group events.

max-iterations

The maximum number of iterations or transmissions that a multicast message for GMS
events can experience before the message is discarded.

discovery-instances

Instances to use for discovering the cluster. For more information, see Discovering a
Cluster When Multicast Transport Is Unavailable.

66

https://glassfish.org/docs/latest/reference-manual.pdf#create-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#create-cluster


gms-port

The port number of the port on which the cluster listens for messages from GMS.

start-port

The lowest port number in the range of ports from which GMS selects a TCP port on
which to listen. The default is 9090.

end-port

The highest port number in the range of ports from which GMS selects a TCP port on
which to listen. The default is 9200.

cluster-name

Your choice of name for the cluster that you are creating.

3. If necessary, create a system property to represent the IP address of the network interface on
the DAS host to which GMS binds.

This step is necessary only if the DAS is running on a multihome host.

asadmin> create-system-properties
GMS-BIND-INTERFACE-ADDRESS-cluster-name=das-bind-address

cluster-name

The name that you assigned to the cluster in Step 2.

das-bind-address

The IP address of the network interface on the DAS host to which GMS binds.

Example 4-6 Creating a Cluster for a Network in Which Multicast Transport Is Available

This example creates a cluster that is named ltscluster for which port 1169 is to be used for secure
IIOP connections. Because the --config option is not specified, the cluster references a copy of the
named configuration default-config that is named ltscluster-config. This example assumes that
multicast transport is available.

asadmin> create-cluster
--systemproperties IIOP_SSL_LISTENER_PORT=1169
ltscluster
Command create-cluster executed successfully.

Example 4-7 Creating a Cluster and Setting GMS Options for a Network in Which Multicast
Transport Is Available

This example creates a cluster that is named pmdcluster, which references the existing
configuration clusterpresets and for which the cluster’s GMS settings are configured as follows:

• GMS listens for group events on address 228.9.3.1 and port 2048.

67



• A multicast message for GMS events is discarded after 3 iterations or transmissions.

• GMS selects a TCP port on which to listen from ports in the range 10000-10100.

This example assumes that multicast transport is available.

asadmin> create-cluster --config clusterpresets
--multicastaddress 228.9.3.1 --multicastport 2048
--properties GMS_MULTICAST_TIME_TO_LIVE=3:
GMS_TCPSTARTPORT=10000:GMS_TCPENDPORT=10100 pmdcluster
Command create-cluster executed successfully.

Next Steps

After creating a cluster, you can add Eclipse GlassFish instances to the cluster as explained in the
following sections:

• To Create an Instance Centrally

• To Create an Instance Locally

See Also

• To Create a Named Configuration

• To Preconfigure Nondefault GMS Configuration Settings

• Using Message Queue Broker Clusters With Eclipse GlassFish

• create-cluster(1)

• create-system-properties(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help create-cluster

• asadmin help create-system-properties

To List All Clusters in a Domain

Use the list-clusters subcommand in remote mode to obtain information about existing clusters
in a domain.

1. Ensure that the DAS is running.

Remote subcommands require a running server.

2. Run the list-clusters subcommand.

asadmin> list-clusters

68

https://glassfish.org/docs/latest/reference-manual.pdf#create-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#create-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties
https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties
https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters


Example 4-8 Listing All Clusters in a Domain

This example lists all clusters in the current domain.

asadmin> list-clusters
pmdclust not running
ymlclust not running
Command list-clusters executed successfully.

Example 4-9 Listing All Clusters That Are Associated With a Node

This example lists the clusters that contain an instance that resides on the node sj01.

asadmin> list-clusters sj01
ymlclust not running
Command list-clusters executed successfully.

See Also

list-clusters(1)

You can also view the full syntax and options of the subcommand by typing asadmin help list-
clusters at the command line.

To Delete a Cluster

Use the delete-cluster subcommand in remote mode to remove a cluster from the DAS
configuration.

If the cluster’s named configuration was created automatically for the cluster and no other clusters
or unclustered instances refer to the configuration, the configuration is deleted when the cluster is
deleted.

Before You Begin

Ensure that following prerequisites are met:

• The cluster that you are deleting is stopped. For information about how to stop a cluster, see To
Stop a Cluster.

• The cluster that you are deleting contains no Eclipse GlassFish instances. For information about
how to remove instances from a cluster, see the following sections:

◦ To Delete an Instance Centrally

◦ To Delete an Instance Locally

1. Ensure that the DAS is running.

Remote subcommands require a running server.

69

https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters


2. Confirm that the cluster is stopped.

asadmin> list-clusters cluster-name

cluster-name

The name of the cluster that you are deleting.

3. Confirm that the cluster contains no instances.

asadmin> list-instances cluster-name

cluster-name

The name of the cluster that you are deleting.

4. Run the delete-cluster subcommand.

asadmin> delete-cluster cluster-name

cluster-name

The name of the cluster that you are deleting.

Example 4-10 Deleting a Cluster

This example confirms that the cluster adccluster is stopped and contains no instances and deletes
the cluster adccluster.

asadmin> list-clusters adccluster
adccluster not running
Command list-clusters executed successfully.
asadmin> list-instances adccluster
Nothing to list.
Command list-instances executed successfully.
asadmin> delete-cluster adccluster
Command delete-cluster executed successfully.

See Also

• To Stop a Cluster

• To Delete an Instance Centrally

• To Delete an Instance Locally

• delete-cluster(1)

• list-clusters(1)

• list-instances(1)

70

https://glassfish.org/docs/latest/reference-manual.pdf#delete-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#delete-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#delete-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances


You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help delete-cluster

• asadmin help list-clusters

• asadmin help list-instances

71



5 Administering Eclipse GlassFish Instances
A Eclipse GlassFish instance is a single Virtual Machine for the Java platform (Java Virtual Machine
or JVM machine) on a single node in which Eclipse GlassFish is running. A node defines the host
where the Eclipse GlassFish instance resides. The JVM machine must be compatible with the Java
Platform, Enterprise Edition (Jakarta EE).

Eclipse GlassFish instances form the basis of an application deployment. An instance is a building
block in the clustering, load balancing, and session persistence features of Eclipse GlassFish. Each
instance belongs to a single domain and has its own directory structure, configuration, and
deployed applications. Every instance contains a reference to a node that defines the host where
the instance resides.

The following topics are addressed here:

• Types of Eclipse GlassFish Instances

• Administering Eclipse GlassFish Instances Centrally

• Administering Eclipse GlassFish Instances Locally

• Resynchronizing Eclipse GlassFish Instances and the DAS

• Migrating EJB Timers

Types of Eclipse GlassFish Instances
Each Eclipse GlassFish instance is one of the following types of instance:

Standalone instance

A standalone instance does not share its configuration with any other instances or clusters. A
standalone instance is created if either of the following conditions is met:

• No configuration or cluster is specified in the command to create the instance.

• A configuration that is not referenced by any other instances or clusters is specified in the
command to create the instance.

When no configuration or cluster is specified, a copy of the default-config configuration is
created for the instance. The name of this configuration is instance-name`-config`, where
instance-name represents the name of an unclustered server instance.

Shared instance

A shared instance shares its configuration with other instances or clusters. A shared instance is
created if a configuration that is referenced by other instances or clusters is specified in the
command to create the instance.

Clustered instance

A clustered instance inherits its configuration from the cluster to which the instance belongs and
shares its configuration with other instances in the cluster. A clustered instance is created if a
cluster is specified in the command to create the instance.

72



Any instance that is not part of a cluster is considered an unclustered server instance. Therefore,
standalone instances and shared instances are unclustered server instances.

Administering Eclipse GlassFish Instances Centrally
Centralized administration requires the secure shell (SSH) to be set up. If SSH is set up, you can
administer clustered instances without the need to log in to hosts where remote instances reside.
For information about setting up SSH, see Enabling Centralized Administration of Eclipse GlassFish
Instances.

Administering Eclipse GlassFish instances centrally involves the following tasks:

• To Create an Instance Centrally

• To List All Instances in a Domain

• To Delete an Instance Centrally

• To Start a Cluster

• To Stop a Cluster

• To Start an Individual Instance Centrally

• To Stop an Individual Instance Centrally

• To Restart an Individual Instance Centrally

To Create an Instance Centrally

Use the create-instance subcommand in remote mode to create a Eclipse GlassFish instance
centrally. Creating an instance adds the instance to the DAS configuration and creates the instance’s
files on the host where the instance resides.

If the instance is a clustered instance that is managed by GMS, system properties for the instance
that relate to GMS must be configured correctly. To avoid the need to restart the DAS and the
instance, configure an instance’s system properties that relate to GMS when you create the
instance. If you change GMS-related system properties for an existing instance, the DAS and the
instance must be restarted to apply the changes. For information about GMS, see Group
Management Service.

Before You Begin

Ensure that following prerequisites are met:

• The node where the instance is to reside exists.

• The node where the instance is to reside is either enabled for remote communication or
represents the host on which the DAS is running. For information about how to create a node
that is enabled for remote communication, see the following section:

◦ To Create an SSH Node

• The user of the DAS can use SSH to log in to the host for the node where the instance is to reside.

73



If any of these prerequisites is not met, create the instance locally as explained in To Create an
Instance Locally.

If you are adding the instance to a cluster, ensure that the cluster to which you are adding the
instance exists. For information about how to create a cluster, see To Create a Cluster.

If the instance is to reference an existing named configuration, ensure that the configuration exists.
For more information, see To Create a Named Configuration.

The instance might be a clustered instance that is managed by GMS and resides on a node that
represents a multihome host. In this situation, ensure that you have the Internet Protocol (IP)
address of the network interface to which GMS binds.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the create-instance subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for configuring the instance, see the
create-instance(1) help page.

◦ If you are creating a standalone instance, do not specify a cluster.

If the instance is to reference an existing configuration, specify a configuration that no other
cluster or instance references.

asadmin> create-instance --node node-name
[--config configuration-name]instance-name

node-name

The node on which the instance is to reside.

configuration-name

The name of the existing named configuration that the instance will reference.
If you do not require the instance to reference an existing configuration, omit this option.
A copy of the default-config configuration is created for the instance. The name of this
configuration is instance-name`-config`, where instance-name is the name of the server
instance.

instance-name

Your choice of name for the instance that you are creating.
If you are creating a shared instance, specify the configuration that the instance will
share with other clusters or instances.
Do not specify a cluster.

asadmin> create-instance --node node-name
--config configuration-name instance-name

74

https://glassfish.org/docs/latest/reference-manual.pdf#create-instance
https://glassfish.org/docs/latest/reference-manual.pdf#create-instance


node-name

The node on which the instance is to reside.

configuration-name

The name of the existing named configuration that the instance will reference.

instance-name

Your choice of name for the instance that you are creating.

◦ If you are creating a clustered instance, specify the cluster to which the instance will belong.
If the instance is managed by GMS and resides on a node that represents a multihome host,
specify the `GMS-BIND-INTERFACE-ADDRESS-`cluster-name system property.

asadmin> create-instance --cluster cluster-name --node node-name
[--systemproperties GMS-BIND-INTERFACE-ADDRESS-cluster-name=bind-
address]instance-name

cluster-name

The name of the cluster to which you are adding the instance.

node-name

The node on which the instance is to reside.

bind-address

The IP address of the network interface to which GMS binds. Specify this option only if
the instance is managed by GMS and resides on a node that represents a multihome host.

instance-name

Your choice of name for the instance that you are creating.

Example 5-1 Creating a Clustered Instance Centrally

This example adds the instance pmd-i1 to the cluster pmdclust in the domain domain1. The instance
resides on the node sj01, which represents the host sj01.example.com.

asadmin> create-instance --cluster pmdclust --node sj01 pmd-i1
Port Assignments for server instance pmd-i1:
JMX_SYSTEM_CONNECTOR_PORT=28686
JMS_PROVIDER_PORT=27676
HTTP_LISTENER_PORT=28080
ASADMIN_LISTENER_PORT=24848
IIOP_SSL_LISTENER_PORT=23820
IIOP_LISTENER_PORT=23700
HTTP_SSL_LISTENER_PORT=28181
IIOP_SSL_MUTUALAUTH_PORT=23920
The instance, pmd-i1, was created on host sj01.example.com
Command create-instance executed successfully.

75



See Also

• To Create an SSH Node

• To Create an Instance Locally

• create-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help create-
instance at the command line.

Next Steps

After creating an instance, you can start the instance as explained in the following sections:

• To Start an Individual Instance Centrally

• To Stop an Individual Instance Locally

To List All Instances in a Domain

Use the list-instances subcommand in remote mode to obtain information about existing
instances in a domain.

1. Ensure that the DAS is running.

Remote subcommands require a running server.

2. Run the list-instances subcommand.

asadmin> list-instances

Example 5-2 Listing Basic Information About All Eclipse GlassFish Instances in a Domain

This example lists the name and status of all Eclipse GlassFish instances in the current domain.

asadmin> list-instances
pmd-i2 running
yml-i2 running
pmd-i1 running
yml-i1 running
pmdsa1 not running
Command list-instances executed successfully.

Example 5-3 Listing Detailed Information About All Eclipse GlassFish Instances in a Domain

This example lists detailed information about all Eclipse GlassFish instances in the current domain.

asadmin> list-instances --long=true
NAME    HOST              PORT   PID    CLUSTER     STATE

76

https://glassfish.org/docs/latest/reference-manual.pdf#create-instance
https://glassfish.org/docs/latest/reference-manual.pdf#create-instance
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances


pmd-i1  sj01.example.com  24848  31310  pmdcluster   running
yml-i1  sj01.example.com  24849  25355  ymlcluster   running
pmdsa1  localhost         24848  -1     ---          not running
pmd-i2  sj02.example.com  24848  22498  pmdcluster   running
yml-i2  sj02.example.com  24849  20476  ymlcluster   running
ymlsa1  localhost         24849  -1     ---          not running
Command list-instances executed successfully.

See Also

list-instances(1)

You can also view the full syntax and options of the subcommand by typing asadmin help list-
instances at the command line.

To Delete an Instance Centrally

Use the delete-instance subcommand in remote mode to delete a Eclipse GlassFish instance
centrally.



If you are using a Java Message Service (JMS) cluster with a master broker, do not
delete the instance that is associated with the master broker. If this instance must
be deleted, use the change-master-broker subcommand to assign the master broker
to a different instance.

Deleting an instance involves the following:

• Removing the instance from the configuration of the DAS

• Deleting the instance’s files from file system

Before You Begin

Ensure that the instance that you are deleting is not running. For information about how to stop an
instance, see the following sections:

• To Stop an Individual Instance Centrally

• To Stop an Individual Instance Locally

1. Ensure that the DAS is running.

Remote subcommands require a running server.

2. Confirm that the instance is not running.

asadmin> list-instances instance-name

instance-name

The name of the instance that you are deleting.

77

https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#change-master-broker


3. Run the delete-instance subcommand.

asadmin> delete-instance instance-name

instance-name

The name of the instance that you are deleting.

Example 5-4 Deleting an Instance Centrally

This example confirms that the instance pmd-i1 is not running and deletes the instance.

asadmin> list-instances pmd-i1
pmd-i1   not running
Command list-instances executed successfully.
asadmin> delete-instance pmd-i1
Command _delete-instance-filesystem executed successfully.
The instance, pmd-i1, was deleted from host sj01.example.com
Command delete-instance executed successfully.

See Also

• To Stop an Individual Instance Centrally

• To Stop an Individual Instance Locally

• change-master-broker(1)

• delete-instance(1)

• list-instances(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help delete-instance

• asadmin help list-instances

To Start a Cluster

Use the start-cluster subcommand in remote mode to start a cluster.

Starting a cluster starts all instances in the cluster that are not already running.

Before You Begin

Ensure that following prerequisites are met:

• Each node where an instance in the cluster resides is either enabled for remote communication
or represents the host on which the DAS is running.

• The user of the DAS can use SSH to log in to the host for any node where instances in the cluster

78

https://glassfish.org/docs/latest/reference-manual.pdf#delete-instance
https://glassfish.org/docs/latest/reference-manual.pdf#change-master-broker
https://glassfish.org/docs/latest/reference-manual.pdf#change-master-broker
https://glassfish.org/docs/latest/reference-manual.pdf#delete-instance
https://glassfish.org/docs/latest/reference-manual.pdf#delete-instance
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances


reside.

If any of these prerequisites is not met, start the cluster by starting each instance locally as
explained in To Start an Individual Instance Locally.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the start-cluster subcommand.

asadmin> start-cluster cluster-name

cluster-name

The name of the cluster that you are starting.

Example 5-5 Starting a Cluster

This example starts the cluster pmdcluster.

asadmin> start-cluster pmdcluster
Command start-cluster executed successfully.

See Also

• To Start an Individual Instance Locally

• start-cluster(1)

You can also view the full syntax and options of the subcommand by typing asadmin help start-
cluster at the command line.

Next Steps

After starting a cluster, you can deploy applications to the cluster. For more information, see
Eclipse GlassFish Application Deployment Guide.

To Stop a Cluster

Use the stop-cluster subcommand in remote mode to stop a cluster.

Stopping a cluster stops all running instances in the cluster.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the stop-cluster subcommand.

asadmin> stop-cluster cluster-name

cluster-name

The name of the cluster that you are stopping.

79

https://glassfish.org/docs/latest/reference-manual.pdf#start-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#start-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#start-cluster
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#stop-cluster


Example 5-6 Stopping a Cluster

This example stops the cluster pmdcluster.

asadmin> stop-cluster pmdcluster
Command stop-cluster executed successfully.

See Also

stop-cluster(1)

You can also view the full syntax and options of the subcommand by typing asadmin help stop-
cluster at the command line.

Troubleshooting

If instances in the cluster have become unresponsive and fail to stop, run the subcommand again
with the --kill option set to true. When this option is true, the subcommand uses functionality of
the operating system to kill the process for each running instance in the cluster.

To Start an Individual Instance Centrally

Use the start-instance subcommand in remote mode to start an individual instance centrally.

Before You Begin

Ensure that following prerequisites are met:

• The node where the instance resides is either enabled for remote communication or represents
the host on which the DAS is running.

• The user of the DAS can use SSH to log in to the host for the node where the instance resides.

If any of these prerequisites is not met, start the instance locally as explained in To Start an
Individual Instance Locally.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the start-instance subcommand.

asadmin> start-instance instance-name


Only the options that are required to complete this task are provided in this
step. For information about all the options for controlling the behavior of the
instance, see the start-instance(1) help page.

instance-name

The name of the instance that you are starting.

80

https://glassfish.org/docs/latest/reference-manual.pdf#stop-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#stop-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#start-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-instance


Example 5-7 Starting an Individual Instance Centrally

This example starts the instance pmd-i2, which resides on the node sj02. This node represents the
host sj02.example.com. The configuration of the instance on this node already matched the
configuration of the instance in the DAS when the instance was started.

asadmin> start-instance pmd-i2
CLI801 Instance is already synchronized
Waiting for pmd-i2 to start ............
Successfully started the instance: pmd-i2
instance Location: /export/glassfish7/glassfish/nodes/sj02/pmd-i2
Log File: /export/glassfish7/glassfish/nodes/sj02/pmd-i2/logs/server.log
Admin Port: 24851
Command start-local-instance executed successfully.
The instance, pmd-i2, was started on host sj02.example.com
Command start-instance executed successfully.

See Also

start-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help start-
instance at the command line.

Next Steps

After starting an instance, you can deploy applications to the instance. For more information, see
the Eclipse GlassFish Application Deployment Guide.

To Stop an Individual Instance Centrally

Use the stop-instance subcommand in remote mode to stop an individual instance centrally.

When an instance is stopped, the instance stops accepting new requests and waits for all
outstanding requests to be completed.

1. Ensure that the DAS is running.

Remote subcommands require a running server.

2. Run the stop-instance subcommand.

Example 5-8 Stopping an Individual Instance Centrally

This example stops the instance pmd-i2.

asadmin> stop-instance pmd-i2
The instance, pmd-i2, is stopped.
Command stop-instance executed successfully.

81

https://glassfish.org/docs/latest/reference-manual.pdf#start-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-instance
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#stop-instance


See Also

stop-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help stop-
instance at the command line.

Troubleshooting

If the instance has become unresponsive and fails to stop, run the subcommand again with the
--kill option set to true. When this option is true, the subcommand uses functionality of the
operating system to kill the instance process.

To Restart an Individual Instance Centrally

Use the restart-instance subcommand in remote mode to start an individual instance centrally.

When this subcommand restarts an instance, the DAS synchronizes the instance with changes since
the last synchronization as described in Default Synchronization for Files and Directories.

If you require different synchronization behavior, stop and start the instance as explained in To
Resynchronize an Instance and the DAS Online.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the restart-instance subcommand.

asadmin> restart-instance instance-name

instance-name

The name of the instance that you are restarting.

Example 5-9 Restarting an Individual Instance Centrally

This example restarts the instance pmd-i2.

asadmin> restart-instance pmd-i2
pmd-i2 was restarted.
Command restart-instance executed successfully.

See Also

• To Stop an Individual Instance Centrally

• To Start an Individual Instance Centrally

• restart-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help restart-
instance at the command line.

82

https://glassfish.org/docs/latest/reference-manual.pdf#stop-instance
https://glassfish.org/docs/latest/reference-manual.pdf#stop-instance
https://glassfish.org/docs/latest/reference-manual.pdf#restart-instance
https://glassfish.org/docs/latest/reference-manual.pdf#restart-instance
https://glassfish.org/docs/latest/reference-manual.pdf#restart-instance


Troubleshooting

If the instance has become unresponsive and fails to stop, run the subcommand again with the
--kill option set to true. When this option is true, the subcommand uses functionality of the
operating system to kill the instance process before restarting the instance.

Administering Eclipse GlassFish Instances Locally
Local administration does not require SSH to be set up. If SSH is not set up, you must log in to each
host where remote instances reside and administer the instances individually.

Administering Eclipse GlassFish instances locally involves the following tasks:

• To Create an Instance Locally

• To Delete an Instance Locally

• To Start an Individual Instance Locally

• To Stop an Individual Instance Locally

• To Restart an Individual Instance Locally


Even if SSH is not set up, you can obtain information about instances in a domain
without logging in to each host where remote instances reside. For instructions,
see To List All Instances in a Domain.

To Create an Instance Locally

Use the create-local-instance subcommand in remote mode to create a Eclipse GlassFish instance
locally. Creating an instance adds the instance to the DAS configuration and creates the instance’s
files on the host where the instance resides.

If the instance is a clustered instance that is managed by GMS, system properties for the instance
that relate to GMS must be configured correctly. To avoid the need to restart the DAS and the
instance, configure an instance’s system properties that relate to GMS when you create the
instance. If you change GMS-related system properties for an existing instance, the DAS and the
instance must be restarted to apply the changes. For information about GMS, see Group
Management Service.

Before You Begin

If you plan to specify the node on which the instance is to reside, ensure that the node exists.



If you create the instance on a host for which no nodes are defined, you can create
the instance without creating a node beforehand. In this situation, Eclipse
GlassFish creates a CONFIG node for you. The name of the node is the unqualified
name of the host.

For information about how to create a node, see the following sections:

83



• To Create an SSH Node

• To Create a CONFIG Node

If you are adding the instance to a cluster, ensure that the cluster to which you are adding the
instance exists. For information about how to create a cluster, see To Create a Cluster.

If the instance is to reference an existing named configuration, ensure that the configuration exists.
For more information, see To Create a Named Configuration.

The instance might be a clustered instance that is managed by GMS and resides on a node that
represents a multihome host. In this situation, ensure that you have the Internet Protocol (IP)
address of the network interface to which GMS binds.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Log in to the host that is represented by the node where the instance is to reside.

3. Run the create-local-instance subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for configuring the instance, see the
create-local-instance(1) help page.

◦ If you are creating a standalone instance, do not specify a cluster.

If the instance is to reference an existing configuration, specify a configuration that no other
cluster or instance references.

$ asadmin --host das-host [--port admin-port]
create-local-instance [--node node-name] [--config configuration-name]instance-
name

das-host

The name of the host where the DAS is running.

admin-port

The HTTP or HTTPS port on which the DAS listens for administration requests. If the DAS
listens on the default port for administration requests, you may omit this option.

node-name

The node on which the instance is to reside.
If you are creating the instance on a host for which fewer than two nodes are defined,
you may omit this option.
If no nodes are defined for the host, Eclipse GlassFish creates a CONFIG node for you. The
name of the node is the unqualified name of the host.
If one node is defined for the host, the instance is created on that node.

configuration-name

The name of the existing named configuration that the instance will reference.

84

https://glassfish.org/docs/latest/reference-manual.pdf#create-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#create-local-instance


If you do not require the instance to reference an existing configuration, omit this option.
A copy of the default-config configuration is created for the instance. The name of this
configuration is instance-name`-config`, where instance-name is the name of the server
instance.

instance-name

Your choice of name for the instance that you are creating.

◦ If you are creating a shared instance, specify the configuration that the instance will share
with other clusters or instances.
Do not specify a cluster.

$ asadmin --host das-host [--port admin-port]
create-local-instance [--node node-name] --config configuration-name instance-
name

das-host

The name of the host where the DAS is running.

admin-port

The HTTP or HTTPS port on which the DAS listens for administration requests. If the DAS
listens on the default port for administration requests, you may omit this option.

node-name

The node on which the instance is to reside.
If you are creating the instance on a host for which fewer than two nodes are defined,
you may omit this option.
If no nodes are defined for the host, Eclipse GlassFish creates a CONFIG node for you. The
name of the node is the unqualified name of the host.
If one node is defined for the host, the instance is created on that node.

configuration-name

The name of the existing named configuration that the instance will reference.

instance-name

Your choice of name for the instance that you are creating.

◦ If you are creating a clustered instance, specify the cluster to which the instance will belong.
If the instance is managed by GMS and resides on a node that represents a multihome host,
specify the `GMS-BIND-INTERFACE-ADDRESS-`cluster-name system property.

$ asadmin --host das-host [--port admin-port]
create-local-instance --cluster cluster-name [--node node-name]
[--systemproperties GMS-BIND-INTERFACE-ADDRESS-cluster-name=bind-
address]instance-name

85



das-host

The name of the host where the DAS is running.

admin-port

The HTTP or HTTPS port on which the DAS listens for administration requests. If the DAS
listens on the default port for administration requests, you may omit this option.

cluster-name

The name of the cluster to which you are adding the instance.

node-name

The node on which the instance is to reside.
If you are creating the instance on a host for which fewer than two nodes are defined,
you may omit this option.
If no nodes are defined for the host, Eclipse GlassFish creates a CONFIG node for you. The
name of the node is the unqualified name of the host.
If one node is defined for the host, the instance is created on that node.

bind-address

The IP address of the network interface to which GMS binds. Specify this option only if
the instance is managed by GMS and resides on a node that represents a multihome host.

instance-name

Your choice of name for the instance that you are creating.

Example 5-10 Creating a Clustered Instance Locally Without Specifying a Node

This example adds the instance kui-i1 to the cluster kuicluster locally. The CONFIG node xk01 is
created automatically to represent the host xk01.example.com, on which this example is run. The
DAS is running on the host dashost.example.com and listens for administration requests on the
default port.

The commands to list the nodes in the domain are included in this example only to demonstrate the
creation of the node xk01. These commands are not required to create the instance.

$ asadmin --host dashost.example.com list-nodes --long
NODE NAME          TYPE    NODE HOST         INSTALL DIRECTORY   REFERENCED BY
localhost-domain1  CONFIG  localhost         /export/glassfish7
Command list-nodes executed successfully.
$ asadmin --host dashost.example.com
create-local-instance --cluster kuicluster kui-i1
Rendezvoused with DAS on dashost.example.com:4848.
Port Assignments for server instance kui-i1:
JMX_SYSTEM_CONNECTOR_PORT=28687
JMS_PROVIDER_PORT=27677
HTTP_LISTENER_PORT=28081
ASADMIN_LISTENER_PORT=24849
JAVA_DEBUGGER_PORT=29009
IIOP_SSL_LISTENER_PORT=23820

86



IIOP_LISTENER_PORT=23700
OSGI_SHELL_TELNET_PORT=26666
HTTP_SSL_LISTENER_PORT=28182
IIOP_SSL_MUTUALAUTH_PORT=23920
Command create-local-instance executed successfully.
$ asadmin --host dashost.example.com list-nodes --long
NODE NAME          TYPE    NODE HOST         INSTALL DIRECTORY   REFERENCED BY
localhost-domain1  CONFIG  localhost         /export/glassfish7
xk01               CONFIG  xk01.example.com  /export/glassfish7  kui-i1
Command list-nodes executed successfully.

Example 5-11 Creating a Clustered Instance Locally

This example adds the instance yml-i1 to the cluster ymlcluster locally. The instance resides on the
node sj01. The DAS is running on the host das1.example.com and listens for administration requests
on the default port.

$ asadmin --host das1.example.com
create-local-instance --cluster ymlcluster --node sj01 yml-i1
Rendezvoused with DAS on das1.example.com:4848.
Port Assignments for server instance yml-i1:
JMX_SYSTEM_CONNECTOR_PORT=28687
JMS_PROVIDER_PORT=27677
HTTP_LISTENER_PORT=28081
ASADMIN_LISTENER_PORT=24849
JAVA_DEBUGGER_PORT=29009
IIOP_SSL_LISTENER_PORT=23820
IIOP_LISTENER_PORT=23700
OSGI_SHELL_TELNET_PORT=26666
HTTP_SSL_LISTENER_PORT=28182
IIOP_SSL_MUTUALAUTH_PORT=23920
Command create-local-instance executed successfully.

See Also

• To Create an SSH Node

• To Create a CONFIG Node

• create-local-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help create-
local-instance at the command line.

Next Steps

After creating an instance, you can start the instance as explained in the following sections:

• To Start an Individual Instance Centrally

• To Stop an Individual Instance Locally

87

https://glassfish.org/docs/latest/reference-manual.pdf#create-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#create-local-instance


To Delete an Instance Locally

Use the delete-local-instance subcommand in remote mode to delete a Eclipse GlassFish instance
locally.



If you are using a Java Message Service (JMS) cluster with a master broker, do not
delete the instance that is associated with the master broker. If this instance must
be deleted, use the change-master-broker subcommand to assign the master broker
to a different instance.

Deleting an instance involves the following:

• Removing the instance from the configuration of the DAS

• Deleting the instance’s files from file system

Before You Begin

Ensure that the instance that you are deleting is not running. For information about how to stop an
instance, see the following sections:

• To Stop an Individual Instance Centrally

• To Stop an Individual Instance Locally

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Log in to the host that is represented by the node where the instance resides.

3. Confirm that the instance is not running.

$ asadmin --host das-host [--port admin-port]
list-instances instance-name

das-host

The name of the host where the DAS is running.

admin-port

The HTTP or HTTPS port on which the DAS listens for administration requests. If the DAS
listens on the default port for administration requests, you may omit this option.

instance-name

The name of the instance that you are deleting.

4. Run the delete-local-instance subcommand.

$ asadmin --host das-host [--port admin-port]
delete-local-instance [--node node-name]instance-name

88

https://glassfish.org/docs/latest/reference-manual.pdf#change-master-broker
https://glassfish.org/docs/latest/reference-manual.pdf#delete-local-instance


das-host

The name of the host where the DAS is running.

admin-port

The HTTP or HTTPS port on which the DAS listens for administration requests. If the DAS
listens on the default port for administration requests, you may omit this option.

node-name

The node on which the instance resides. If only one node is defined for the Eclipse
GlassFish installation that you are running on the node’s host, you may omit this option.

instance-name

The name of the instance that you are deleting.

Example 5-12 Deleting an Instance Locally

This example confirms that the instance yml-i1 is not running and deletes the instance.

$ asadmin --host das1.example.com list-instances yml-i1
yml-i1   not running
Command list-instances executed successfully.
$ asadmin --host das1.example.com delete-local-instance --node sj01 yml-i1
Command delete-local-instance executed successfully.

See Also

• To Stop an Individual Instance Centrally

• To Stop an Individual Instance Locally

• change-master-broker(1)

• delete-local-instance(1)

• list-instances(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help delete-local-instance

• asadmin help list-instances

To Start an Individual Instance Locally

Use the start-local-instance subcommand in local mode to start an individual instance locally.

1. Log in to the host that is represented by the node where the instance resides.

2. Run the start-local-instance subcommand.

89

https://glassfish.org/docs/latest/reference-manual.pdf#change-master-broker
https://glassfish.org/docs/latest/reference-manual.pdf#change-master-broker
https://glassfish.org/docs/latest/reference-manual.pdf#delete-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#delete-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances


$ asadmin start-local-instance [--node node-name]instance-name


Only the options that are required to complete this task are provided in this
step. For information about all the options for controlling the behavior of the
instance, see the start-local-instance(1) help page.

node-name

The node on which the instance resides. If only one node is defined for the Eclipse GlassFish
installation that you are running on the node’s host, you may omit this option.

instance-name

The name of the instance that you are starting.

Example 5-13 Starting an Individual Instance Locally

This example starts the instance yml-i1 locally. The instance resides on the node sj01.

$ asadmin start-local-instance --node sj01 yml-i1
Waiting for yml-i1 to start ...............
Successfully started the instance: yml-i1
instance Location: /export/glassfish7/glassfish/nodes/sj01/yml-i1
Log File: /export/glassfish7/glassfish/nodes/sj01/yml-i1/logs/server.log
Admin Port: 24849
Command start-local-instance executed successfully.

See Also

start-local-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help start-
local-instance at the command line.

Next Steps

After starting an instance, you can deploy applications to the instance. For more information, see
the Eclipse GlassFish Application Deployment Guide.

To Stop an Individual Instance Locally

Use the stop-local-instance subcommand in local mode to stop an individual instance locally.

When an instance is stopped, the instance stops accepting new requests and waits for all
outstanding requests to be completed.

1. Log in to the host that is represented by the node where the instance resides.

2. Run the stop-local-instance subcommand.

90

https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#stop-local-instance


$ asadmin stop-local-instance [--node node-name]instance-name

node-name

The node on which the instance resides. If only one node is defined for the Eclipse GlassFish
installation that you are running on the node’s host, you may omit this option.

instance-name

The name of the instance that you are stopping.

Example 5-14 Stopping an Individual Instance Locally

This example stops the instance yml-i1 locally. The instance resides on the node sj01.

$ asadmin stop-local-instance --node sj01 yml-i1
Waiting for the instance to stop ....
Command stop-local-instance executed successfully.

See Also

stop-local-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help stop-
local-instance at the command line.

Troubleshooting

If the instance has become unresponsive and fails to stop, run the subcommand again with the
--kill option set to true. When this option is true, the subcommand uses functionality of the
operating system to kill the instance process.

To Restart an Individual Instance Locally

Use the restart-local-instance subcommand in local mode to restart an individual instance locally.

When this subcommand restarts an instance, the DAS synchronizes the instance with changes since
the last synchronization as described in Default Synchronization for Files and Directories.

If you require different synchronization behavior, stop and start the instance as explained in To
Resynchronize an Instance and the DAS Online.

1. Log in to the host that is represented by the node where the instance resides.

2. Run the restart-local-instance subcommand.

$ asadmin restart-local-instance [--node node-name]instance-name

91

https://glassfish.org/docs/latest/reference-manual.pdf#stop-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#stop-local-instance


node-name

The node on which the instance resides. If only one node is defined for the Eclipse GlassFish
installation that you are running on the node’s host, you may omit this option.

instance-name

The name of the instance that you are restarting.

Example 5-15 Restarting an Individual Instance Locally

This example restarts the instance yml-i1 locally. The instance resides on the node sj01.

$ asadmin restart-local-instance --node sj01 yml-i1
Command restart-local-instance executed successfully.

See Also

restart-local-instance(1)

You can also view the full syntax and options of the subcommand by typing asadmin help restart-
local-instance at the command line.

Troubleshooting

If the instance has become unresponsive and fails to stop, run the subcommand again with the
--kill option set to true. When this option is true, the subcommand uses functionality of the
operating system to kill the instance process before restarting the instance.

Resynchronizing Eclipse GlassFish Instances and the
DAS
Configuration data for a Eclipse GlassFish instance is stored as follows:

• In the repository of the domain administration server (DAS)

• In a cache on the host that is local to the instance

The configuration data in these locations must be synchronized. The cache is synchronized in the
following circumstances:

• Whenever an asadmin subcommand is run. For more information, see "Impact of Configuration
Changes" in Eclipse GlassFish Administration Guide.

• When a user uses the administration tools to start or restart an instance.

Default Synchronization for Files and Directories

The --sync option of the subcommands for starting an instance controls the type of synchronization
between the DAS and the instance’s files when the instance is started. You can use this option to
override the default synchronization behavior for the files and directories of an instance. For more

92

https://glassfish.org/docs/latest/reference-manual.pdf#restart-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#restart-local-instance
https://glassfish.org/docs/latest/administration-guide.pdf#impact-of-configuration-changes
https://glassfish.org/docs/latest/administration-guide.pdf#impact-of-configuration-changes


information, see To Resynchronize an Instance and the DAS Online.

On the DAS, the files and directories of an instance are stored in the domain-dir directory, where
domain-dir is the directory in which a domain’s configuration is stored. The default
synchronization behavior for the files and directories of an instance is as follows:

applications

This directory contains a subdirectory for each application that is deployed to the instance.
By default, only a change to an application’s top-level directory within the application directory
causes the DAS to synchronize that application’s directory. When the DAS resynchronizes the
applications directory, all the application’s files and all generated content that is related to the
application are copied to the instance.
If a file below a top-level subdirectory is changed without a change to a file in the top-level
subdirectory, full synchronization is required. In normal operation, files below the top-level
subdirectories of these directories are not changed and such files should not be changed by
users. If an application is deployed and undeployed, full synchronization is not necessary to
update the instance with the change.

config

This directory contains configuration files for the entire domain.
By default, the DAS resynchronizes files that have been modified since the last
resynchronization only if the domain.xml file in this directory has been modified.



If you add a file to the config directory of an instance, the file is deleted when
the instance is resynchronized with the DAS. However, any file that you add to
the config directory of the DAS is not deleted when instances and the DAS are
resynchronized. By default, any file that you add to the config directory of the
DAS is not resynchronized. If you require any additional configuration files to
be resynchronized, you must specify the files explicitly. For more information,
see To Resynchronize Additional Configuration Files.

config/config-name

This directory contains files that are to be shared by all instances that reference the named
configuration config-name. A config-name directory exists for each named configuration in the
configuration of the DAS.
Because the config-name directory contains the subdirectories lib and docroot, this directory
might be very large. Therefore, by default, only a change to a file or a top-level subdirectory of
config-name causes the DAS to resynchronize the config-name directory.

config/domain.xml

This file contains the DAS configuration for the domain to which the instance belongs.
By default, the DAS resynchronizes this file if it has been modified since the last
resynchronization.



A change to the config/domain.xml file is required to cause the DAS to
resynchronize an instance’s files. If the config/domain.xml file has not changed
since the last resynchronization, none of the instance’s files is resynchronized,

93



even if some of these files are out of date in the cache.

docroot

This directory is the HTTP document root directory. By default, all instances in a domain use the
same document root directory. To enable instances to use a different document root directory, a
virtual server must be created in which the docroot property is set. For more information, see
the create-virtual-server(1) help page.
The docroot directory might be very large. Therefore, by default, only a change to a file or a
subdirectory in the top level of the docroot directory causes the DAS to resynchronize the docroot
directory. The DAS checks files in the top level of the docroot directory to ensure that changes to
the index.html file are detected.
When the DAS resynchronizes the docroot directory, all modified files and subdirectories at any
level are copied to the instance.
If a file below a top-level subdirectory is changed without a change to a file in the top-level
subdirectory, full synchronization is required.

generated

This directory contains generated files for Jakarta EE applications and modules, for example, EJB
stubs, compiled JSP classes, and security policy files. Do not modify the contents of this directory.
This directory is resynchronized when the applications directory is resynchronized. Therefore,
only directories for applications that are deployed to the instance are resynchronized.

java-web-start

This directory is not resynchronized. It is created and populated as required on each instance.

lib

lib/classes

These directories contain common Java class files or JAR archives and ZIP archives for use by
applications that are deployed to the entire domain. Typically, these directories contain common
JDBC drivers and other utility libraries that are shared by all applications in the domain.
The contents of these directories are loaded by the common class loader. For more information,
see " Using the Common Class Loader" in Eclipse GlassFish Application Development Guide. The
class loader loads the contents of these directories in the following order:

1. lib/classes

2. lib/*.jar

3. lib/*.zip

The lib directory also contains the following subdirectories:

applibs

This directory contains application-specific Java class files or JAR archives and ZIP archives
for use by applications that are deployed to the entire domain.

ext

This directory contains optional packages in JAR archives and ZIP archives for use by
applications that are deployed to the entire domain. These archive files are loaded by using

94

https://glassfish.org/docs/latest/reference-manual.pdf#create-virtual-server
https://glassfish.org/docs/latest/reference-manual.pdf#create-virtual-server
https://glassfish.org/docs/latest/application-development-guide.pdf#using-the-common-class-loader


Java extension mechanism. For more information, see Optional Packages - An Overview
(http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/extensions.html).


Optional packages were formerly known as standard extensions or
extensions.

The lib directory and its subdirectories typically contain only a small number of files. Therefore,
by default, a change to any file in these directories causes the DAS to resynchronize the file that
changed.

To Resynchronize an Instance and the DAS Online

Resynchronizing an instance and the DAS updates the instance with changes to the instance’s
configuration files on the DAS. An instance is resynchronized with the DAS when the instance is
started or restarted.


Resynchronization of an instance is only required if the instance is stopped. A
running instance does not require resynchronization.

1. Ensure that the DAS is running.

2. Determine whether the instance is stopped.

asadmin> list-instances instance-name

instance-name

The name of the instance that you are resynchronizing with the DAS.
If the instance is stopped, the list-instances subcommand indicates that the instance is not
running.

3. If the instance is stopped, start the instance.
If the instance is running, no further action is required.

◦ If SSH is set up, start the instance centrally.

If you require full synchronization, set the --sync option of the start-instance subcommand
to full. If default synchronization is sufficient, omit this option.

asadmin> start-instance [--sync full] instance-name


Only the options that are required to complete this task are provided in this
step. For information about all the options for controlling the behavior of
the instance, see the start-instance(1) help page.

instance-name

The name of the instance that you are starting.

95

http://download.oracle.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/extensions.html
https://glassfish.org/docs/latest/reference-manual.pdf#start-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-instance


◦ If SSH is not set up, start the instance locally from the host where the instance resides.

If you require full synchronization, set the --sync option of the start-local-instance
subcommand to full. If default synchronization is sufficient, omit this option.

$ asadmin start-local-instance [--node node-name] [--sync full] instance-name


Only the options that are required to complete this task are provided in this
step. For information about all the options for controlling the behavior of
the instance, see the start-local-instance(1) help page.

node-name

The node on which the instance resides. If only one node is defined for the Eclipse
GlassFish installation that you are running on the node’s host, you may omit this option.

instance-name

The name of the instance that you are starting.

Example 5-16 Resynchronizing an Instance and the DAS Online

This example determines that the instance yml-i1 is stopped and fully resynchronizes the instance
with the DAS. Because SSH is not set up, the instance is started locally on the host where the
instance resides. In this example, multiple nodes are defined for the Eclipse GlassFish installation
that is running on the node’s host.

To determine whether the instance is stopped, the following command is run in multimode on the
DAS host:

asadmin> list-instances yml-i1
yml-i1   not running
Command list-instances executed successfully.

To start the instance, the following command is run in single mode on the host where the instance
resides:

$ asadmin start-local-instance --node sj01 --sync full yml-i1
Removing all cached state for instance yml-i1.
Waiting for yml-i1 to start ...............
Successfully started the instance: yml-i1
instance Location: /export/glassfish7/glassfish/nodes/sj01/yml-i1
Log File: /export/glassfish7/glassfish/nodes/sj01/yml-i1/logs/server.log
Admin Port: 24849
Command start-local-instance executed successfully.

See Also

96

https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance


• list-instances(1)

• start-instance(1)

• start-local-instance(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line.

asadmin help list-instances asadmin help start-instance asadmin help start-local-instance

To Resynchronize Library Files

To ensure that library files are resynchronized correctly, you must ensure that each library file is
placed in the correct directory for the type of file.

1. Place each library file in the correct location for the type of library file as shown in the
following table.

Type of Library Files Location

Common JAR archives and ZIP archives for all
applications in a domain.

domain-dir/lib

Common Java class files for a domain for all
applications in a domain.

domain-dir/lib/classes

Application-specific libraries. domain-dir/lib/applibs

Optional packages for all applications in a
domain.

domain-dir/lib/ext

Library files for all applications that are deployed
to a specific cluster or standalone instance.

domain-dir/config/config-name/lib

Optional packages for all applications that are
deployed to a specific cluster or standalone
instance.

domain-dir/config/config-name/lib/ext

domain-dir

The directory in which the domain’s configuration is stored.

config-name

For a standalone instance: the named configuration that the instance references.
For a clustered instance: the named configuration that the cluster to which the instance
belongs references.

2. When you deploy an application that depends on these library files, use the --libraries option
of the deploy subcommand to specify these dependencies.
For library files in the domain-dir`/lib/applib` directory, only the JAR file name is required, for
example:

asadmin> deploy --libraries commons-coll.jar,X1.jar app.ear

97

https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#start-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance
https://glassfish.org/docs/latest/reference-manual.pdf#start-local-instance


For other types of library file, the full path is required.

See Also

deploy(1)

You can also view the full syntax and options of the subcommands by typing the command asadmin
help deploy at the command line.

To Resynchronize Custom Configuration Files for an Instance

Configuration files in the domain-dir/config directory that are resynchronized are resynchronized
for the entire domain. If you create a custom configuration file for an instance or a cluster, the
custom file is resynchronized only for the instance or cluster.

1. Place the custom configuration file in the

domain-dir/config/config-name directory.

domain-dir

The directory in which the domain’s configuration is stored.

config-name

The named configuration that the instance references.

2. If the instance locates the file through an option of the Java application launcher, update the
option.

1. Delete the option.

asadmin> delete-jvm-options --target instance-name
option-name=current-value

instance-name

The name of the instance for which the custom configuration file is created.

option-name

The name of the option for locating the file.

current-value

The current value of the option for locating the file.

2. Re-create the option that you deleted in the previous step.

asadmin> create-jvm-options --target instance-name
option-name=new-value

instance-name

The name of the instance for which the custom configuration file is created.

98

https://glassfish.org/docs/latest/reference-manual.pdf#deploy
https://glassfish.org/docs/latest/reference-manual.pdf#deploy


option-name

The name of the option for locating the file.

new-value

The new value of the option for locating the file.

Example 5-17 Updating the Option for Locating a Configuration File

This example updates the option for locating the server.policy file to specify a custom file for the
instance pmd.

asadmin> delete-jvm-options --target pmd
-Djava.security.policy=${com.sun.aas.instanceRoot}/config/server.policy
Deleted 1 option(s)
Command delete-jvm-options executed successfully.
asadmin> create-jvm-options --target pmd
-Djava.security.policy=${com.sun.aas.instanceRoot}/config/pmd-config/server.policy
Created 1 option(s)
Command create-jvm-options executed successfully.

See Also

• create-jvm-options(1)

• delete-jvm-options(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line.

asadmin help create-jvm-options

asadmin help delete-jvm-options

To Resynchronize Users' Changes to Files

A change to the config/domain.xml file is required to cause the DAS to resynchronize instances' files.
If other files in the domain directory are changed without a change to the config/domain.xml file,
instances are not resynchronized with these changes.

The following changes are examples of changes to the domain directory without a change to the
config/domain.xml file:

• Adding files to the lib directory

• Adding certificates to the key store by using the keytool command

1. Change the last modified time of the config/domain.xml file.
Exactly how to change the last modified time depends on the operating system. For example,
on UNIX and Linux systems, you can use the touch(1) command.

2. Resynchronize each instance in the domain with the DAS.
For instructions, see To Resynchronize an Instance and the DAS Online.

99

https://glassfish.org/docs/latest/reference-manual.pdf#create-jvm-options
https://glassfish.org/docs/latest/reference-manual.pdf#create-jvm-options
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jvm-options
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jvm-options
https://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1touch-1
https://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1touch-1


See Also

• To Resynchronize an Instance and the DAS Online

• touch(1)

To Resynchronize Additional Configuration Files

By default, Eclipse GlassFish synchronizes only the following configuration files:

• admin-keyfile

• cacerts.p12

• cacerts.jks

• default-web.xml

• domain.xml

• domain-passwords

• keyfile

• keystore.p12

• keystore.jks

• server.policy

• sun-acc.xml

• wss-server-config-1.0

• xml wss-server-config-2.0.xml

If you require instances in a domain to be resynchronized with additional configuration files for
the domain, you can specify a list of files to resynchronize.



If you specify a list of files to resynchronize, you must specify all the files that the
instances require, including the files that Eclipse GlassFish resynchronizes by
default. Any file in the instance’s cache that is not in the list is deleted when the
instance is resynchronized with the DAS.

In the config directory of the domain, create a plain text file that is named config-files that lists
the files to resynchronize.

In the config-files file, list each file name on a separate line.

Example 5-18 config-files File

This example shows the content of a config-files file. This file specifies that the some-other-info file
is to be resynchronized in addition to the files that Eclipse GlassFish resynchronizes by default:

admin-keyfile
cacerts.p12
default-web.xml

100

https://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1touch-1
https://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1touch-1


domain.xml
domain-passwords
keyfile
keystore.p12
server.policy
sun-acc.xml
wss-server-config-1.0.xml
wss-server-config-2.0.xml
some-other-info

To Prevent Deletion of Application-Generated Files

When the DAS resynchronizes an instance’s files, the DAS deletes from the instance’s cache any
files that are not listed for resynchronization. If an application creates files in a directory that the
DAS resynchronizes, these files are deleted when the DAS resynchronizes an instance with the DAS.

Put the files in a subdirectory under the domain directory that is not defined by Eclipse GlassFish,
for example, /export/glassfish7/glassfish/domains/domain1/myapp/myfile.

To Resynchronize an Instance and the DAS Offline

Resynchronizing an instance and the DAS offline updates the instance’s cache without the need for
the instance to be able to communicate with the DAS. Offline resynchronization is typically
required for the following reasons:

• To reestablish the instance after an upgrade

• To synchronize the instance manually with the DAS when the instance cannot contact the DAS

1. Ensure that the DAS is running.

2. Export the configuration data that you are resynchronizing to an archive file.


Only the options that are required to complete this task are provided in this
step. For information about all the options for exporting the configuration
data, see the export-sync-bundle(1) help page.

How to export the data depends on the host from where you run the export-sync-bundle
subcommand.

▪ From the DAS host, run the export-sync-bundle subcommand as follows:

asadmin> export-sync-bundle --target target

target

The cluster or standalone instance for which to export configuration data.
Do not specify a clustered instance. If you specify a clustered instance, an error
occurs. To export configuration data for a clustered instance, specify the name of the
cluster of which the instance is a member, not the instance.

101

https://glassfish.org/docs/latest/reference-manual.pdf#export-sync-bundle
https://glassfish.org/docs/latest/reference-manual.pdf#export-sync-bundle


The file is created on the DAS host.

▪ From the host where the instance resides, run the export-sync-bundle subcommand as
follows:

$ asadmin --host das-host [--port admin-port]
export-sync-bundle [--retrieve=true] --target target

das-host

The name of the host where the DAS is running.

admin-port

The HTTP or HTTPS port on which the DAS listens for administration requests. If the
DAS listens on the default port for administration requests, you may omit this option.

target

The cluster or standalone instance for which to export configuration data.
Do not specify a clustered instance. If you specify a clustered instance, an error
occurs. To export configuration data for a clustered instance, specify the name of the
cluster of which the instance is a member, not the instance.


To create the archive file on the host where the instance resides, set
the --retrieve option to true. If you omit this option, the archive file
is created on the DAS host.

3. If necessary, copy the archive file that you created in Step 2 from the DAS host to the host
where the instance resides.

4. From the host where the instance resides, import the instance’s configuration data from the
archive file that you created in Step 2.


Only the options that are required to complete this task are provided in this
step. For information about all the options for importing the configuration
data, see the import-sync-bundle(1) help page.

$ asadmin import-sync-bundle [--node node-name] --instance instance-name
archive-file

node-name

The node on which the instance resides. If you omit this option, the subcommand
determines the node from the DAS configuration in the archive file.

instance-name

The name of the instance that you are resynchronizing.

102

https://glassfish.org/docs/latest/reference-manual.pdf#import-sync-bundle
https://glassfish.org/docs/latest/reference-manual.pdf#import-sync-bundle


archive-file

The name of the file, including the path, that contains the archive file to import.

Example 5-19 Resynchronizing an Instance and the DAS Offline

This example resynchronizes the clustered instance yml-i1 and the DAS offline. The instance is a
member of the cluster ymlcluster. The archive file that contains the instance’s configuration data is
created on the host where the instance resides.

$ asadmin --host dashost.example.com
export-sync-bundle --retrieve=true --target ymlcluster
Command export-sync-bundle executed successfully.
$ asadmin import-sync-bundle --node sj01
--instance yml-i1 ymlcluster-sync-bundle.zip
Command import-sync-bundle executed successfully.

See Also

• export-sync-bundle(1)

• import-sync-bundle(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line.

asadmin help export-sync-bundle

asadmin help import-sync-bundle

Migrating EJB Timers
If a Eclipse GlassFish server instance stops or fails abnormally, it may be desirable to migrate the
EJB timers defined for that stopped server instance to another running server instance.

Automatic timer migration is enabled by default for clustered server instances that are stopped
normally. Automatic timer migration can also be enabled to handle clustered server instance
crashes. In addition, timers can be migrated manually for stopped or crashed server instances.

• To Enable Automatic EJB Timer Migration for Failed Clustered Instances

• To Migrate EJB Timers Manually

To Enable Automatic EJB Timer Migration for Failed Clustered Instances

Automatic migration of EJB timers is enabled by default for clustered server instances that are
stopped normally. If the Group Management Service (GMS) is enabled and a clustered instance is
stopped normally, no further action is required for timer migration to occur. The procedure in this
section is only necessary if you want to enable automatic timer migration for clustered server
instances that have stopped abnormally.

103

https://glassfish.org/docs/latest/reference-manual.pdf#export-sync-bundle
https://glassfish.org/docs/latest/reference-manual.pdf#export-sync-bundle
https://glassfish.org/docs/latest/reference-manual.pdf#import-sync-bundle
https://glassfish.org/docs/latest/reference-manual.pdf#import-sync-bundle



If the GMS is enabled, the default automatic timer migration cannot be disabled.
To disable automatic timer migration, you must first disable the GMS. For
information about the GMS, see Group Management Service.

Before You Begin

Automatic EJB timer migration can only be configured for clustered server instances. Automatic
timer migration is not possible for standalone server instances.

Enable delegated transaction recovery for the cluster.

This enables automatic timer migration for failed server instances in the cluster.

For instructions on enabling delegated transaction recovery, see "Administering Transactions" in
Eclipse GlassFish Administration Guide.

To Migrate EJB Timers Manually

EJB timers can be migrated manually from a stopped source instance to a specified target instance
in the same cluster if GMS notification is not enabled. If no target instance is specified, the DAS will
attempt to find a suitable server instance. A migration notification will then be sent to the selected
target server instance.

Note the following restrictions:

• If the source instance is part of a cluster, then the target instance must also be part of that same
cluster.

• It is not possible to migrate timers from a standalone instance to a clustered instance, or from
one cluster to another cluster.

• It is not possible to migrate timers from one standalone instance to another standalone
instance.

• All EJB timers defined for a given instance are migrated with this procedure. It is not possible to
migrate individual timers.

Before You Begin

The server instance from which the EJB timers are to be migrated should not be active during the
migration process.

1. Verify that the source clustered server instance from which the EJB timers are to be migrated is
not currently running.

asadmin> list-instances source-instance

2. Stop the instance from which the timers are to be migrated, if that instance is still running.

asadmin> stop-instance source-instance

104

https://glassfish.org/docs/latest/administration-guide.pdf#administering-transactions


 The target instance to which the timers will be migrated should be running.

3. List the currently defined EJB timers on the source instance, if desired.

asadmin> list-timers source-cluster

4. Migrate the timers from the stopped source instance to the target instance.

asadmin> migrate-timers --target target-instance source-instance

Example 5-20 Migrating an EJB Timer

The following example show how to migrate timers from a clustered source instance named
football to a clustered target instance named soccer.

asadmin> migrate-timers --target soccer football

See Also

list-timers(1), migrate-timers(1), list-instances(1), stop-instance(1)

105

https://glassfish.org/docs/latest/reference-manual.pdf#list-timers
https://glassfish.org/docs/latest/reference-manual.pdf#list-timers
https://glassfish.org/docs/latest/reference-manual.pdf#migrate-timers
https://glassfish.org/docs/latest/reference-manual.pdf#migrate-timers
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#stop-instance
https://glassfish.org/docs/latest/reference-manual.pdf#stop-instance


6 Administering Named Configurations
A named configuration is a set of configuration information for Eclipse GlassFish instances and
clusters. A configuration sets port numbers for listeners that an instance or a cluster uses and
defines settings for items such as the EJB container, security, logging, and monitoring. Applications
and resources are not defined in named configurations.

Eclipse GlassFish enables you to create configurations for use by clusters and instances. Eclipse
GlassFish creates configurations automatically for clusters and instances that do not reference an
existing configuration. You can modify any existing named configuration regardless of how the
configuration was created.

The following topics are addressed here:

• About Named Configurations

• Creating, Listing, and Deleting Named Configurations

• Modifying Properties for Named Configurations and Instances

About Named Configurations
Configurations exist in a domain. Multiple Eclipse GlassFish instances or clusters in the domain can
reference the same configuration, or they can have separate configurations. To ensure that the
environment in a cluster’s instances is homogenous, all instances in the cluster inherit the cluster’s
configuration.

Types of Named Configurations

Each named configuration is one of the following types of configuration:

Standalone configuration

A standalone configuration is referenced by only one instance or cluster and is not shared with
any other instances or clusters.


A configuration that is referenced by only one cluster is a standalone
configuration, even if the cluster contains multiple instances.

Shared configuration

A shared configuration is referenced by multiple instances or clusters.

The type of an unclustered instance is determined by the type of the configuration that the instance
references. For more information, see Types of Eclipse GlassFish Instances.

The default-config Configuration

The default-config configuration is a special configuration that acts as a template for creating
named configurations. Clusters and instances cannot refer to the default-config configuration. The
default-config configuration can only be copied to create configurations.

106



Automatically Created Configurations

When you create a cluster or an instance, you can choose whether to specify an existing
configuration that the new cluster or instance will reference. If you choose to create a cluster or an
instance without specifying an existing configuration, Eclipse GlassFish automatically creates a
configuration for the cluster or instance. For more information, see the following sections:

• To Create a Cluster

• To Create an Instance Centrally

• To Create an Instance Locally

Eclipse GlassFish automatically creates a configuration by copying the default-config
configuration. If you require an instance or cluster to reference a copy of a different configuration,
copy the configuration and specify the copy when you create the instance or cluster. For
information about how to copy a configuration, see To Create a Named Configuration.

Eclipse GlassFish assigns the name cluster-or-instance`-config` to an automatically created
configuration. cluster-or-instance is the name of the cluster or instance for which the configuration
is created. The server-config configuration is automatically created for the domain administration
server (DAS) when the domain is created.

Directory for Configuration Synchronization

When a named configuration is created, Eclipse GlassFish creates a configuration directory on the
domain administration server (DAS) at domain-dir/config/config-name.

domain-dir

The directory in which the domain’s configuration is stored.

config-name

The name that was assigned to the configuration when the configuration was created.

This contents of this directory are synchronized to all instances that inherit or reference the
configuration.

Creating, Listing, and Deleting Named Configurations
Eclipse GlassFish enables you to create configurations for use by clusters and instances, obtain
information about configurations, and delete configurations that are no longer required.

The following topics are addressed here:

• To Create a Named Configuration

• To List the Named Configurations in a Domain

• To List the Targets of a Named Configuration

• To Delete a Named Configuration

107



To Create a Named Configuration

Use the copy-config subcommand in remote mode to create a named configuration by copying an
existing configuration.

Eclipse GlassFish requires you to create a configuration by copying a configuration because a
configuration contains many required settings. The newly created configuration is identical to the
configuration that you copy until you change its configuration settings.



Create a named configuration only if you plan to share the configuration among
multiple unclustered instances or clusters, or if you are using a configuration to
preconfigure GMS settings. Otherwise, create clusters and instances without
specifying an existing configuration. If no configuration is specified, Eclipse
GlassFish creates a copy of the default configuration for the cluster or instance.

For more information, see the following sections:

• To Preconfigure Nondefault GMS Configuration Settings

• To Create a Cluster

• To Create an Instance Centrally

• To Create an Instance Locally

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the copy-config subcommand.


Only the options that are required to complete this task are provided in this
step. For information about all the options for configuring the named
configuration, see the copy-config(1) help page.

asadmin> copy-config source-config-name destination-config-name

source-config-name

The name of the configuration that you are copying. You must specify a configuration to copy
even if you are copying the default configuration. The configuration must already exist.

destination-config-name

Your choice of name for the configuration that you are creating by copying the source
configuration.

Example 6-1 Creating a Named Configuration

This example creates the named configuration clusterpresets-config by copying the default
configuration.

asadmin> copy-config default-config clusterpresets-config

108

https://glassfish.org/docs/latest/reference-manual.pdf#copy-config
https://glassfish.org/docs/latest/reference-manual.pdf#copy-config


Command copy-config executed successfully.

See Also

• To Preconfigure Nondefault GMS Configuration Settings

• To Create a Cluster

• To Create an Instance Centrally

• To Create an Instance Locally

• copy-config(1)

You can also view the full syntax and options of the subcommand by typing asadmin help copy-
config at the command line.

To List the Named Configurations in a Domain

Use the list-configs subcommand in remote mode to list existing named configurations in a
domain.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Run the list-configs subcommand.

asadmin> list-configs

Example 6-2 Listing All Named Configurations in a Domain

This example lists all named configurations in the current domain.

asadmin> list-configs
server-config
default-config
ymlcluster-config
clusterpresets-config
Command list-configs executed successfully.

See Also

list-configs(1)

You can also view the full syntax and options of the subcommand by typing asadmin help list-
configs at the command line.

To List the Targets of a Named Configuration

Use the list-clusters subcommand and the list-instances subcommand in remote mode to list the
targets of a named configuration.

109

https://glassfish.org/docs/latest/reference-manual.pdf#copy-config
https://glassfish.org/docs/latest/reference-manual.pdf#copy-config
https://glassfish.org/docs/latest/reference-manual.pdf#list-configs
https://glassfish.org/docs/latest/reference-manual.pdf#list-configs
https://glassfish.org/docs/latest/reference-manual.pdf#list-configs


The targets of a named configuration are the clusters and Eclipse GlassFish instances that reference
the configuration.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. List the clusters that refer to the configuration.

asadmin> list-clusters config-name

config-name

The name of the configuration whose targets you are listing.

3. List the instances that refer to the configuration.

asadmin> list-instances config-name

config-name

The name of the configuration whose targets you are listing.

Example 6-3 Listing the Targets of a Named Configuration

This example shows that the cluster ymlcluster and the instances yml-i1 and yml-i2 reference the
named configuration ymlcluster-config.

asadmin> list-clusters ymlcluster-config
ymlcluster partially running
Command list-clusters executed successfully.
asadmin> list-instances ymlcluster-config
yml-i1   running
yml-i2   not running
Command list-instances executed successfully.

See Also

• list-clusters(1)

• list-instances(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help list-clusters

• asadmin help list-instances

To Delete a Named Configuration

Use the delete-config subcommand in remote mode to delete an existing named configuration
from the configuration of the DAS.

110

https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances


You cannot delete the default-config configuration.


A standalone configuration that was created automatically for a cluster or a
Eclipse GlassFish instance is deleted when the cluster or instance is deleted.

Before You Begin

Ensure that no clusters or instances refer to the configuration. If a cluster or instance refers to the
configuration and is no longer required, delete the cluster or instance. For information about how
to delete an instance and how to delete a cluster, see the following sections:

• To Delete an Instance Centrally

• To Delete an Instance Locally

• To Delete a Cluster

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. Confirm that no clusters refer to the configuration that you are deleting.

asadmin> list-clusters config-name

config-name

The name of the configuration that you are deleting.

3. Confirm that no instances refer to the configuration that you are deleting.

asadmin> list-instances config-name

config-name

The name of the configuration that you are deleting.

4. Run the delete-config subcommand.

asadmin> delete-config config-name

config-name

The name of the configuration that you are deleting.

Example 6-4 Deleting a Named Configuration

This example confirms that no clusters or instances refer to the configuration clusterpresets-
config and then deletes the configuration.

asadmin> list-clusters clusterpresets-config
Nothing to list
Command list-clusters executed successfully.

111

https://glassfish.org/docs/latest/reference-manual.pdf#delete-config


asadmin> list-instances clusterpresets-config
Nothing to list.
Command list-instances executed successfully.
asadmin> delete-config clusterpresets-config
Command delete-config executed successfully.

See Also

• To Delete an Instance Centrally

• To Delete an Instance Locally

• To Delete a Cluster

• delete-config(1)

• list-clusters(1)

• list-instances(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help delete-config

• asadmin help list-clusters

• asadmin help list-instances

Modifying Properties for Named Configurations and
Instances
The properties in a named configuration define port numbers for unclustered instances that
reference the configuration or clustered instances that inherit the configuration. An instance
initially obtains port numbers from the configuration that the instance references or inherits. To
avoid port conflicts, edit the properties of named configurations and instances.

The following topics are addressed here:

• Properties for Port Numbers in a Named Configuration

• To Modify a Named Configuration’s Properties

• To Modify Port Numbers of an Instance

Properties for Port Numbers in a Named Configuration

The default configuration default-config contains properties that define the initial values of port
numbers in a configuration that is copied from default-config. When an instance or a cluster that
references the configuration is created, these properties are set for the instance.

You can create additional system properties for a configuration either by specifying the
--systemproperties option of the copy-config subcommand or by using the create-system-properties
subcommand. To reference a system property from the configuration, use the ${`prop-name}`

112

https://glassfish.org/docs/latest/reference-manual.pdf#delete-config
https://glassfish.org/docs/latest/reference-manual.pdf#delete-config
https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#list-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#copy-config
https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties


notation, where prop-name is the name of the system property.

For example, if a configuration defines additional HTTP listeners, use system properties to define
the ports for those listeners. However, these properties are not set automatically when an instance
or a cluster that references the configuration is created. You must set these properties explicitly
when you create the instance or cluster.

The properties in a named configuration that define port numbers are as follows:

ASADMIN_LISTENER_PORT

This property specifies the port number of the HTTP port or HTTPS port through which the DAS
connects to the instance to manage the instance. Valid values are 1-65535. On UNIX, creating
sockets that listen on ports 1-1024 requires superuser privileges.

HTTP_LISTENER_PORT

This property specifies the port number of the port that is used to listen for HTTP requests. Valid
values are 1-65535. On UNIX, creating sockets that listen on ports 1-1024 requires superuser
privileges.

HTTP_SSL_LISTENER_PORT

This property specifies the port number of the port that is used to listen for HTTPS requests.
Valid values are 1-65535. On UNIX, creating sockets that listen on ports 1-1024 requires
superuser privileges.

IIOP_LISTENER_PORT

This property specifies the port number of the port that is used for IIOP connections. Valid
values are 1-65535. On UNIX, creating sockets that listen on ports 1-1024 requires superuser
privileges.

IIOP_SSL_LISTENER_PORT

This property specifies the port number of the port that is used for secure IIOP connections.
Valid values are 1-65535. On UNIX, creating sockets that listen on ports 1-1024 requires
superuser privileges.

IIOP_SSL_MUTUALAUTH_PORT

This property specifies the port number of the port that is used for secure IIOP connections with
client authentication. Valid values are 1-65535. On UNIX, creating sockets that listen on ports 1-
1024 requires superuser privileges.

JAVA_DEBUGGER_PORT

This property specifies the port number of the port that is used for connections to the Java
Platform Debugger Architecture (JPDA) (http://java.sun.com/javase/technologies/core/
toolsapis/jpda/) debugger. Valid values are 1-65535. On UNIX, creating sockets that listen on
ports 1-1024 requires superuser privileges.

JMS_PROVIDER_PORT

This property specifies the port number for the Java Message Service provider. Valid values are
1-65535. On UNIX, creating sockets that listen on ports 1-1024 requires superuser privileges.

113

http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/


JMX_SYSTEM_CONNECTOR_PORT

This property specifies the port number on which the JMX connector listens. Valid values are 1-
65535. On UNIX, creating sockets that listen on ports 1-1024 requires superuser privileges.

OSGI_SHELL_TELNET_PORT

This property specifies the port number of the port that is used for connections to the Apache
Felix Remote Shell (http://felix.apache.org/site/apache-felix-remote-shell.html). This shell
uses the Felix shell service to interact with the OSGi module management subsystem. Valid
values are 1-65535. On UNIX, creating sockets that listen on ports 1-1024 requires superuser
privileges.

To Modify a Named Configuration’s Properties

Use the get subcommand and the set subcommand in remote mode to modify a named
configuration’s properties.

You might copy a configuration for use by instances that reside on the same host as instances that
refer to the original configuration. In this situation, edit the properties of one of the configurations
to ensure that instances that will refer to the configuration have the correct initial settings.

If you change the port number in a configuration, the port number is changed for any instance that
references or inherits the configuration.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. For each property that you are modifying, determine the current value and set the new value.

1. Determine the current value of the property.

asadmin> get configs.config.config-name.system-property.property-name.value

config-name

The name of the configuration whose properties you are modifying.

property-name

The name of the property that you are modifying. For a list of available properties, see
Properties for Port Numbers in a Named Configuration.

2. Set the property to its new value.

asadmin> set
configs.config.config-name.system-property.property-name.value=new-value

config-name

The name of the configuration whose properties you are modifying.

property-name

The name of the property that you are modifying. For a list of available properties, see

114

http://felix.apache.org/site/apache-felix-remote-shell.html
http://felix.apache.org/site/apache-felix-remote-shell.html
http://felix.apache.org/site/apache-felix-remote-shell.html


Properties for Port Numbers in a Named Configuration.

new-value

The value to which you are setting the property.

Example 6-5 Modifying a Property of a Named Configuration

This example changes the value of the JMS_PROVIDER_PORT property in the clusterpresets-config
configuration from 27676 to 27678.

asadmin> get
configs.config.clusterpresets-config.system-property.JMS_PROVIDER_PORT.value
configs.config.clusterpresets-config.system-property.JMS_PROVIDER_PORT.value=27676
Command get executed successfully.
asadmin> set
configs.config.clusterpresets-config.system-property.JMS_PROVIDER_PORT.value=27678
configs.config.clusterpresets-config.system-property.JMS_PROVIDER_PORT.value=27678
Command set executed successfully.

See Also

• get(1)

• set(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help get

• asadmin help set

To Modify Port Numbers of an Instance

Use the get subcommand and the set subcommand in remote mode to modify the port numbers of
an instance.

The port numbers of a instance are initially set in the configuration that the instance references or
inherits from its parent cluster. Multiple instances that reside on the same host must each listen on
a unique port number. Therefore, if multiple instances that reference or inherit the same
configuration reside on the same host, a port conflict prevents all except one of the instances from
starting. To avoid port conflicts, modify the port numbers on which individual instances listen.

If you modify an instance’s port number and later modify the port number in the instance’s
configuration, the instance’s port number remains unchanged.

The port numbers of an instance are stored as Java system properties. When Eclipse GlassFish is
started, it treats these properties in the same way as properties that are passed through the -D
option of the Java application launcher.

1. Ensure that the DAS is running. Remote subcommands require a running server.

115

https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#set


2. For each port number that you are modifying, determine the current value and set the new
value.

1. Determine the current value of the port number.

asadmin> get
servers.server.instance-name.system-property.port-property.value

instance-name

The name of the instance whose port numbers you are modifying.

port-property

The name of the property that corresponds to the port number that you are modifying.
For a list of available properties, see Properties for Port Numbers in a Named
Configuration.

2. Set the port number to its new value.

asadmin> get
servers.server.instance-name.system-property.port-property.value=new-value

instance-name

The name of the instance whose port numbers you are modifying.

port-property

The name of the property that corresponds to the port number that you are modifying.
For a list of available properties, see Properties for Port Numbers in a Named
Configuration.

new-value

The value to which you are setting the port number.

Example 6-6 Modifying a Port Number for an Instance

This example changes the port number of the HTTP port or the HTTPS port for administration of
the pmdsainst instance from 24849 to 24859.

asadmin> get
servers.server.pmdsainst.system-property.ASADMIN_LISTENER_PORT.value
servers.server.pmdsainst.system-property.ASADMIN_LISTENER_PORT.value=24849
Command get executed successfully.
asadmin> set
servers.server.pmdsainst.system-property.ASADMIN_LISTENER_PORT.value=24859
servers.server.pmdsainst.system-property.ASADMIN_LISTENER_PORT.value=24859
Command set executed successfully.

See Also

116



• get(1)

• set(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help get

• asadmin help set

117

https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#set


7 Configuring HTTP Load Balancing
This chapter describes how to configure HTTP load balancing on Eclipse GlassFish 7.

The following topics are addressed here:

• Setting Up HTTP Load Balancing

For information on other types of load balancing, see Configuring Java Message Service High
Availability and RMI-IIOP Load Balancing and Failover.

Setting Up HTTP Load Balancing
This section describes how to set up load balancing for Eclipse GlassFish.

The following topics are addressed here:

• Prerequisites for Setting Up HTTP Load Balancing

• Configuring Eclipse GlassFish with Apache HTTP Server and mod_jk

• Configuring Eclipse GlassFish with Apache HTTP Server and mod_proxy_ajp

• HTTP Load Balancer Deployments

Prerequisites for Setting Up HTTP Load Balancing

Before configuring your load balancer, you must:

• Install a supported web server and configure it. If using the mod_jk or mod_proxy_ajp modules,
the only supported web server is Apache HTTP Server 2.2.x.

• Configure the mod_jk connector module, as described in Configuring Eclipse GlassFish with
Apache HTTP Server and mod_jk, or configure the mod_proxy_ajp connector module, as described
in Configuring Eclipse GlassFish with Apache HTTP Server and mod_proxy_ajp.

• Create Eclipse GlassFish clusters or server instances to participate in load balancing.

• Deploy applications to these clusters or instances.

Configuring Eclipse GlassFish with Apache HTTP Server and mod_jk

Eclipse GlassFish 7 can be configured for load balancing with Apache HTTP Server as a front end by
enabling the Apache mod_jk connector module. To enable the mod_jk module in Eclipse GlassFish, set
the Eclipse GlassFish jk-enabled network-listener attribute. You can also create jk-connectors under
different virtual-servers using the jk-enabled network-listener attribute.

To Configure the mod_jk Connector Module

1. Install Apache HTTP Server (http://httpd.apache.org/docs/2.2/install.html) and mod_jk
(http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html).

2. Configure workers.properties and httpd.conf. For example:

118

http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/install.html
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html


◦ apache2/config/workers.properties

# Define 1 real worker using ajp13
worker.list=worker1
# Set properties for worker1 (ajp13)
worker.worker1.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009

◦ apache2/conf/httpd.conf

LoadModule jk_module /Users/Amy/apache2/modules/mod_jk-1.2.25-httpd-2.2.4.so
JkWorkersFile /Users/Amy/apache2/conf/worker.properties
# Where to put jk logs
JkLogFile /Users/Amy/apache2/logs/mod_jk.log
# Set the jk log level [debug/error/info]
JkLogLevel debug
# Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
# JkOptions indicate to send SSL KEY SIZE,
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
# JkRequestLogFormat set the request format
JkRequestLogFormat "%w %V %T"
# Send everything for context /examples to worker named worker1 (ajp13)
JkMount /examples/* worker1

3. Start Apache HTTP Server.

4. Create a jk-enabled network listener by using the create-network-listener subcommand.

asadmin> create-network-listener --protocol http-listener-1 \
--listenerport 8009 --jkenabled true jk-connector

5. If you are using the glassfish-jk.properties file, set the jk-configuration-file property of the
network listener to the fully-qualified file name of the glassfish-jk.properties file.

asadmin> set server-config.network-config.network-listeners.network-listener.\
jk-connector.jk-configuration-file=domain-dir/config/glassfish-jk.properties

6. If you expect to need more than five threads for the listener, increase the maximum threads in
the http-thread-pool pool:

asadmin> set configs.config.server-config.thread-pools.thread-pool.\
http-thread-pool.max-thread-pool-size=value

119

https://glassfish.org/docs/latest/reference-manual.pdf#create-network-listener


7. Restart Eclipse GlassFish.

Example 7-1 httpd.conf File for Load Balancing

This example shows an httpd.conf file that is set for load balancing.

LoadModule jk_module /usr/lib/httpd/modules/mod_jk.so
JkWorkersFile /etc/httpd/conf/worker.properties
# Where to put jk logs
JkLogFile /var/log/httpd/mod_jk.log
# Set the jk log level [debug/error/info]
JkLogLevel debug
# Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
# JkOptions indicate to send SSL KEY SIZE,
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
# JkRequestLogFormat set the request format
JkRequestLogFormat "%w %V %T"
# Send all jsp requests to GlassFish
JkMount /*.jsp worker1
# Send all glassfish-test requests to GlassFish
JkMount /glassfish-test/* loadbalancer

Example 7-2 workers.properties File for Load Balancing

This example shows a workers.properties or glassfish-jk.properties file that is set for load
balancing. The worker.worker*.port should match with JK ports you created.

worker.list=worker1,worker2,loadbalancer
worker.worker1.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009
worker.worker1.lbfactor=1
worker.worker1.socket_keepalive=1
worker.worker1.socket_timeout=300
worker.worker2.type=ajp13
worker.worker2.host=localhost
worker.worker2.port=8010
worker.worker2.lbfactor=1
worker.worker2.socket_keepalive=1
worker.worker2.socket_timeout=300
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=worker1,worker2

Configuring Eclipse GlassFish with Apache HTTP Server and mod_proxy_ajp

Eclipse GlassFish 7 can be configured for load balancing with Apache HTTP Server as a front end by
enabling the Apache mod_proxy_ajp connector module. To enable the mod_proxy_ajp module in

120



Eclipse GlassFish, set the Eclipse GlassFish jk-enabled network-listener attribute. You can also
create jk-connectors under different virtual-servers using the jk-enabled network-listener attribute.

To Configure the mod_proxy_ajp Connector Module

1. Install Apache HTTP Server (http://httpd.apache.org/docs/2.2/install.html).

2. Configure httpd.conf. For example:

LoadModule proxy_module /usr/lib/httpd/modules/mod_proxy.so
LoadModule proxy_ajp_module /usr/lib/httpd/modules/mod_proxy_ajp.so

Listen 1979
NameVirtualHost *:1979
<VirtualHost *:1979>
   ServerName localhost
   ErrorLog /var/log/apache2/ajp.error.log
   CustomLog /var/log/apache2/ajp.log combined

   <Proxy *>
     AddDefaultCharset Off
     Order deny,allow
     Allow from all
   </Proxy>

   ProxyPass / ajp://localhost:8009/
   ProxyPassReverse / ajp://localhost:8009/
</VirtualHost>

3. Start Apache HTTP Server.

4. Create a jk-enabled network listener by using the create-network-listener subcommand.

asadmin> create-network-listener --protocol http-listener-1 \
--listenerport 8009 --jkenabled true jk-connector

5. If you expect to need more than five threads for the listener, increase the maximum threads in
the http-thread-pool pool:

asadmin> set configs.config.server-config.thread-pools.thread-pool.\
http-thread-pool.max-thread-pool-size=value

6. Restart Eclipse GlassFish.

HTTP Load Balancer Deployments

You can configure your load balancer in different ways, depending on your goals and environment,
as described in the following sections:

121

http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/install.html


• Using Clustered Server Instances

• Using Multiple Standalone Instances

Using Clustered Server Instances

The most common way to deploy the load balancer is with a cluster or clusters of server instances.
By default all the instances in a cluster have the same configuration and the same applications
deployed to them. The load balancer distributes the workload between the server instances and
requests fail over from an unhealthy instance to a healthy one. If you’ve configured HTTP session
persistence, session information persists when the request is failed over.

If you have multiple clusters, requests can be load balanced across clusters but are only failed over
between the instances in a single cluster. Use multiple clusters in a load balancer to easily enable
rolling upgrades of applications. For more information, see Upgrading Applications Without Loss of
Availability.

 Requests cannot be load balanced across clusters and standalone instances.

Using Multiple Standalone Instances

It is also possible to configure your load balancer to use multiple standalone instances, and load
balance and failover requests between them. However, in this configuration, you must manually
ensure that the standalone instances have homogenous environments and the same applications
deployed to them. Because clusters automatically maintain a homogenous environment, for most
situations it is better and easier to use clusters.



Load balancing across multiple standalone instances only provides failover for
requests, and any associated HTTP session data will not be failed over. This is
another reason why using a cluster, which can provide session failover, is a more
desirable load balancing configuration.

122



8 Upgrading Applications Without Loss of
Availability
Upgrading an application to a new version without loss of availability to users is called a rolling
upgrade. Carefully managing the two versions of the application across the upgrade ensures that
current users of the application complete their tasks without interruption, while new users
transparently get the new version of the application. With a rolling upgrade, users are unaware
that the upgrade occurs.

For more information about application versions and how they are identified, see "Module and
Application Versions" in Eclipse GlassFish Application Deployment Guide.

In a clustered environment, a rolling upgrade redeploys an application with a minimal loss of
service and sessions. A session is any artifact that can be replicated, for example:

• HttpSession

• SingleSignOn

• ServletTimer

• DialogFragment

• Stateful session bean

A rolling upgrade can take place under light to moderate loads. The procedure requires about 10-15
minutes for each Eclipse GlassFish instance.


To prevent the risk of version mismatch when a session fails over, upgrade all
instances in a cluster at the same time. Otherwise a session might fail over to an
instance where different versions of components are running.

Perform this task on each cluster separately. A cluster acts as a safe boundary for session failover
for instances in the cluster. Sessions in one cluster can never fail over to sessions in another cluster.
Therefore, the risk of version mismatch is avoided.

Application Compatibility
Rolling upgrades pose varying degrees of difficulty depending on the magnitude of changes
between the two application versions.

If the changes are superficial, for example, changes to static text and images, the two versions of
the application are compatible and can both run at once in the same cluster.

Compatible applications must:

• Use the same session information

• Use compatible database schemas

• Have generally compatible application-level business logic

123

https://glassfish.org/docs/latest/application-deployment-guide.pdf#module-and-application-versions
https://glassfish.org/docs/latest/application-deployment-guide.pdf#module-and-application-versions


• Use the same physical data source

You can perform a rolling upgrade of a compatible application in either a single cluster or multiple
clusters. For more information, see Upgrading In a Single Cluster.

If the two versions of an application do not meet all the above criteria, then the applications are
considered incompatible. Executing incompatible versions of an application in one cluster can
corrupt application data and cause session failover to not function correctly. The problems depend
on the type and extent of the incompatibility. It is good practice to upgrade an incompatible
application by creating a "shadow cluster" to which to deploy the new version and slowly quiesce
the old cluster and application. For more information, see Upgrading Incompatible Applications.

The application developer and administrator are the best people to determine whether application
versions are compatible. If in doubt, assume that the versions are incompatible, since this is the
safest approach.

Upgrading In a Single Cluster
You can perform a rolling upgrade of an application deployed to a single cluster, providing the
cluster’s configuration is not shared with any other cluster.

To Upgrade an Application in a Single Cluster

1. Deploy the upgraded application to the cluster in a disabled state and with a new version
identifier. For example:

asadmin> asadmin deploy --enabled=false --target myCluster myApp:1.1

2. Perform the following steps for each server instance in the cluster.

1. Quiesce one server instance in the cluster from the load balancer. Follow these steps:

i. Disable the server instance using asadmin disable-http-lb-server.

ii. Export the load balancer configuration file using asadmin export-http-lb-config.

iii. Copy the exported configuration file to the web server instance’s configuration directory.
For example, for Sun Java System Web Server, the location is web-server-install-
dir/https-host-name/config/loadbalancer.xml.

iv. Wait until the timeout has expired.
Monitor the load balancer’s log file.

2. Enable the upgraded application version on the quiesced server instance.
For example:

asadmin> asadmin enable --target instance01 myApp:1.1

Enabling the upgraded application version automatically disables the previous version.

124



3. Test the upgraded application on the server instance to make sure it runs correctly.

4. Re-enable the server instance in load balancer. Follow these steps:

i. Enable the server instance using asadmin enable-http-lb-server.

ii. Export the load balancer configuration file using asadmin export-http-lb-config.

iii. Copy the configuration file to the web server’s configuration directory.

Upgrading in Multiple Clusters

To Upgrade a Compatible Application in Two or More Clusters

Repeat the following procedure for each cluster.

1. Deploy the upgraded application to one cluster in a disabled state and with a new version
identifier. For example:

asadmin> asadmin deploy --enabled=false --target myCluster myApp:1.1

2. Quiesce the cluster with the upgraded application from the load balancer.

1. Disable the cluster using asadmin disable-http-lb-server.

2. Export the load balancer configuration file using asadmin export-http-lb-config.

3. Copy the exported configuration file to the web server instance’s configuration directory.
For example, for Sun Java System Web Server, the location is web-server-install-dir/https-
host-name/config/loadbalancer.xml.

4. Wait until the timeout has expired.
Monitor the load balancer’s log file.

3. Enable the upgraded application version on the quiesced cluster. For example:

asadmin> asadmin enable --target myCluster myApp:1.1

Enabling the upgraded application version automatically disables the previous version.

4. Test the upgraded application on the cluster to make sure it runs correctly.

5. Enable the cluster in the load balancer:

1. Enable the cluster using asadmin enable-http-lb-server.

2. Export the load balancer configuration file using asadmin export-http-lb-config.

3. Copy the configuration file to the web server’s configuration directory.

Upgrading Incompatible Applications
If the new version of the application is incompatible with the old version, use the following
procedure. For information on what makes applications compatible, see Application Compatibility.

125



Also, you must upgrade incompatible application in two or more clusters. If you have only one
cluster, create a "shadow cluster" for the upgrade, as described below.

When upgrading an incompatible application:

• Give the new version of the application a different version identifier from the old version of the
application. The steps below assume that the application has a new version identifier.

• If the data schemas are incompatible, use different physical data sources after planning for data
migration.

• Deploy the new version to a different cluster from the cluster where the old version is deployed.

• Set an appropriately long timeout for the cluster running the old application before you take it
offline, because the requests for the application won’t fail over to the new cluster. These user
sessions will simply fail.

To Upgrade an Incompatible Application by Creating a Second Cluster

1. Create a "shadow cluster" on the same or a different set of machines as the existing cluster. If
you already have a second cluster, skip this step.

1. Use the Administration Console to create the new cluster and reference the existing cluster’s
named configuration.
Customize the ports for the new instances on each machine to avoid conflict with existing
active ports.

2. For all resources associated with the cluster, add a resource reference to the newly created
cluster using asadmin create-resource-ref.

3. Create a reference to all other applications deployed to the cluster (except the current
upgraded application) from the newly created cluster using asadmin create-application-ref.

4. Configure the cluster to be highly available using asadmin configure-ha-cluster.

5. Create reference to the newly-created cluster in the load balancer configuration file using
asadmin create-http-lb-ref.

2. Give the new version of the application a different version identifier from the old version.

3. Deploy the new application version with the new cluster as the target. Use a different context
root or roots.

4. Start the new cluster while the other cluster is still running.
The start causes the cluster to synchronize with the domain and be updated with the new
application.

5. Test the application on the new cluster to make sure it runs correctly.

6. Disable the old cluster from the load balancer using asadmin disable-http-lb-server.

7. Set a timeout for how long lingering sessions survive.

8. Enable the new cluster from the load balancer using asadmin enable-http-lb-server.

9. Export the load balancer configuration file using asadmin export-http-lb-config.

10. Copy the exported configuration file to the web server instance’s configuration directory.
For example, for Sun Java System Web Server, the location is web-server-install-dir/https-host-

126



name/config/loadbalancer.xml.

11. After the timeout period expires or after all users of the old application have exited, stop the old
cluster and undeploy the old application version.

127



9 Configuring High Availability Session
Persistence and Failover
This chapter explains how to enable and configure high availability session persistence.

• Overview of Session Persistence and Failover

• Enabling the High Availability Session Persistence Service

• Stateful Session Bean Failover

Overview of Session Persistence and Failover
Eclipse GlassFish provides high availability session persistence through failover of HTTP session
data and stateful session bean (SFSB) session data. Failover means that in the event of an server
instance or hardware failure, another server instance in a cluster takes over a distributed session.

For example, Jakarta EE applications typically have significant amounts of session state data. A web
shopping cart is the classic example of session state. Also, an application can cache frequently-
needed data in the session object. In fact, almost all applications with significant user interactions
need to maintain session state.



When using high availability session persistence together with a load balancer, use
a load balancer that includes session-based stickiness as part of its load-balancing
algorithm. Otherwise, session data can be misdirected or lost. An example of a load
balancer that includes session-based stickiness is the Loadbalancer Plug-In
available in Eclipse GlassFish.

The following topics are addressed here:

• Requirements

• Restrictions

• Scope

Requirements

A distributed session can run in multiple Eclipse GlassFish instances, if:

• Each server instance has access to the same session state data. Eclipse GlassFish supports in-
memory session replication on other servers in the cluster for maintaining HTTP session and
stateful session bean data. In-memory session replication is enabled by default for Eclipse
GlassFish clustered environments if the Group Management Service is enabled.

The use of in-memory replication requires the Group Management Service (GMS) to be enabled.
For more information about GMS, see Group Management Service.

If server instances in a cluster are located on different hosts, ensure that the following
prerequisites are met:

128



◦ To ensure that GMS and in-memory replication function correctly, the hosts must be on the
same subnet.

◦ To ensure that in-memory replication functions correctly, the system clocks on all hosts in
the cluster must be synchronized as closely as possible.


Eclipse GlassFish 7 does not support High Availability Database (HADB)
configurations. Instead, use in-memory replication, as described in High
Availability Session Persistence.

• Each server instance has the same distributable web application deployed to it. The web-app
element of the web.xml deployment descriptor file must contain the distributable element.

• The web application uses high-availability session persistence. If a non-distributable web
application is configured to use high-availability session persistence, the server writes an error
to the log file.

• The web application must be deployed using the deploy or deploydir subcommand with the
--availabilityenabled option set to true. For more information on these subcommands, see
deploy(1) and deploydir(1).

Restrictions

When configuring session persistence and failover, note the following restrictions:

• When a session fails over, any references to open files or network connections are lost.
Applications must be coded with this restriction in mind.

• EJB Singletons are created for each server instance in a cluster, and not once per cluster.

• The high availability session persistence service is not compatible with dynamic deployment,
dynamic reloading, and autodeployment. These features are for development, not production
environments, so you must disable them before enabling the session persistence service. For
information about how to disable these features, see the  Eclipse GlassFish Application
Deployment Guide.

• Eclipse GlassFish 7 does not support High Availability Database (HADB) configurations. Instead,
use in-memory replication, as described in High Availability Session Persistence.

• You can only bind certain objects to distributed sessions that support failover. Contrary to the
Servlet 2.4 specification, Eclipse GlassFish 7 does not throw an IllegalArgumentException if an
object type not supported for failover is bound into a distributed session.

You can bind the following objects into a distributed session that supports failover:

◦ Local home and object references for all EJB components.

◦ Colocated stateless session, stateful session, or entity bean reference .

◦ Distributed stateless session, stateful session, or entity bean reference.

◦ JNDI Context for InitialContext and java:comp/env.

◦ UserTransaction objects. However, if the instance that fails is never restarted, any prepared
global transactions are lost and might not be correctly rolled back or committed.

129

https://glassfish.org/docs/latest/reference-manual.pdf#deploy
https://glassfish.org/docs/latest/reference-manual.pdf#deploy
https://glassfish.org/docs/latest/reference-manual.pdf#deploydir
https://glassfish.org/docs/latest/reference-manual.pdf#deploydir
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG


◦ Serializable Java types.

• You cannot bind the following object types into sessions that support failover:

◦ JDBC DataSource

◦ Java Message Service (JMS) ConnectionFactory and Destination objects

◦ Jakarta Mail Session

◦ Connection Factory

◦ Administered Objects

◦ Web service reference
In general, for these objects, failover will not work. However, failover might work in some
cases, if for example the object is serializable.

Scope

The availability service can be enabled for the following scopes, ranging from highest to lowest:

• Cluster

• Standalone server instance (not part of a cluster)

• Web, EJB, or JMS container in a cluster

• Application

• Standalone Web, EJB, or JMS module

• Individual Stateful Session Bean (SFSB)

In general, enabling or disabling availability session persistence for a cluster or container involves
setting the boolean availability-service property to true or false by means of the asadmin set
subcommand. The availability service is enabled by default for Eclipse GlassFish clusters and all
Web, EJB, and JMS containers running in a cluster.

The value set for the availability-service property is inherited by all child objects running in a
given cluster or container unless the value is explicitly overridden at the individual module or
application level. For example, if the availability-service property is set to true for an EJB
container, the availability service will be enabled by default for all EJB modules running in that
container.

Conversely, to enable availability at a given scope, you must enable it at all higher levels as well. For
example, to enable availability at the application level, you must also enable it at the cluster or
server instance and container levels.

Enabling the High Availability Session Persistence
Service
This section explains how to configure and enable the high availability session persistence service.

• To Enable Availability for a Cluster, Standalone Instance or Container

130



• Configuring Availability for Individual Web Applications

• Configuring Replication and Multi-Threaded Concurrent Access to HttpSessions

• Using Single Sign-on with Session Failover

• Using Coherence*Web for HTTP Session Persistence

To Enable Availability for a Cluster, Standalone Instance or Container

This procedure explains how to enable high availability for a cluster as a whole, or for Web, EJB, or
JMS containers that run in a cluster, or for a standalone server instance that is not part of a cluster.

1. Create a Eclipse GlassFish cluster.

For more information, see To Create a Cluster.

2. Set up load balancing for the cluster.

For instructions, see Setting Up HTTP Load Balancing.

3. Verify that the cluster and all instances within the cluster for which you want to enable
availability is running.

These steps are also necessary when enabling availability for a Web, EJB, or JMS container
running in a cluster. The cluster and all instances in the cluster for which you want to enable
availability must be running.

1. Verify that the cluster is running.

asadmin> list-clusters

A list of clusters and their status (running, not running) is displayed. If the cluster for which
you want to enable availability is not running, you can start it with the following command:

asadmin> start-cluster cluster-name

2. Verify that all instances in the cluster are running.

asadmin> list-instances

A list of instances and their status is displayed. If the instances for which you want to enable
availability are not running, you can start them by using the following command for each
instance:

asadmin> start-instance instance-name

4. Use one of the following asadmin set subcommands to enable availability for a specific cluster,

131

https://glassfish.org/docs/latest/reference-manual.pdf#set


or for a specific Web, EJB, or JMS container.

◦ For a cluster as a whole

asadmin> set cluster-name-config.availability-service.availability-enabled=true

For example, for a cluster named c1:

asadmin> set c1-config.availability-service.availability-enabled=true

◦ For the Web container in a cluster

asadmin> set cluster-name-config.availability-service \
.web-container-availability.availability-enabled=true

◦ For the EJB container in a cluster

asadmin> set cluster-name-config.availability-service \
.ejb-container-availability.availability-enabled=true

◦ For the JMS container in a cluster

asadmin> set cluster-name-config.availability-service \
.jms-availability.availability-enabled=true

◦ For a standalone server instance (not part of a cluster)

asadmin> set instance-name-config.availability-service.availability-enabled=true

5. Restart the standalone server instance or each server instance in the cluster.

6. Enable availability for any SFSB that requires it.

Select methods for which checkpointing the session state is necessary. For more information,
see Configuring Availability for an Individual Bean.

7. Make each web module distributable if you want it to be highly available.

For more information, see "Web Module Deployment Guidelines" in Eclipse GlassFish
Application Deployment Guide.

8. Enable availability for individual applications, web modules, or EJB modules during
deployment.

See the links below for instructions.

132

https://glassfish.org/docs/latest/application-deployment-guide.pdf#web-module-deployment-guidelines


See Also

• Configuring Availability for Individual Web Applications

• Using Single Sign-on with Session Failover

Configuring Availability for Individual Web Applications

To enable and configure availability for an individual web application, edit the application
deployment descriptor file, glassfish-web.xml. The settings in an application’s deployment
descriptor override the web container’s availability settings.

The session-manager element’s persistence-type attribute determines the type of session persistence
an application uses. It must be set to replicated to enable high availability session persistence.

Example

<glassfish-web-app> ...
  <session-config>
    <session-manager persistence-type="replicated">
      <manager-properties>
        <property name="persistenceFrequency" value="web-method" />
      </manager-properties>
      <store-properties>
        <property name="persistenceScope" value="session" />
      </store-properties>
    </session-manager> ...
</session-config> ...

Configuring Replication and Multi-Threaded Concurrent Access to
HttpSessions

If you are using Memory Replication and your web application involves multiple client threads
concurrently accessing the same session ID, then you may experience session loss even without any
instance failure. The problem is that the Eclipse GlassFish 7 memory replication framework makes
use of session versioning. This feature was designed with the more traditional HTTP
request/response communication model in mind.

However, for some types of applications, the traditional request/response model does not work.
Examples include many Ajax-related frameworks and the use of Frames. Another example is when
a page includes many static resources, such as JPG files. In these situations, most browsers will
optimize the loading of these resources by using multiple parallel connections, each of which is
handled by a separate request processing thread. If the application has already established a
session, then this will also involve more than one thread at a time accessing a single HttpSession.

The solution in such cases is to use the relaxVersionSemantics property in the glassfish-web.xml
deployment descriptor file for the application. This enables the web container to return for each
requesting thread whatever version of the session that is in the active cache regardless of the
version number. This is critical when multiple threads are interacting in an essentially non-

133



deterministic fashion with the container.

Example

The following is an example snippet from a glassfish-web.xml file that illustrates where to add the
relaxVersionSemantics property.

<glassfish-web-app>
  <session-config>
    <session-manager persistence-type="replicated">
      <manager-properties>
    <property name="relaxCacheVersionSemantics" value="true"/>
      </manager-properties>
    </session-manager>
  </session-config>

.....
</glassfish-web-app>

Using Single Sign-on with Session Failover

In a single application server instance, once a user is authenticated by an application, the user is
not required to re-authenticate individually to other applications running on the same instance.
This is called single sign-on.

For this feature to continue to work even when an HTTP session fails over to another instance in a
cluster, single sign-on information must be persisted using in-memory replication. To persist single
sign-on information, first, enable availability for the server instance and the web container, then
enable single-sign-on state failover.

You can enable single sign-on state failover by using the asadmin set command to set the
configuration’s availability-service.web-container-availability.sso-failover-enabled property to
true.

For example, use the set command as follows, where config1 is the configuration name:

asadmin> set config1.availability-service.web-container-availability. \
sso-failover-enabled="true"

Single Sign-On Groups

Applications that can be accessed through a single name and password combination constitute a
single sign-on group. For HTTP sessions corresponding to applications that are part of a single sign-
on group, if one of the sessions times out, other sessions are not invalidated and continue to be
available. This is because time out of one session should not affect the availability of other sessions.

As a corollary of this behavior, if a session times out and you try to access the corresponding
application from the same browser window that was running the session, you are not required to

134



authenticate again. However, a new session is created.

Take the example of a shopping cart application that is a part of a single sign-on group with two
other applications. Assume that the session time out value for the other two applications is higher
than the session time out value for the shopping cart application. If your session for the shopping
cart application times out and you try to run the shopping cart application from the same browser
window that was running the session, you are not required to authenticate again. However, the
previous shopping cart is lost, and you have to create a new shopping cart. The other two
applications continue to run as usual even though the session running the shopping cart
application has timed out.

Similarly, suppose a session corresponding to any of the other two applications times out. You are
not required to authenticate again while connecting to the application from the same browser
window in which you were running the session.



This behavior applies only to cases where the session times out. If single sign-on is
enabled and you invalidate one of the sessions using HttpSession.invalidate(), the
sessions for all applications belonging to the single sign-on group are invalidated.
If you try to access any application belonging to the single sign-on group, you are
required to authenticate again, and a new session is created for the client
accessing the application.

Using Coherence*Web for HTTP Session Persistence

Built on top of Oracle Coherence, Coherence*Web is an HTTP session management module
dedicated to managing session state in clustered environments. Starting with Coherence 3.7 and
Eclipse GlassFish 7, there is a new feature of Coherence*Web called ActiveCache for GlassFish.
ActiveCache for GlassFish provides Coherence*Web functionality in web applications deployed on
Eclipse GlassFishs. Within Eclipse GlassFish, Coherence*Web functions as an additional web
container persistence type, named coherence-web.

For information about how to configure and deploy Coherence*Web on Eclipse GlassFish, see Using
Coherence*Web with Eclipse GlassFish (http://docs.oracle.com/cd/E18686_01/coh.37/e18690/
glassfish.html).

Stateful Session Bean Failover
Stateful session beans (SFSBs) contain client-specific state. There is a one-to-one relationship
between clients and the stateful session beans. At creation, the EJB container gives each SFSB a
unique session ID that binds it to a client.

An SFSB’s state can be saved in a persistent store in case a server instance fails. The state of an SFSB
is saved to the persistent store at predefined points in its life cycle. This is called

checkpointing. If enabled, checkpointing generally occurs after the bean completes any transaction,
even if the transaction rolls back.

However, if an SFSB participates in a bean-managed transaction, the transaction might be
committed in the middle of the execution of a bean method. Since the bean’s state might be

135

http://download.oracle.com/docs/cd/E18686_01/coh.37/e18690/glassfish.html
http://download.oracle.com/docs/cd/E18686_01/coh.37/e18690/glassfish.html
http://docs.oracle.com/cd/E18686_01/coh.37/e18690/glassfish.html
http://docs.oracle.com/cd/E18686_01/coh.37/e18690/glassfish.html


undergoing transition as a result of the method invocation, this is not an appropriate time to
checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at the end of
the corresponding method, provided the bean is not in the scope of another transaction when that
method ends. If a bean-managed transaction spans across multiple methods, checkpointing is
delayed until there is no active transaction at the end of a subsequent method.

The state of an SFSB is not necessarily transactional and might be significantly modified as a result
of non-transactional business methods. If this is the case for an SFSB, you can specify a list of
checkpointed methods, as described in Specifying Methods to Be Checkpointed

If a distributable web application references an SFSB, and the web application’s session fails over,
the EJB reference is also failed over.

If an SFSB that uses session persistence is undeployed while the Eclipse GlassFish instance is
stopped, the session data in the persistence store might not be cleared. To prevent this, undeploy
the SFSB while the Eclipse GlassFish instance is running.

Configuring Availability for the EJB Container

To enable availability for the EJB container use the asadmin set command to set the following three
properties for the configuration:

• availability-service.ejb-container-availability.availability-enabled

• availability-service.ejb-container-availability.sfsb-persistence-type

• availability-service.ejb-container-availability.sfsb-ha-persistence-type

For example, if config1 is the configuration name, use the following commands:

asadmin> set --user admin --passwordfile password.txt
--host localhost
--port 4849
config1.availability-service.
ejb-container-availability.availability-enabled="true"

asadmin> set --user admin --passwordfile password.txt --host localhost --port
4849
config1.availability-service.
ejb-container-availability.sfsb-persistence-type="file"
asadmin> set --user admin --passwordfile password.txt
--host localhost
--port 4849
config1.availability-service.
ejb-container-availability.sfsb-ha-persistence-type="replicated"

Configuring the SFSB Session Store When Availability Is Disabled

If availability is disabled, the local file system is used for SFSB state passivation, but not persistence.
To change where the SFSB state is stored, change the Session Store Location setting in the EJB

136



container. For information about configuring store properties, see the Administration Console
online help.

Configuring Availability for an Individual Application or EJB Module

You can enable SFSB availability for an individual application or EJB module during deployment:

• If you are deploying with the Administration Console, check the Availability Enabled checkbox.

• If you are deploying using use the asadmin deploy or asadmin deploydir commands, set the
--availabilityenabled option to true. For more information, see deploy(1) and deploydir(1).

Configuring Availability for an Individual Bean

To enable availability and select methods to be checkpointed for an individual SFSB, use the
glassfish-ejb-jar.xml deployment descriptor file.

To enable high availability session persistence, set availability-enabled="true" in the ejb element.

Example 9-1 Example of an EJB Deployment Descriptor With Availability Enabled

<glassfish-ejb-jar>
    ...
    <enterprise-beans>
        ...
        <ejb availability-enabled="true">
            <ejb-name>MySFSB</ejb-name>
        </ejb>
        ...
    </enterprise-beans>
</glassfish-ejb-jar>

Specifying Methods to Be Checkpointed

If enabled, checkpointing generally occurs after the bean completes any transaction, even if the
transaction rolls back. To specify additional optional checkpointing of SFSBs at the end of non-
transactional business methods that cause important modifications to the bean’s state, use the
checkpoint-at-end-of-method element in the ejb element of the glassfish-ejb-jar.xml deployment
descriptor file.

The non-transactional methods in the checkpoint-at-end-of-method element can be:

• create() methods defined in the home interface of the SFSB, if you want to checkpoint the initial
state of the SFSB immediately after creation

• For SFSBs using container managed transactions only, methods in the remote interface of the
bean marked with the transaction attribute TX_NOT_SUPPORTED or TX_NEVER

• For SFSBs using bean managed transactions only, methods in which a bean managed
transaction is neither started nor committed

137

https://glassfish.org/docs/latest/reference-manual.pdf#deploy
https://glassfish.org/docs/latest/reference-manual.pdf#deploy
https://glassfish.org/docs/latest/reference-manual.pdf#deploydir
https://glassfish.org/docs/latest/reference-manual.pdf#deploydir


Any other methods mentioned in this list are ignored. At the end of invocation of each of these
methods, the EJB container saves the state of the SFSB to persistent store.



If an SFSB does not participate in any transaction, and if none of its methods are
explicitly specified in the checkpoint-at-end-of-method element, the bean’s state is
not checkpointed at all even if availability-enabled="true" for this bean.

For better performance, specify a small subset of methods. The methods should
accomplish a significant amount of work or result in important modification to the
bean’s state.

Example 9-2 Example of EJB Deployment Descriptor Specifying Methods Checkpointing

<glassfish-ejb-jar>
    ...
    <enterprise-beans>
        ...
        <ejb availability-enabled="true">
            <ejb-name>ShoppingCartEJB</ejb-name>
            <checkpoint-at-end-of-method>
                <method>
                    <method-name>addToCart</method-name>
                </method>
            </checkpoint-at-end-of-method>
        </ejb>
        ...
    </enterprise-beans>
</glassfish-ejb-jar>

138



10 Configuring Java Message Service High
Availability
This chapter describes how to configure the high availability features of the Java Message Service
(JMS). It covers how to configure Message Queue broker clusters and how to use them to provide
connection failover and load balancing, as described in the following topics:

• Using Message Queue Broker Clusters With Eclipse GlassFish

• Connection Failover

• Load-Balanced Delivery to MDBs

Using Message Queue Broker Clusters With Eclipse
GlassFish
This section describes how the JMS service uses Message Queue broker clusters to support high-
availability JMS messaging in Eclipse GlassFish clusters. It describes the different cluster and
broker types that are supported and how to configure them.

The following topics are addressed here:

• About Message Queue Broker Clusters

• Configuring GlassFish Clusters to Use Message Queue Broker Clusters

• To Configure a GlassFish Cluster to Use an Embedded or Local Conventional Broker Cluster With
Master Broker

• To Configure a GlassFish Cluster to Use an Embedded or Local Conventional Broker Cluster of
Peer Brokers

• To Change the Master Broker in an Embedded or Local Broker Cluster

• To Migrate Between Types of Embedded or Local Conventional Broker Clusters

• To Configure a GlassFish Cluster to Use a Local Enhanced Broker Cluster

• To Configure a GlassFish Cluster to Use a Remote Broker Cluster

About Message Queue Broker Clusters

The following discussion provides a brief overview of Message Queue broker clusters. For complete
information, see "Broker Clusters" in Open Message Queue Technical Overview.

Message Queue supports two clustering models both of which provide a scalable message service,
but with each providing a different level of message service availability:

• Conventional broker clusters. A conventional broker cluster provides for service availability.
When a broker fails, clients connected to the failed broker reconnect to another broker in the
cluster. However, messages and state information stored in the failed broker cannot be
recovered until the failed broker is brought back online. The broker failure can therefore result

139

https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html/broker-clusters.html#GMTOV00028


in a significant delay and in JMS message order semantics not being preserved.

Message Queue supports two types of conventional cluster, based on where the cluster
configuration change record is stored:

◦ Conventional cluster with master broker. In a conventional cluster with a master broker,
one of the brokers, designated as the master broker, stores and maintains the cluster
configuration change record. The other brokers in the cluster must communicate with the
master broker to keep abreast of changes to the cluster configuration. This is the simplest
broker cluster to configure, and is the type of broker cluster that Eclipse GlassFish uses by
default to support GlassFish clusters.

◦ Conventional cluster of peer brokers. In a conventional cluster of peer brokers, the cluster
configuration change record is stored in a JDBC data store accessible to all the brokers. Thus,
brokers can access cluster configuration information whether any other brokers in the
cluster are running or not.

• Enhanced broker clusters. An enhanced broker cluster provides for data availability in addition
to service availability. When a broker fails, another broker takes over the pending work of the
failed broker. The failover broker has access to the failed broker’s messages and state
information. Clients connected to the failed broker reconnect to the failover broker. In an
enhanced cluster, as compared to a conventional cluster, messages owned by the failed broker
are delivered by the failover broker as soon as it takes over, and JMS message order semantics
are preserved.

By its very nature, an enhanced broker cluster is a cluster of peer brokers.



Despite the message service availability offered by both conventional and
enhanced broker clusters, they do not provide a guarantee against failure and the
possibility that certain failures, for example in the middle of a transaction, could
require that some operations be repeated. It is the responsibility of the messaging
application (both producers and consumers) to respond to JMS exceptions
appropriately. For information about the kinds of exceptions that can occur and
how to respond to them, see "Handling Exceptions When Failover Occurs" in Open
Message Queue Developer’s Guide for Java Clients.

Configuring GlassFish Clusters to Use Message Queue Broker Clusters

When a Eclipse GlassFish cluster is created, the JMS service automatically configures a Message
Queue conventional broker cluster with master broker for the cluster, provided that the JMS host
type in the Eclipse GlassFish cluster’s configuration is Embedded or Local. The JMS service
configures one Message Queue broker for each instance in the Eclipse GlassFish cluster, and
designates as master broker the broker associated with the first instance created in the cluster. In
the case of Local JMS hosts, the JMS service configures each broker to run on the same host as the
instance with which it is associated. In the case of Embedded JMS hosts, the each broker inherently
runs on the same host as the instance with which it is associated because it runs in the same JVM as
the instance.

The JMS service manages the lifecycle of Embedded and Local JMS hosts, and this management
extends to the management of Message Queue broker clusters as Embedded and Local JMS hosts.

140

https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html/client-design-and-features.html#GMJVG00229


For a GlassFish cluster whose configuration specifies Embedded or Local JMS host type, the JMS
service:

• Creates and manages one Message Queue broker for each instance in the GlassFish cluster,
using this broker as the primary JMS host for the instance.

• Maintains the JMS host list for each instance in the GlassFish cluster such that its primary JMS
host appears first in its JMS host list.

The JMS service supports the following types of Message Queue broker clusters with Eclipse
GlassFish clusters, based on the JMS host type:

Embedded

• Conventional broker cluster with master broker (default)

• Conventional broker cluster of peer brokers

Local

• Conventional broker cluster with master broker (default)

• Conventional broker cluster of peer brokers

• Enhanced broker cluster

Remote

• Conventional broker cluster with master broker; brokers can differ in number from
GlassFish instances and can be located on other hosts

• Conventional broker cluster of peer brokers; brokers can differ in number from GlassFish
instances and can be located on other hosts

• Enhanced broker cluster; brokers can differ in number from GlassFish instances and can be
located on other hosts

The following topics provide instructions for configuring broker clusters in all these contexts.

To Configure a GlassFish Cluster to Use an Embedded or Local Conventional
Broker Cluster With Master Broker

Use the configure-jms-cluster subcommand in remote asadmin mode to configure a conventional
broker cluster with master broker to service a Eclipse GlassFish cluster that uses either Embedded
or Local JMS hosts.

Note that this configuration, with Embedded brokers, is the default for Eclipse GlassFish clusters.

Before You Begin

Perform the following steps after you have created the Eclipse GlassFish cluster, but before you
have added instances to the cluster or started the cluster.



Before using this procedure to reconfigure an existing cluster, you must follow the
special procedures to migrate to another type of broker cluster, as described in To
Migrate Between Types of Embedded or Local Conventional Broker Clusters.
Failing to perform these special procedures could lead to data loss or corruption

141



and even render your setup unusable, depending on the JMS operations
performed on the existing cluster.

1. Ensure that the server is running. Remote asadmin subcommands require a running server.

2. Configure the Eclipse GlassFish cluster to use a Message Queue conventional broker cluster with
master broker by using the configure-jms-cluster subcommand:

> asadmin configure-jms-cluster --clustertype=conventional
--configstoretype=masterbroker glassfish-cluster-name

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help
configure-jms-cluster at the command line.

To Configure a GlassFish Cluster to Use an Embedded or Local Conventional
Broker Cluster of Peer Brokers

Use the configure-jms-cluster subcommand in remote asadmin mode to configure a conventional
broker cluster of peer brokers to service a Eclipse GlassFish cluster that uses Embedded or Local
JMS hosts.

Before You Begin

Perform the following steps after you have created the Eclipse GlassFish cluster, but before you
have added instances to the cluster or started the cluster.



Before using this procedure to reconfigure an existing cluster, you must follow the
special procedures to migrate to another type of broker cluster, as described in To
Migrate Between Types of Embedded or Local Conventional Broker Clusters.
Failing to perform these special procedures could lead to data loss or corruption
and even render your setup unusable, depending on the JMS operations
performed on the existing cluster.

1. Ensure that the server is running. Remote asadmin subcommands require a running server.

2. Create a password file with the entry AS_ADMIN_JMSDBPASSWORD specifying the password of the
database user.
For information about password file entries, see the asadmin(1M) help page.

3. Place a copy of, or a link to, the database’s JDBC driver .jar file in the appropriate directory,
depending on the JMS host type, on each host where a Eclipse GlassFish cluster instance is to
run:

◦ Embedded: as-install-parent/glassfish/lib/install/applications/jmsra

◦ Local: as-install-parent/mq/lib/ext

4. Configure the Eclipse GlassFish cluster to use a Message Queue conventional broker cluster with
master broker by using the configure-jms-cluster subcommand:

142

https://glassfish.org/docs/latest/reference-manual.pdf#configure-jms-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#configure-jms-cluster


> asadmin --passwordfile password-file configure-jms-cluster
--clustertype=conventional
--configstoretype=shareddb --dbvendor database-vendor-name --dbuser database-user-
name
--dburl database-url --property list-of-database-specific-properties glassfish-
cluster-name

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help
configure-jms-cluster at the command line.

To Change the Master Broker in an Embedded or Local Broker Cluster

Use the change-master-broker subcommand in remote asadmin mode to change the master broker to
a different broker in a conventional broker cluster with master broker serving a Eclipse GlassFish
cluster that uses Embedded or Local JMS hosts.

Follow this procedure, for example, before you remove from a GlassFish cluster the instance
associated with the current master broker.

Before You Begin

Although not an absolute requirement, you should make sure all GlassFish instances and Message
Queue brokers in the cluster are running before using the change-master-broker command in order
to avoid later internal configuration synchronization of any unavailable instance or broker.

1. Ensure that the server is running. Remote asadmin subcommands require a running server.

2. Change the master broker by using the change-master-broker subcommand:

> asadmin change-master-broker glassfish-clustered-instance-name

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help change-
master-broker at the command line.

To Migrate Between Types of Embedded or Local Conventional Broker
Clusters

If the need arises to convert from a conventional broker cluster with master broker to a
conventional broker cluster of peer brokers, or the reverse, follow the instructions in "Managing
Conventional Clusters" in Open Message Queue Administration Guide.

To Configure a GlassFish Cluster to Use a Local Enhanced Broker Cluster

Use the configure-jms-cluster subcommand in remote asadmin mode to configure an enhanced

143

https://glassfish.org/docs/latest/reference-manual.pdf#change-master-broker
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/broker-clusters.html#GMADG00563
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/broker-clusters.html#GMADG00563


broker cluster to service a Eclipse GlassFish cluster that uses Local JMS hosts.

Before You Begin

Perform the following steps after you have created the Eclipse GlassFish cluster, but before you
have added instances to the cluster or started the cluster.



Before using this procedure to reconfigure an existing cluster, you must follow the
special procedures to migrate from a conventional broker cluster to an enhanced
broker cluster, as described in "Converting a Conventional Cluster to an Enhanced
Cluster" in Open Message Queue Administration Guide. Failing to perform these
special procedures could lead to data loss or corruption and even render your
setup unusable, depending on the JMS operations performed on the existing
cluster.

1. Ensure that the server is running. Remote asadmin subcommands require a running server.

2. Create a password file with the entry AS_ADMIN_JMSDBPASSWORD specifying the password of the
database user.
For information about password file entries, see the asadmin(1M) help page.

3. Place a copy of, or a link to, the database’s JDBC driver .jar file in the as-install-
parent/mq/lib/ext directory on each host where a Eclipse GlassFish cluster instance is to run.

4. Configure the Eclipse GlassFish cluster to use a Message Queue enhanced broker cluster by
using the configure-jms-cluster subcommand:

> asadmin --passwordfile password-file configure-jms-cluster --clustertype=enhanced
--configstoretype=shareddb --messagestoretype=jdbc
--dbvendor database-vendor-name --dbuser database-user-name --dburl database-url
--property list-of-database-specific-properties glassfish-cluster-name

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help
configure-jms-cluster at the command line.

To Configure a GlassFish Cluster to Use a Remote Broker Cluster

Before You Begin

Perform the following steps after you have:

• Used Message Queue to create a broker cluster.

• Created the Eclipse GlassFish cluster, but not yet created instances for the cluster.

1. Ensure that the server is running. The remote subcommands used in this procedure require
a running server.

2. Delete the default_JMS_host JMS host by using the delete-jms-host subcommand:

144

https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/broker-clusters.html#GMADG00565
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/broker-clusters.html#GMADG00565
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#configure-jms-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jms-host


> asadmin delete-jms-host --target glassfish-cluster-name default_JMS_host

3. Create a JMS host for each broker in the broker cluster by using the create-jms-host
subcommand.
For each broker, use an asadmin create-jms-host of the form:

> asadmin create-jms-host --target glassfish-cluster-name --mqhost broker-host
--mqport broker-port --mquser mq-user --mqpassword mq-user-password
jms-host-name-for-broker

4. Start the brokers in the cluster by using the Message Queue imqbrokerd command, as
described in "Managing Broker Clusters" in Open Message Queue Administration Guide.

5. Create instances in the Eclipse GlassFish cluster, as described in To Create an Instance
Centrally and To Create an Instance Locally.

Connection Failover
The use of Message Queue broker clusters provides JMS connection failover, including several
options that control how connection failures are handled.

Use the Administration Console’s Java Message Service page to configure these options. To display
this page, click the configuration for the GlassFish cluster or instance in the navigation pane, and
then click the Java Message Service link on the Configuration page.

The way in which connection failover operates depends on whether the broker cluster is
configured to be conventional or enhanced:

• In a conventional cluster, when a broker fails, clients may reconnect to any other broker in the
cluster. The Reconnect field specifies whether reconnection should take place, and the Address
List Behavior and Address List Iterations fields specify how the client chooses what broker to
fail over to.

• In an enhanced cluster, when a broker fails, another broker automatically takes over its
messages and clients. Clients automatically fail over to the appropriate broker. The Reconnect,
Address List Behavior and Address List Iterations fields are ignored.

For more information on connection failover, including how failover on conventional clusters
differs from failover on enhanced clusters, see "Automatic Reconnection" in Open Message Queue
Administration Guide.

Reconnect

Applies only to conventional clusters. Enables reconnection and connection failover. When
disabled, the Java Message Service does not attempt to reconnect if a connection fails.

Reconnect Interval

Specifies the number of seconds between reconnection attempts. If it is too short, this time
interval does not give a broker time to recover. If it is too long, the wait time might represent an

145

https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/broker-clusters.html#GMADG00254
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/administered-objects.html#GMADG00087


unacceptable delay. The default value is 5 seconds.

Reconnect Attempts

Specifies the number of attempts to connect (or reconnect) to a particular JMS host before trying
another host in the JMS host list. The host list is also known as the Address List. Hosts are chosen
from the address list either in order or randomly, depending on the setting of Address List
Behavior.

Address List Behavior

For conventional clusters, this field specifies how the Java Message Service selects which JMS
host in the JMS hosts list to initially connect to, and if the broker fails, how the Java Message
Service selects which JMS host in the JMS hosts list to fail over to.
For enhanced clusters, this field specifies how the Java Message Service selects which JMS host
in the JMS hosts list to initially connect to.
When performing initial connection or, for conventional clusters only, when performing
failover, then if this attribute is set to Priority, the Java Message Service tries to connect to the
first JMS host specified in the JMS hosts list and uses another one only if the first one is not
available. If this attribute is set to Random, the Java Message Service selects the JMS host
randomly from the JMS hosts list. If that host is not available, another one is chosen randomly.
The default for Embedded and Local JMS host types is Priority, and the default for the Remote
JMS host type is Random.
For Embedded and Local JMS host types, the Java Message Service ensures that the Message
Queue broker servicing a clustered instance appears first in that instance’s JMS host list.
Thus, having Priority as the default Address List Behavior ensures that an application deployed
to a clustered instance will always try to create its initial connection to that instance’s co-located
broker.
If there are many clients attempting a connection using the same connection factory, use the
Random setting to prevent them from all attempting to create their initial connection to the
same JMS host.

Address List Iterations

For conventional clusters, this field specifies the number of times the Java Message Service
iterates through the JMS hosts list in an effort to establish its initial connection. If the broker
fails, this field specifies the number of times the Java Message Service iterates through the JMS
hosts list in an effort to fail over to another broker.
For enhanced clusters, this field specifies the number of times the Java Message Service iterates
through the JMS hosts list in an effort to establish its initial connection. If the broker fails, this
field is not used when performing reconnection.

You can override these settings using JMS connection factory settings. For details, see
"Administering JMS Connection Factories and Destinations" in Eclipse GlassFish Administration
Guide.

Load-Balanced Delivery to MDBs
When a message-driven bean (MDB) application is deployed to a GlassFish cluster, incoming
messages are delivered randomly to MDBs without regard to the cluster instances in which they are
running.

146

https://glassfish.org/docs/latest/administration-guide.pdf#administering-jms-connection-factories-and-destinations


If the MDB is configured to receive messages from a durable or non-durable subscription on a topic,
then only one MDB instance across the whole GlassFish cluster will receive each message.

For more information about these features, see " About Shared Topic Subscriptions for Clustered
Containers" in Open Message Queue Administration Guide.

147

https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/jmsra-properties.html#GMADG00300
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/jmsra-properties.html#GMADG00300


11 RMI-IIOP Load Balancing and Failover
This chapter describes using high-availability features for remote EJB references and JNDI objects
over RMI-IIOP in Eclipse GlassFish.

• Overview

• InitialContext Load Balancing

• Per-Request Load Balancing (PRLB)

Overview
With RMI-IIOP load balancing, IIOP client requests are distributed to different server instances or
name servers. The goal is to spread the load evenly across the cluster, thus providing scalability.
IIOP load balancing combined with EJB clustering and availability also provides EJB failover.

The following topics are addressed here:

• General Requirements for Configuring Load Balancing

• Load Balancing Models

General Requirements for Configuring Load Balancing

Eclipse GlassFish provides high availability of remote EJB references and NameService objects over
RMI-IIOP, provided all the following apply:

• Your deployment has a cluster of at least two instances.

• Jakarta EE applications are deployed to all instances and clusters that participate in load
balancing.

• RMI-IIOP client applications are enabled for load balancing.

Eclipse GlassFish supports load balancing for Java applications executing in the Application Client
Container (ACC). See Enabling RMI-IIOP Hardware Load Balancing and Failover.


Eclipse GlassFish does not support RMI-IIOP load balancing and failover over
secure sockets layer (SSL).

Load Balancing Models

Eclipse GlassFish supports two general models for load balancing:

InitialContext Load Balancing

When a client performs a JNDI lookup for an object, the Naming Service creates a InitialContext
(IC) object associated with a particular server instance. From then on, all lookup requests made
using that IC object are sent to the same server instance. InitialContext load balancing can be
configured automatically across an entire cluster.

148



Per-Request Load Balancing (PRLB)

Per Request Load Balancing (PRLB) is a method for load balancing stateless EJBs that enables
load-balancing for each request to an EJB instance. PRLB chooses the first node in a cluster to
use on each request. PRLB is configured on a per-EJB basis.

InitialContext Load Balancing
The following topics are addressed here:

• InitialContext Summary

• InitialContext Algorithm

• Enabling RMI-IIOP Hardware Load Balancing and Failover

InitialContext Summary

When InitialContext load balancing is used, the client calls the InitialContext() method to create a
new InitialContext (IC) object that is associated with a particular server instance. JNDI lookups are
then performed on that IC object, and all lookup requests made using that IC object are sent to the
same server instance. All EJBHome objects looked up with that InitialContext are hosted on the same
target server. Any bean references obtained henceforth are also created on the same target host.
This effectively provides load balancing, since all clients randomize the list of live target servers
when creating InitialContext objects. If the target server instance goes down, the lookup or EJB
method invocation will failover to another server instance. All objects derived from same
InitialContext will failover to the same server instance.

IIOP load balancing and failover happens transparently. No special steps are needed during
application deployment. IIOP load balancing and failover for the Eclipse GlassFish supports
dynamically reconfigured clusters. If the Eclipse GlassFish instance on which the application client
is deployed participates in a cluster, the Eclipse GlassFish finds all currently active IIOP endpoints
in the cluster automatically. Therefore, you are not required to manually update the list of
endpoints if a new instance is added to the cluster or deleted from the cluster. However, a client
should have at least two endpoints specified for bootstrapping purposes, in case one of the
endpoints has failed.

InitialContext Algorithm

Eclipse GlassFish uses a randomization and round-robin algorithm for RMI-IIOP load balancing and
failover.

When an RMI-IIOP client first creates a new InitialContext object, the list of available Eclipse
GlassFish IIOP endpoints is randomized for that client. For that InitialContext object, the load
balancer directs lookup requests and other InitialContext operations to an endpoint on the
randomized list. If that endpoint is not available then a different random endpoint in the list is
used.

Each time the client subsequently creates a new InitialContext object, the endpoint list is rotated so
that a different IIOP endpoint is used for InitialContext operations. The rotation is randomized, so
the rotation is not to the next endpoint in the list, but instead to a random endpoint in the list.

149



When you obtain or create beans from references obtained by an InitialContext object, those
beans are created on the Eclipse GlassFish instance serving the IIOP endpoint assigned to the
InitialContext object. The references to those beans contain the IIOP endpoint addresses of all
Eclipse GlassFish instances in the cluster.

The primary endpoint is the bean endpoint corresponding to the InitialContext endpoint used to
look up or create the bean. The other IIOP endpoints in the cluster are designated as alternate
endpoints. If the bean’s primary endpoint becomes unavailable, further requests on that bean fail
over to one of the alternate endpoints.

You can configure RMI-IIOP load balancing and failover to work with applications running in the
ACC.

Enabling RMI-IIOP Hardware Load Balancing and Failover

You can enable RMI-IIOP load balancing and failover for applications running in the application
client container (ACC). Weighted round-robin load balancing is also supported.

To Enable RMI-IIOP Hardware Load Balancing for the Application Client Container

This procedure provides an overview of the steps necessary to enable RMI-IIOP load balancing and
failover with the application client container (ACC). For additional information on the ACC, see
"Developing Clients Using the ACC" in Eclipse GlassFish Application Development Guide.

Before You Begin

The first five steps in this procedure are only necessary if you are enabling RMI-IIOP load balancing
on a system other than the DAS. This is common in production environment, but less common in a
development environment. For example, a developer who wants to experiment with a cluster and
load balancing might create two instances on the same system on which the DAS is running. In such
cases, these steps are unnecessary.

1. Go to the install_dir /bin directory.

2. Run package-appclient.
This utility produces an appclient.jar file. For more information on package-appclient, see
package-appclient(1M).

3. Copy the appclient.jar file to the machine where you want your client and extract it.

4. Edit the asenv.conf or asenv.bat path variables to refer to the correct directory values on that
machine.

The file is at appclient-install-dir /config/.

For a list of the path variables to update, see package-appclient(1M).

5. If required, make the appclient script executable.

For example, on UNIX use chmod 700.

6. Find the IIOP listener port number for at least two instances in the cluster.

150

https://glassfish.org/docs/latest/application-development-guide.pdf#developing-clients-using-the-acc
https://glassfish.org/docs/latest/reference-manual.pdf#package-appclient
https://glassfish.org/docs/latest/reference-manual.pdf#package-appclient
https://glassfish.org/docs/latest/reference-manual.pdf#package-appclient
https://glassfish.org/docs/latest/reference-manual.pdf#package-appclient


You specify the IIOP listeners as endpoints in Add at least two target-server elements in the sun-
acc.xml file..

For each instance, obtain the IIOP listener ports as follows:

1. Verify that the instances for which you want to determine the IIOP listener port numbers
are running.

asadmin> list-instances

A list of instances and their status (running, not running) is displayed.

The instances for which you want to display the IIOP listener ports must be running.

2. For each instance, enter the following command to list the various port numbers used by the
instance.

asadmin> get servers.server.instance-name.system-property.*.value

For example, for an instance name in1, you would enter the following command:

asadmin> get servers.server.in1.system-property.*.value

7. Add at least two target-server elements in the sun-acc.xml file.

Use the endpoints that you obtained in Find the IIOP listener port number for at least two
instances in the cluster..

If the Eclipse GlassFish instance on which the application client is deployed participates in a
cluster, the ACC finds all currently active IIOP endpoints in the cluster automatically. However,
a client should have at least two endpoints specified for bootstrapping purposes, in case one of
the endpoints has failed.

The target-server element specifies one or more IIOP endpoints used for load balancing. The
address attribute is an IPv4 address or host name, and the port attribute specifies the port
number. See "client-container" in Eclipse GlassFish Application Deployment Guide.

As an alternative to using target-server elements, you can use the endpoints property as
follows:

jvmarg value = "-Dcom.sun.appserv.iiop.endpoints=host1:port1,host2:port2,..."

8. If you require weighted round-robin load balancing, perform the following steps:

1. Set the load-balancing weight of each server instance.

151

https://glassfish.org/docs/latest/application-deployment-guide.pdf#client-container


asadmin set instance-name.lb-weight=weight

2. In the sun-acc.xml, set the com.sun.appserv.iiop.loadbalancingpolicy property of the ACC to
ic-based-weighted.

…
<client-container send-password="true">
  <property name="com.sun.appserv.iiop.loadbalancingpolicy" \
     value="ic-based-weighed"/>
…

9. Deploy your client application with the --retrieve option to get the client jar file.

Keep the client jar file on the client machine.

For example:

asadmin  --user admin --passwordfile pw.txt deploy --target cluster1 \
--retrieve my_dir myapp.ear

10. Run the application client as follows:

appclient --client my_dir/myapp.jar

Example 11-1 Setting Load-Balancing Weights for RMI-IIOP Weighted Round-Robin Load Balancing

In this example, the load-balancing weights in a cluster of three instances are to be set as shown in
the following table.

Instance Name Load-Balancing Weight

i1 100

i2 200

i3 300

The sequence of commands to set these load balancing weights is as follows:

asadmin set i1.lb-weight=100
asadmin set i2.lb-weight=200
asadmin set i3.lb-weight=300

Next Steps

To test failover, stop one instance in the cluster and see that the application functions normally. You

152



can also have breakpoints (or sleeps) in your client application.

To test load balancing, use multiple clients and see how the load gets distributed among all
endpoints.

See Also

See Enabling the High Availability Session Persistence Service for instructions on enabling the
session availability service for a cluster or for a Web, EJB, or JMS container running in a cluster.

Per-Request Load Balancing (PRLB)
The following topics are addressed here:

• PRLB Summary

• Enabling Per-Request Load Balancing

PRLB Summary

Per Request Load Balancing (PRLB) is a method for load balancing stateless EJBs that enables load-
balancing for each request to an EJB instance. PRLB chooses the first node in a cluster to use on
each request. By contrast, InitialContext (hardware) load balancing chooses the first node to use
when the InitialContext is created, and each request thereafter uses the same node unless a failure
occurred.

PRLB is enabled by means of the boolean per-request-load-balancing property in the glassfish-ejb-
jar.xml deployment descriptor file for the EJB. If this property is not set, the original load balancing
behavior is preserved.


PRLB is only supported for stateless session beans. Using PRLB with any other
bean types will result in a deployment error.

Enabling Per-Request Load Balancing

You can enable Per-Request Load Balancing (PRLB) by setting the boolean per-request-load-
balancing property to true in the glassfish-ejb-jar.xml deployment descriptor file for the EJB. On
the client side, the initContext.lookup method is used to access the stateless EJB.

To Enable RMI-IIOP Per-Request Load Balancing for a Stateless EJB

This procedure describes how to enable PRLB for a stateless EJB that is deployed to clustered
Eclipse GlassFish instances. This procedure also provides an client-side example for accessing a
stateless EJB that uses PRLB.

1. Choose or assemble the EJB that you want to deploy.

In this example, an EJB named TheGreeter is used.

For instructions on developing and assembling an EJB for deployment to Eclipse GlassFish, refer

153



to the following documentation:

◦ "Using Enterprise JavaBeans Technology" in Eclipse GlassFish Application Development
Guide

◦ "EJB Module Deployment Guidelines" in Eclipse GlassFish Application Deployment Guide

◦ "Assembling and Deploying an Application Client Module" in Eclipse GlassFish Application
Deployment Guide

2. Set the per-request-load-balancing property to true in the glassfish-ejb-jar.xml deployment
descriptor file for the EJB.

For more information about the glassfish-ejb-jar.xml deployment descriptor file, refer to "The
glassfish-ejb-jar.xml File" in Eclipse GlassFish Application Deployment Guide

For example, the glassfish-ejb-jar.xml file for a sample EJB named TheGreeter is listed below.

<glassfish-ejb-jar>
  <enterprise-beans>
    <unique-id>1</unique-id>
    <ejb>
      <ejb-name>TheGreeter</ejb-name>
    <jndi-name>greeter</jndi-name>
    <per-request-load-balancing>true</per-request-load-balancing>
    </ejb>
  </enterprise-beans>
</glassfish-ejb-jar>

3. Deploy the EJB.

If the EJB was previously deployed, it must be redployed.

For instructions on deploying EJBs, refer to the following documentation:

◦ "To Deploy an Application or Module" in Eclipse GlassFish Application Deployment Guide

◦ "To Redeploy an Application or Module" in Eclipse GlassFish Application Deployment Guide

4. Verify the PRLB configuration by looking for the following FINE message in the CORBA log file:

Setting per-request-load-balancing policyfor EJB EJB-name

5. Configure a client application to access the PRLB-enabled EJB.

For example:

public class EJBClient {
  public static void main(String args[]) {
  // ...
  try {

154

https://glassfish.org/docs/latest/application-development-guide.pdf#using-enterprise-javabeans-technology
https://glassfish.org/docs/latest/application-deployment-guide.pdf#ejb-module-deployment-guidelines
https://glassfish.org/docs/latest/application-deployment-guide.pdf#assembling-and-deploying-an-application-client-module
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079
https://glassfish.org/docs/latest/application-deployment-guide.pdf#to-deploy-an-application-or-module
https://glassfish.org/docs/latest/application-deployment-guide.pdf#to-redeploy-an-application-or-module


    // only one lookup
    Object objref = initContext.lookup(
"test.cluster.loadbalancing.ejb.TestSessionBeanRemote");
    myGreeterRemote = (TestSessionBeanRemote)PortableRemoteObject.narrow(objref,
TestSessionBeanRemote.class);
  } catch (Exception e) {
    // ...
  }

  for (int i=0; i < 10; i++ ) {
    // method calls in a loop.
    String theMessage = myGreeterRemote.sayHello(Integer.toString(i));
    System.out.println("got"+": " + theMessage);
  }
  }
}

See Also

See Enabling the High Availability Session Persistence Service for instructions on enabling the
session availability service for a cluster or for a Web, EJB, or JMS container running in a cluster.

155


	Eclipse GlassFish High Availability Administration Guide, Release 7
	Eclipse GlassFish
	Preface
	Eclipse GlassFish Documentation Set
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names

	1 High Availability in Eclipse GlassFish
	Overview of High Availability
	Load Balancing With the Apache mod_jk or mod_proxy_ajp Module
	High Availability Session Persistence
	High Availability Java Message Service
	RMI-IIOP Load Balancing and Failover

	How Eclipse GlassFish Provides High Availability
	Storage for Session State Data
	Highly Available Clusters

	Recovering from Failures
	Recovering the Domain Administration Server
	Recovering Eclipse GlassFish Instances
	Recovering the HTTP Load Balancer and Web Server
	Recovering Message Queue

	More Information

	2 Enabling Centralized Administration of Eclipse GlassFish Instances
	About Centralized Administration of Eclipse GlassFish Instances
	Determining Whether to Enable Centralized Administration
	Considerations for Using SSH for Centralized Administration

	Setting Up Cygwin SSH on Windows
	To Download and Install Cygwin
	To Set the Path for Windows and for the Cygwin Shell
	To Set the Home Directory for the Cygwin SSH User
	To Configure and Start the Cygwin SSH Server Daemon sshd

	Setting Up the MKS Toolkit on Windows
	To Install the MKS Toolkit
	To Set the Path for Windows and for the MKS Toolkit Shell
	To Set the Home Directory for the MKS Toolkit SSH User
	To Configure and Start the MKS Toolkit SSH Server Daemon sshd

	Setting Up SSH on UNIX and Linux Systems
	To Set Up SSH on MacOS Systems
	To Set Up SSH on Linux systems

	Testing the SSH Setup on a Host
	To Test the SSH Setup on a Host

	Setting Up SSH User Authentication
	To Set Up Public Key Authentication Without Encryption
	To Set Up Encrypted Public Key Authentication
	To Set Up Password Authentication

	Installing and Removing Eclipse GlassFish Software on Multiple Hosts
	To Copy a Eclipse GlassFish Installation to Multiple Hosts
	To Remove Eclipse GlassFish Software From Multiple Hosts


	3 Administering Eclipse GlassFish Nodes
	Types of Eclipse GlassFish Nodes
	Creating, Listing, Testing, and Deleting SSH Nodes
	To Create an SSH Node
	To List SSH Nodes in a Domain
	To Test if an SSH Node is Reachable
	To Delete an SSH Node

	Creating, Listing, and Deleting CONFIG Nodes
	To Create a CONFIG Node
	To List CONFIG Nodes in a Domain
	To Delete a CONFIG Node

	Updating and Changing the Type of a Node
	To Update an SSH Node
	To Update a CONFIG Node
	To Change the Type of a Node


	4 Administering Eclipse GlassFish Clusters
	About Eclipse GlassFish Clusters
	Group Management Service
	Protocols and Transports for GMS
	GMS Configuration Settings
	Dotted Names for GMS Settings
	To Preconfigure Nondefault GMS Configuration Settings
	To Change GMS Settings After Cluster Creation
	To Check the Health of Instances in a Cluster
	To Validate That Multicast Transport Is Available for a Cluster
	Discovering a Cluster When Multicast Transport Is Unavailable
	Using the Multi-Homing Feature With GMS

	Creating, Listing, and Deleting Clusters
	To Create a Cluster
	To List All Clusters in a Domain
	To Delete a Cluster


	5 Administering Eclipse GlassFish Instances
	Types of Eclipse GlassFish Instances
	Administering Eclipse GlassFish Instances Centrally
	To Create an Instance Centrally
	To List All Instances in a Domain
	To Delete an Instance Centrally
	To Start a Cluster
	To Stop a Cluster
	To Start an Individual Instance Centrally
	To Stop an Individual Instance Centrally
	To Restart an Individual Instance Centrally

	Administering Eclipse GlassFish Instances Locally
	To Create an Instance Locally
	To Delete an Instance Locally
	To Start an Individual Instance Locally
	To Stop an Individual Instance Locally
	To Restart an Individual Instance Locally

	Resynchronizing Eclipse GlassFish Instances and the DAS
	Default Synchronization for Files and Directories
	To Resynchronize an Instance and the DAS Online
	To Resynchronize Library Files
	To Resynchronize Custom Configuration Files for an Instance
	To Resynchronize Users' Changes to Files
	To Resynchronize Additional Configuration Files
	To Prevent Deletion of Application-Generated Files
	To Resynchronize an Instance and the DAS Offline

	Migrating EJB Timers
	To Enable Automatic EJB Timer Migration for Failed Clustered Instances
	To Migrate EJB Timers Manually


	6 Administering Named Configurations
	About Named Configurations
	Types of Named Configurations
	The default-config Configuration
	Automatically Created Configurations
	Directory for Configuration Synchronization

	Creating, Listing, and Deleting Named Configurations
	To Create a Named Configuration
	To List the Named Configurations in a Domain
	To List the Targets of a Named Configuration
	To Delete a Named Configuration

	Modifying Properties for Named Configurations and Instances
	Properties for Port Numbers in a Named Configuration
	To Modify a Named Configuration’s Properties
	To Modify Port Numbers of an Instance


	7 Configuring HTTP Load Balancing
	Setting Up HTTP Load Balancing
	Prerequisites for Setting Up HTTP Load Balancing
	Configuring Eclipse GlassFish with Apache HTTP Server and mod_jk
	Configuring Eclipse GlassFish with Apache HTTP Server and mod_proxy_ajp
	HTTP Load Balancer Deployments


	8 Upgrading Applications Without Loss of Availability
	Application Compatibility
	Upgrading In a Single Cluster
	To Upgrade an Application in a Single Cluster

	Upgrading in Multiple Clusters
	To Upgrade a Compatible Application in Two or More Clusters

	Upgrading Incompatible Applications
	To Upgrade an Incompatible Application by Creating a Second Cluster


	9 Configuring High Availability Session Persistence and Failover
	Overview of Session Persistence and Failover
	Requirements
	Restrictions
	Scope

	Enabling the High Availability Session Persistence Service
	To Enable Availability for a Cluster, Standalone Instance or Container
	Configuring Availability for Individual Web Applications
	Configuring Replication and Multi-Threaded Concurrent Access to HttpSessions
	Using Single Sign-on with Session Failover
	Using Coherence*Web for HTTP Session Persistence

	Stateful Session Bean Failover
	Configuring Availability for the EJB Container
	Configuring Availability for an Individual Application or EJB Module
	Configuring Availability for an Individual Bean
	Specifying Methods to Be Checkpointed


	10 Configuring Java Message Service High Availability
	Using Message Queue Broker Clusters With Eclipse GlassFish
	About Message Queue Broker Clusters
	Configuring GlassFish Clusters to Use Message Queue Broker Clusters
	To Configure a GlassFish Cluster to Use an Embedded or Local Conventional Broker Cluster With Master Broker
	To Configure a GlassFish Cluster to Use an Embedded or Local Conventional Broker Cluster of Peer Brokers
	To Change the Master Broker in an Embedded or Local Broker Cluster
	To Migrate Between Types of Embedded or Local Conventional Broker Clusters
	To Configure a GlassFish Cluster to Use a Local Enhanced Broker Cluster
	To Configure a GlassFish Cluster to Use a Remote Broker Cluster

	Connection Failover
	Load-Balanced Delivery to MDBs

	11 RMI-IIOP Load Balancing and Failover
	Overview
	General Requirements for Configuring Load Balancing
	Load Balancing Models

	InitialContext Load Balancing
	InitialContext Summary
	InitialContext Algorithm
	Enabling RMI-IIOP Hardware Load Balancing and Failover

	Per-Request Load Balancing (PRLB)
	PRLB Summary
	Enabling Per-Request Load Balancing



