Eclipse GlassFish Server Security Guide,
Release 5.1

Table of Contents

Eclipse GlassFish Server d
Preface 2
GlassFish Server Documentation Set 2
Related Documentation 4
Typographic Conventions 5
Symbol Conventions 5
Default Paths and File Names 6
1 Administering System Security 8
About System Security in GlassFish Server 8
Administering Passwords 27
Administering Audit Modules 36
Administering JSSE Certificates 38
Administering JACC Providers 44
2 Administering User Security a7
Administering Authentication Realms a7
Administering File Users 57
3 Administering Message Security 62
About Message Security in GlassFish Server 62
Enabling Default Message Security Providers for Web Services 68
Configuring Message Protection Policies 69
Administering Non-default Message Security Providers q2
Enabling Message Security for Application Clients 76
Additional Information About Message Security A7
4 Administering Security in Cluster Mode 78
Configuring Certificates in Cluster Mode 18
Dynamic Reconfiguration 78
Understanding Synchronization 80
5 Managing Administrative Security 81
Secure Administration Overview 381
How Secure Admin Works: The Big Picture 82
Considerations When Running GlassFish Server With Default Security 94
Running Secure Admin 94
Additional Considerations When Creating Local Instances 97
Secure Admin Use Case 98
Upgrading an SSL-Enabled Secure GlassFish Installation to Secure Admin 98

6 Running in a Secure Environment 100

Determining Your Security Needs

Installing GlassFish Server in a Secure Environment
Run on the Web Profile if Possible

Securing the GlassFish Server Host

Securing GlassFish Server

Securing Applications

100
101
102
102
106
109

Eclipse GlassFish Server

Eclipse GlassFish Server

Security Guide
Release 5.1
Contributed 2018, 2019

This book provides instructions for configuring and administering GlassFish Server security.

Eclipse GlassFish Server Security Guide, Release 5.1
Copyright ?? 2013, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0

SPDX-License-ldentifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEA

http://www.eclipse.org/legal/epl-2.0

GlassFish Server Documentation Set

Preface

This documentation is part of the Java Enterprise Edition contribution to the Eclipse
Foundation and is not intended for use in relation to Java Enterprise Edition or Orace
GlassFish. The documentation is in the process of being revised to reflect the new
Jakarta EE branding. Additional changes will be made as requirements and
procedures evolve for Jakarta EE. Where applicable, references to Java EE or Java
Enterprise Edition should be considered references to Jakarta EE.

Please see the Title page for additional license information.

The GlassFish Server Open Source Edition Security Guide provides instructions for configuring and
administering GlassFish Server security.

This preface contains information about and conventions for the entire GlassFish Server Open Source
Edition (GlassFish Server) documentation set.

GlassFish Server 5.0 is developed through the GlassFish project open-source community at
https://javaee.github.io/ glassfish/ . The GlassFish project provides a structured process for
developing the GlassFish Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It enables Java
developers to access the GlassFish Server source code and to contribute to the development of the
GlassFish Server. The GlassFish project is designed to encourage communication between Oracle
engineers and the community.

The following topics are addressed here:

¥ GlassFish Server Documentation Set
¥ Related Documentation

¥ Typographic Conventions

¥ Symbol Conventions

¥ Default Paths and File Names

GlassFish Server Documentation Set

The GlassFish Server documentation set describes deployment planning and system installation. For an
introduction to GlassFish Server, refer to the books in the order in which they are listed in the
following table.

2 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
#ghpbz
#giprl
#fwbkx
#fquvc
#ghpfg

Book Title

Release Notes

Quick Start Guide
Installation Guide

Upgrade Guide

Deployment Planning Guide

Administration Guide

Security Guide

Application Deployment
Guide

Application Development
Guide

Embedded Server Guide
High Availability
Administration Guide

Performance Tuning Guide

Troubleshooting Guide

Error Message Reference

Reference Manual

Message Queue Release Notes

DRAFT

GlassFish Server Documentation Set

Description

Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary
of the supported hardware, operating system, Java Development Kit
(JDK), and database drivers.

Explains how to get started with the GlassFish Server product.
Explains how to install the software and its components.

Explains how to upgrade to the latest version of GlassFish Server. This
guide also describes differences between adjacent product releases
and configuration options that can result in incompatibility with the
product specifications.

Explains how to build a production deployment of GlassFish Server
that meets the requirements of your system and enterprise.

Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadminutility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Provides instructions for configuring and administering GlassFish
Server security.

Explains how to assemble and deploy applications to the GlassFish
Server and provides information about deployment descriptors.

Explains how to create and implement Java Platform, Enterprise
Edition (Java EE platform) applications that are intended to run on the
GlassFish Server. These applications follow the open Java standards
model for Java EE components and application programmer interfaces
(APIs). This guide provides information about developer tools, security,
and debugging.

Explains how to run applications in embedded GlassFish Server and to
develop applications in which GlassFish Server is embedded.

Explains how to configure GlassFish Server to provide higher
availability and scalability through failover and load balancing.

Explains how to optimize the performance of GlassFish Server.

Describes common problems that you might encounter when using
GlassFish Server and explains how to solve them.

Describes error messages that you might encounter when using
GlassFish Server.

Provides reference information in man page format for GlassFish
Server administration commands, utility commands, and related
concepts.

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

Eclipse GlassFish Server Security Guide, Release 5.1EEB

../release-notes/toc.html#GSRLN
../quick-start-guide/toc.html#GSQSG
../installation-guide/toc.html#GSING
../upgrade-guide/toc.html#GSUPG
../deployment-planning-guide/toc.html#GSPLG
../administration-guide/toc.html#GSADG
../reference-manual/asadmin.html#GSRFM00263
../security-guide/toc.html#GSSCG
../application-deployment-guide/toc.html#GSDPG
../application-deployment-guide/toc.html#GSDPG
../application-development-guide/toc.html#GSDVG
../application-development-guide/toc.html#GSDVG
../embedded-server-guide/toc.html#GSESG
../ha-administration-guide/toc.html#GSHAG
../ha-administration-guide/toc.html#GSHAG
../performance-tuning-guide/toc.html#GSPTG
../troubleshooting-guide/toc.html#GSTSG
../error-messages-reference/toc.html#GSEMR
../reference-manual/toc.html#GSRFM
../../openmq/mq-release-notes/toc.html#GMRLN

Related Documentation

Book Title Description

Message Queue Technical Provides an introduction to the technology, concepts, architecture,
Overview capabilities, and features of the Message Queue messaging service.
Message Queue Explains how to set up and manage a Message Queue messaging
Administration Guide system.

Message Queue DeveloperOs Describes the application programming interface in Message Queue

Guide for IMX Clients for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions
(IMX).

Message Queue DeveloperOs Provides information about concepts and procedures for developing

Guide for Java Clients Java messaging applications (Java clients) that work with GlassFish
Server.

Message Queue DeveloperOs Provides programming and reference information for developers

Guide for C Clients working with Message Queue who want to use the C language binding
to the Message Queue messaging service to send, receive, and process
Message Queue messages.

Related Documentation

The following tutorials explain how to develop Java EE applications:

¥ Your First Cup: An Introduction to the Java EE Platform ((https://javaee.github.io/ firstcup/). For
beginning Java EE programmers, this short tutorial explains the entire process for developing a
simple enterprise application. The sample application is a web application that consists of a
component that is based on the Enterprise JavaBeans specification, a JAX-RS web service, and a
JavaServer Faces component for the web front end.

¥ The Java EE 8 Tutorial (https://javaee.github.io/ tutorial/). This comprehensive tutorial explains

how to use Java EE 8 platform technologies and APIs to develop Java EE applications.

Javadoc tool reference documentation for packages that are provided with GlassFish Server is
available as follows.
¥ The API specification for version 8 of Java EE is located at https://javaee.github.io/ javaee-spec/ .

¥ The API specification for GlassFish Server 5.0, including Java EE 8 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
https://javaee.github.io/ glassfish/ documentation.

Additionally, the Java EE Specifications (https://javaee.github.io/ javaee-spec/) might be useful.

For information about creating enterprise applications in the NetBeans Integrated Development
Environment (IDE), see the NetBeans Documentation, Training & Support page
(http://www.netbeans.org/ kb/).

4 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../../openmq/mq-tech-over/toc.html#GMTOV
../../openmq/mq-tech-over/toc.html#GMTOV
../../openmq/mq-admin-guide/toc.html#GMADG
../../openmq/mq-admin-guide/toc.html#GMADG
../../openmq/mq-dev-guide-jmx/toc.html#GMJMG
../../openmq/mq-dev-guide-jmx/toc.html#GMJMG
../../openmq/mq-dev-guide-java/toc.html#GMJVG
../../openmq/mq-dev-guide-java/toc.html#GMJVG
../../openmq/mq-dev-guide-c/toc.html#GMCCG
../../openmq/mq-dev-guide-c/toc.html#GMCCG
http://docs.oracle.com/javaee/7/firstcup/doc/home.html
https://javaee.github.io/firstcup/
https://javaee.github.io/firstcup/
https://javaee.github.io/firstcup/
http://docs.oracle.com/javaee/7/tutorial/doc/home.html
https://javaee.github.io/tutorial/
https://javaee.github.io/tutorial/
https://javaee.github.io/tutorial/
https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/
https://javaee.github.io/glassfish/documentation
https://javaee.github.io/glassfish/documentation
https://javaee.github.io/glassfish/documentation
https://javaee.github.io/glassfish/documentation
https://javaee.github.io/glassfish/documentation
http://www.oracle.com/technetwork/java/javaee/tech/index.html
https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/
http://www.netbeans.org/kb/
http://www.netbeans.org/kb/
http://www.netbeans.org/kb/
http://www.netbeans.org/kb/

For information about the Apache Derby database for use with the GlassFish Server, see the
derby/).

Derby product page (https://db.apache.org/

Typographic Conventions

Apache

The Java EE Samples project is a collection of sample applications that demonstrate a broad range of
Java EE technologies. The Java EE Samples are bundled with the Java EE Software Development Kit

(SDK) and are also available from the Java EE Samples project page (https://github.com/ javaee/
glassfish-samples).
Typographic Conventions
The following table describes the typographic changes that are used in this book.
Typeface Meaning Example
AaBbCcl23 The names of commands, files, and Edit your .login file.
directories, and onscreen computer
output Usels ato list all files.
machine_name% you have mail.
AaBbCcl123 what you type, contrasted with machine_names8t
onscreen computer output
Password:
AaBbCcl123 A placeholder to be replaced with a The command to remove afile is rmfilename.
real name or value
AaBbCc123 Book titles, new terms, and terms to Read Chapter 6 in the UserOs Guide.

be emphasized (note that some
emphasized items appear bold
online)

Symbol Conventions

A cache is a copy that is stored locally.

Do not save the file.

The following table explains symbols that might be used in this book.

Symbol Description Example
[] Contains optional Is [-1]
arguments and command
options.
DRAFT

Meaning

The -l option is not required.

Eclipse GlassFish Server Security Guide, Release 5.1EEG

https://db.apache.org/derby/
https://db.apache.org/derby/
https://db.apache.org/derby/
https://db.apache.org/derby/
https://db.apache.org/derby/
http://glassfish-samples.java.net/
https://github.com/javaee/glassfish-samples
https://github.com/javaee/glassfish-samples
https://github.com/javaee/glassfish-samples
https://github.com/javaee/glassfish-samples
https://github.com/javaee/glassfish-samples

Default Paths and File Names

Symbol Description Example Meaning

{1} Contains a set of choices -d {y[n} The -d option requires that you use
for a required command either the y argumentorthe n
option. argument.

¥} Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun.javaRoot variable.

- Joins simultaneous Control-A Press the Control key while you
multiple keystrokes. press the A key.

+ Joins consecutive Ctrl+A+N Press the Control key, release it, and
multiple keystrokes. then press the subsequent keys.

> Indicates menu item File > New > Templates From the File menu, choose New.

From the New submenu, choose
Templates.

selection in a graphical
user interface.

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

Placeholder Description Default Value
as-install Represents the base installation Installations on the Oracle Solaris operating system,
directory for GlassFish Server. Linux operating system, and Mac OS operating
system:
In configuration files, as-install is
represented as follows: userOs-home-directory /glassfish5/glassfish®
${com.sun.aas.installRoot} Installations on the Windows operating system:
SystemDrive:\glassfishb\glassfish®
as-install- Represents the parent of the base Installations on the Oracle Solaris operating system,
parent installation directory for Linux operating system, and Mac operating system:
GlassFish Server.
userOs-home-directory /glassfish5
Installations on the Windows operating system:
SystemDrive:\glassfish5®
domain-root- Represents the directory in which as-install’/domains/®
dir a domain is created by default.

6 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

Default Paths and File Names

Placeholder Description Default Value

domain-dir Represents the directory in which domain-root-dir’/°"domain-name
a domainOs configuration s
stored.

In configuration files, domain-dir
is represented as follows:

${com.sun.aas.instanceRoot}

instance-dir Represents the directory for a domain-dir’/instance-name
server instance.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEH

About System Security in GlassFish Server

1 Administering System Security

This chapter describes general information about administering system security.
The following topics are addressed here:

¥ About System Security in GlassFish Server
¥ Administering Passwords

¥ Administering Audit Modules

¥ Administering JSSE Certificates

¥ Administering JACC Providers

Instructions for accomplishing many of these tasks by using the Administration Console are contained
in the Administration Console online help.

Information on application security is contained in " Securing Applications " in GlassFish Server Open
Source Edition Application Development Guide.

About System Security in GlassFish Server

Security is about protecting data, that is, how to prevent unauthorized access or damage to data that is
in storage or in transit. The GlassFish Server is built on the Java security model, which uses a sandbox
where applications can run safely, without potential risk to systems or users. System security affects all
the applications in the GlassFish Server environment.

The Java EE Security API specification defines portable, plug-in interfaces for authentication and
identity stores, and a new injectable-type SecurityContext interface that provides an access point for
programmatic security. You can use the built-in implementations of the plug-in SPIs, or write custom

implementations.

System security features include the following:

¥ Authentication

¥ Authorization

¥ Auditing

¥ Firewalls

¥ Certificates and SSL

¥ Tools for Managing System Security

8 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#ggktf
#ghgrp
#ghgol
#ablqz
#gkngj
../application-development-guide/securing-apps.html#GSDVG00006
#ablnx
#ghlvu
#ghlql
#ghlti
#abloj
#ablno

About System Security in GlassFish Server

Authentication

Authentication is the way in which an entity (a user, an application, or a component) determines that
another entity is who it claims to be. An entity uses security credentials to authenticate itself. The
credentials might be a user name and password, a digital certificate, or something else. Usually, servers
or applications require clients to authenticate themselves. Additionally, clients might require servers to
authenticate themselves. When authentication is bidirectional, it is called mutual authentication.

When an entity tries to access a protected resource, GlassFish Server uses the authentication
mechanism configured for that resource to determine whether to grant access. For example, a user can
enter a user name and password in a web browser, and if the application verifies those credentials, the
user is authenticated. The user is associated with this authenticated security identity for the remainder

of the session.

Authentication Types

Within its deployment descriptors, an application can specify the type of authentication that it uses.

The Java EE Security API provides an alternative mechanism for configuring the type of authentication

an application uses. See Java EE Security API 1.0 specification . GlassFish Server supports specifying the
following types of authentication in deployment descriptors:

BASIC

Uses the standard Basic Authentication Scheme as described in RFC

1. The communication protocol is HTTP (SSL optional). There is no encryption of user credentials
unless using SSL. This type is not considered to be a secure method of user authentication unless
used in conjunction with an encrypted communications channel, such as that provided by SSL.

FORM

The application provides its own custom login and error pages. The communication protocol is
HTTP (SSL optional). There is no encryption of user credentials unless using SSL.

CLIENT-CERT

The server authenticates the client using a public key certificate. The communication protocol is
HTTPS (HTTP over SSL).

DIGEST

The server authenticates a user based on a user name and a password. Unlike BASIC authentication,
the plaintext password is never sent over the network, although a hash of the password combined
with other parameters is sent. While Digest Authentication is more secure than Basic
Authentication, user names and passwords are not strongly protected, and the use of SSL is still
recommended.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EE®

https://jcp.org/en/jsr/detail?id=375

About System Security in GlassFish Server

JSR 375 Authentication Mechanisms and Identity Stores

The Java EE Security APl defines the HttpAuthenticationMechanism interface, the IdentityStore and
IdentityStoreHandler interfaces.

The HttpAuthenticationMechanism interface defines an SPI for writing authentication mechanisms that
can be provided with an application and deployed using CDI. Developers can write their own
implementations of HttpAuthenticationMechanism to support specific authentication token types or
protocols. There are also several built-in authentication mechanisms that perform BASIC, FORM, and
Custom FORM authentication.The HttpAuthenticationMechanism interface defines three methods -
validateRequest() , secureResponse(), and cleanSubject() . These methods align closely with the methods
defined by the JASPIC ServerAuth interface.

The IdentityStore interface provides an abstraction of an identity store that holds user account
information including name, password, group membership, and potentially other attributes.
Implementations of the IdentityStore interface are used to validate caller credentials, typically
username and password, and retrieve and group information. There are built-in implementations of
this SPI that can validate credentials against external LDAP or Database identity stores.

IdentityStore is intended primarily for use by HttpAuthenticationMechanism implementations, but could
be used by other authentication mechanisms, such as a JASPIC ServerAuthModulg or a containerOs built-
in authentication mechanisms. Though HttpAuthenticationMechanism implementations can authenticate
users in any manner they choose, the IdentityStore interface provides a convenient mechanism. A
significant advantage of using HttpAuthenticationMechanism and IdentityStore over the declarative
mechanisms defined by the Servlet specification is that it allows an application to control the identity

stores that it authenticates against, in a standard, portable way. You can use the built-in
implementations of the?? plug-in SPIs, or define custom implementations.

JSR 196 Server Authentication Modules

GlassFish Server implements the Servlet Container Profile of JSR 196 Java Authentication Service
Provider Interface for Containers specification

JSR 196 defines a standard service-provider interface (SPI) for integrating authentication mechanism
implementations in message processing runtimes. JSR 196 extends the concepts of the Java
Authentication and Authorization Service (JAAS) to enable pluggability of message authentication
modules in message processing runtimes. The standard defines profiles that establish contracts for the
use of the SPI in specific contexts.

Passwords

Passwords are your first line of defense against unauthorized access to the components and data of
GlassFish Server. For Information about how to use passwords for GlassFish Server, see Administering

10 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
#ghgrp

About System Security in GlassFish Server

Passwords.

Master Password and Keystores

The master password is not tied to a user account and it is not used for authentication. Instead,
GlassFish Server uses the master password only to encrypt the keystore and truststore for the DAS and
instances.

When you create a new GlassFish Server domain, a new self-signed certificate is generated and stored
in the domain keystore and truststore. The DAS needs the master password to open these stores at
startup. Similarly, the associated server instances need the master password to open their copy of these
stores at startup.

If you use a utility such as keytool to modify the keystore or truststore, you must provide the master
password in that case as well.

The master password is a shared password and must be the same for the DAS and all instances in the
domain in order to manage the instances from the DAS. However, because GlassFish Server never
transmits the master password over the network, it is up to you to keep the master password in sync
between the DAS and instances.

If you change the master password, you can choose to enter the master password manually when
required, or save it in afile.

Understanding Master Password Synchronization

The master password is used encrypt the keystore and truststore for the DAS and instances. The DAS
needs the master password to open these stores at startup. Similarly, the associated server instances
need the master password to open their copy of these stores at startup.

GlassFish Server keeps the keystore and truststore for the DAS and instances in sync, which guarantees
that all copies of the stores are encrypted with the same master password at any given time.

However, GlassFish Server does not synchronize the master password itself, and it is possible that the
DAS and instances might attempt to use different master passwords.

Consider the following potential scenario:

1. You create a domain and instances, using the default master password (changeit). As a result, the
DAS and instances have keystores and truststores encrypted using changeit.

2. You use the change-master-password subcommand on the DAS to change the master password to
ichangedit. As a result, the DAS and instance keystores and truststores are encrypted using
ichangedit.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEA 1

#ghgrp

About System Security in GlassFish Server

3. Access to the keystore and truststore from an instance now requires the master password
ichangedit. You are responsible for changing the master password as needed.

If you do not use a master password file, you assume the responsibility for using the change-master-
passwordsubcommand on the DAS and instances to keep the master passwords in sync. Be aware that

not using a master password file has additional considerations for the start-instance and start-cluster
subcommands, as described in Additional Considerations for the start-instance and start-cluster
Subcommands .

If you do use a master password file, you assume the responsibility for using the change-master-
passwordsubcommand on the DAS and instances to keep the master password file in sync.

Using the Default Master Password

GlassFish Server uses the known phrase "changeit" as the default master password. This master
password is not stored in a file. The default password is a convenience feature and provides no
additional security because it is assumed to be widely known.

All GlassFish Server subcommands work as expected with the default master password and there are
no synchronization issues.

Saving the Master Password to a File

The change-master-password --savemasterpassword option indicates whether the master password
should be written to the file system in the master-password file for the DAS or a node. The default is
false.

For a domain, the master password is kept in domain-dir’/master-password".

For a node, the master-password file is kept in nodes/ 'node-namé¢agent/master-password’. You can set a
master password at the node level and all instances created on that node will use that master-
password file. To do this, use the --nodedir option and provide a node name.

You might want to save the master password to the file so that the start-domain subcommand can start
the server without having to prompt the user. There are additional considerations for using a master
password with the start-instance and start-cluster subcommands, as described in Additional
Considerations for the start-instance and start-cluster ~ Subcommands .

The master-password file is encoded, not encrypted. You must use filesystem permissions to protect the
file.

Using the Master Password When Creating a Domain

12 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr

About System Security in GlassFish Server

The create-domain --usemasterpassword option specifies whether the keystore is encrypted with a
master password that is built into the system, or by a user-defined master password.

¥ If false (default), the keystore is encrypted with a well-known password (changeit) that is built into
GlassFish Server.

¥ If true, the subcommand obtains the master password from the AS_ADMIN_MASTERPASSHQRD
the password file you specified in the --passwordfile option of the asadmin utility. Or, if none is
defined, --usemasterpassword prompts the user for the master password.

Administration Password

An administration password, also known as the admin password, is used to invoke the Administration
Console and the asadminutility. As with the default admin username, the default admin password is
usually set during installation but it can be changed. For instructions, see To Change an Administration
Password .

Encoded Passwords

Files that contain encoded passwords need to be protected using file system permissions. These files
include the following:

¥ domain-dir'/master-password’
This file contains the encoded master password and should be protected with file system
permissions 600.

¥ Any password file created to pass as an argument by using the --passwordfile argument to the
asadmin utility should be protected with file system permissions. Additionally, any password file
being used for a transient purpose, such as setting up SSH among nodes, should be deleted after it
has served its purpose.

For instructions, see To Set a Password From a File .

Web Browsers and Password Storage

Most web browsers can save login credentials entered through HTML forms. This function can be
configured by the user and also by applications that employ user credentials. If the function is enabled,
then credentials entered by the user are stored on their local computer and retrieved by the browser
on future visits to the same application. This function is convenient for users, but can also be a security
risk. The stored credentials can be captured by an attacker who gains access to the computer, either
locally or through some remote compromise. Further, methods have existed whereby a malicious web
site can retrieve the stored credentials for other applications, by exploiting browser vulnerabilities or
through application-level cross-domain attacks.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEA3

#ghgpu
#ghgpu
#ghytn

About System Security in GlassFish Server

To prevent your web browser from saving login credentials for the GlassFish Server Administration
Console, choose “"No" or "Never for this page" when prompted by the browser during login.

Password Aliases

To avoid storing passwords in the domain configuration file in clear text, you can create an alias for a
password. This process is also known as encrypting a password. For more information, see
Administering Password Aliases

Single Sign-on

With single sign-on, a user who logs in to one application becomes implicitly logged in to other
applications that require the same authentication information. Single sign-on is based on groups.
Single sign-on applies to web applications configured for the same realm and virtual server. The realm
is defined by the realm-nameelement in the web.xmlfile.

On GlassFish Server, single sign-on behavior can be inherited from the HTTP Service, enabled, or
disabled. By default, it is inherited from the HTTP Service. If enabled, single sign-on is enabled for web
applications on this virtual server that are configured for the same realm. If disabled, single sign-on is
disabled for this virtual server, and users must authenticate separately to every application on the
virtual server.

Authorization

Authorization, also known as access control, is the means by which users are granted permission to
access data or perform operations. After a user is authenticated, the userOs level of authorization
determines what operations the owner can perform. A userOs authorization is based on the userOs role.

Roles

A role defines which applications and what parts of each application users can access and what those
users or groups can do with the applications. For example, in a personnel application, all employees
might be able to see phone numbers and email addresses, but only managers have access to salary
information. This application would define at least two roles: employeeand manager Only users in the
managerrole are allowed to view salary information.

A role is different from a group in that a role defines a function in an application, while a group is a set
of users who are related in some way. For example, the personnel application specify groups such as
full-time , part-time , and on-leave. Users in these groups are all employees (the employeerole). In

14 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#ghgqc

About System Security in GlassFish Server

addition, each user has its own designation that defines an additional level of employment.

Roles are defined in the deployment descriptor for the application. The application developer or
deployer maps roles to one or more groups in the deployment descriptor for each application. When
the application is being packaged and deployed, the application specifies mappings between users,
groups, and roles, as illustrated in ~ Figure 1-1.

By default, group principal names are mapped to roles of the same name. Therefore,
the Default Principal To Role Mapping setting is enabled by default on the Security
page of the GlassFish Server Administration Console. With this setting enabled, if the
group name defined on GlassFish Server matches the role name defined in the
application, there is no need to use the runtime deployment descriptor to provide a
mapping. The application server will implicitly make this mapping, as long as the
names of the groups and roles match.

Figure 1-1 Role Mapping

Create users . Define roles . Map roles to users
andfor groups in application andfor groups
Application Application
{ . User1 - 7
i = | i(User1
User 2 Lser2
¥ Role 1 Rokei1 &
L e [i 1 User3
w L
. L
Group 1 Role 1 Folks 1 Group 1
4 [L 1
L User 1 ' L] User1
Uszer 2 ‘ LUser 2
1 Uzer 3 | User 3

Java Authorization Contract for Containers

Java Authorization Contract for Containers (JACC) is the part of the Java EE specification that defines
an interface for pluggable authorization providers. This enables you to set up third-party plug-in
modules to perform authorization. By default, the GlassFish Server provides a simple, file-based
authorization engine that complies with the JACC specification.

This release includes Administration Console support and CLI subcommands to create (create-jacc-

provider), delete (delete-jacc-provider), and list (list-jacc-providers) JACC providers. Administering
JACC Providers for additional information.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEA5

#fxjfw
#gkngj
#gkngj

About System Security in GlassFish Server

You can also specify additional third-party JACC providers.

Working With the server.policy Policy File

Each GlassFish Server domain has its own global Java SE policy file, located in domain-dir’/config".

The file is named server.policy
This section covers the following topics:

¥ Contents of server.policy

¥ Changing the Default Permissions

Contents of server.policy

A sample server.policy file is as follows. Comments in the file describe why various permissions are
granted. These permissions are described in more detail in the next section.

! This server.policy file is presented for example purposes only and is subject to change.

/Il classes in lib get all permissions by default
grant codeBase "file:${com.sun.aas.installRoot}/lib/-" {
E permission java.security.AllPermission;

|3

/I Core server classes get all permissions by default
grant codeBase "file:${com.sun.aas.installRoot}/modules/-" {
E permission java.security.AllPermission;

|3

/I Felix classes get all permissions by default
grant codeBase "file:${com.sun.aas.installRoot}/osgi/felix/bin/-" {
E permission java.security.AllPermission;

|3

/[iIMQ classes get all permissions by default
grant codeBase "file:${com.sun.aas.imqLib}/-" {
E permission java.security.AllPermission;

|3

/I Derby driver classes get all permissions by default
grant codeBase "file:${com.sun.aas.derbyRoot}/lib/-" {
E permission java.security.AllPermission;

|3

16 EEEEclipse GlassFish Server Security Guide, Release 5.1

DRAFT

#gkrkh
#gkrmo

About System Security in GlassFish Server

/I permission for JDK's tools.jar to enable webservice annotation processing
/[at runtime by wsgen tool:

1 permission java.lang.RuntimePermission "createClassLoader";

1

/I permission for JDK's tools.jar to sign JARs at runtime for

/[Java Web Start support:

1 permissions java.security.AllPermission;

// on the advice of the JDK tools folks. Should be refined later.

grant codeBase "file:${com.sun.aas.javaRoot}/lib/tools.jar" {

E permission java.security.AllPermission;

|3

//lLoading MBeans from anywhere, to take care of side effects of 6235678.
grant {

E permission javax.management.MBeanTrustPermission "register" ;

%

/ILoading MBeans from anywhere, to take care of side effects of 6235678.

// Basic set of required permissions granted to all remaining code

/I The permission FilePermission "<<ALL FILES>>", "read,write"

/Il allows all applications to read and write any file in the filesystem.

/' It should be changed based on real deployment needs. If you know your
/I applications just need to read/write a few directories consider removing
/I this permission and adding grants indicating those specific directories.

/[against the codebase of your application(s).

grant {

E //Workaround for bugs #6484935, 6513799

E permission java.lang.RuntimePermission "getProtectionDomain";

E permission com.sun.corba.ee.impl.presentation.rmi.DynamicAccessPermission "access";
E permission java.util.PropertyPermission "*", "read,write";

E permission java.lang.RuntimePermission "loadLibrary.*";
E permission java.lang.RuntimePermission "queuePrintJob";
E permission java.net.SocketPermission "*", "connect";

E

permission java.io.FilePermission "<<ALL FILES>>", "read,write";
E I/l work-around for pointbase bug 4864405
E permission java.io.FilePermission
E "${com.sun.aas.instanceRoot}${/}lib${/}databases${/}-",
E "delete";
E permission java.io.FilePermission "${java.io.tmpdir}${/}-", "delete";

E permission java.util.PropertyPermission "*", "read";

E permission java.lang.RuntimePermission "modifyThreadGroup";

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEA7

About System Security in GlassFish Server

E permission java.lang.RuntimePermission "getClassLoader";

E permission java.lang.RuntimePermission "setContextClassLoader";
E permission javax.management.MBeanPermission

E "[com.sun.messaging.jms.*:*]", "*";

b

I/l Following grant block is only required by Connectors. If Connectors
/[are not in use the recommendation is to remove this grant.

grant {

E permission javax.security.auth.PrivateCredentialPermission

E "Javax.resource.spi.security.PasswordCredential * \"*\"","read";
i3

I/l Following grant block is only required for Reflection. If Reflection

/I is not in use the recommendation is to remove this section.

grant {

E permission java.lang.RuntimePermission "accessDeclaredMembers";

h

// Permissions to invoke CORBA objects in server
grant {
E permission com.sun.enterprise.security. CORBAObjectPermission "*", "*";

|3

Changing the Default Permissions

The GlassFish Server internal server code is granted all permissions. These grants are covered by the
AllPermission grant blocks to various parts of the server infrastructure code. Do not modify these
entries.

Application permissions are granted in the default grant block. These permissions apply to all code not
part of the internal server code listed previously.

The last section, beginning with the comment "Basic set of required permissionsE" provides the basic
set of permissions granted to all remaining code.

Depending on your GlassFish Server implementation, deleting or modifying these permissions might
be appropriate.

Specifically, the following permission allows all applications to read and write all properties and read
and write all files on the filesystem.

18 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

About System Security in GlassFish Server

permission java.util.PropertyPermission "*", "read,write";
Epermission java.io.FilePermission "<<ALL FILES\>>", "read,write";

While this grant provides optimum flexibility, it is inherently unsecure. For enhanced security, change
this permission based on your real deployment needs.

For example, consider removing this permission and assign default read and write permissions only to
the applicationOs install directory (context-root). (This example uses com.sun.aas.instanceRoot, which
specifies the top level directory for a server instance.)

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-"

{

permission java.io.FilePermission "file:${com.sun.aas.instanceRoot}

lapplications/MyApp/-", "read,write";
}

For any application that needs to read and write additional directories, you would then have to
explicitly allow such permissions by adding specific grants. In general, you should add extra
permissions only to the applications or modules that require them, not to all applications deployed to a
domain.

Additional permissions (see the embedded comments in server.policy) are granted specifically for
using connectors and reflection. If connectors or reflection are not used in a particular domain, you
should remove these permissions, because they are otherwise unnecessary.

Auditing

Auditing is the means used to capture security-related events for the purpose of evaluating the
effectiveness of security measures. GlassFish Server uses audit modules to capture audit trails of all
authentication and authorization decisions. GlassFish Server provides a default audit module, as well

as the ability to plug in custom audit modules. The scope of the audit module is the entire server,
which means that all the applications on the server will use the same audit module.

For administration instructions, see Administering Audit Modules

Firewalls

A firewall controls the flow of data between two or more networks, and manages the links between the
networks. A firewall can consist of both hardware and software elements. The following guidelines
pertain primarily to GlassFish Server:

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEA9

#ghgol

About System Security in GlassFish Server

¥ In general, firewalls should be configured so that clients can access the necessary TCP/IP ports.
For example, if the HTTP listener is operating on port 8080, configure the firewall to allow HTTP
requests on port 8080 only. Likewise, if HTTPS requests are set up for port 8081, you must configure
the firewalls to allow HTTPS requests on port 8081.

¥ If direct Remote Method Invocations over Internet Inter-ORB Protocol (RMI-IIOP) access from the
Internet to EJB modules is required, open the RMI-IIOP listener port as well.

Opening the RMI-IIOP listener port is strongly discouraged because it creates security
. risks.

¥ In double firewall architecture, you must configure the outer firewall to allow for HTTP and HTTPS
transactions. You must configure the inner firewall to allow the HTTP server plug-in to
communicate with GlassFish Server behind the firewall.

Certificates and SSL

The following topics are addressed here:

¥ Certificates

¥ Certificate Chains

¥ Certificate Files

¥ Secure Sockets Layer

¥ Custom Authentication of Client Certificate in SSL Mutual Authentication

For administration instructions, see ~ Administering JSSE Certificates .

Certificates

Certificates, also called digital certificates, are electronic files that uniquely identify people and
resources on the Internet. Certificates also enable secure, confidential communication between two
entities. There are different kinds of certificates:

¥ Personal certificates are used by individuals.

¥ Server certificates are used to establish secure sessions between the server and clients through
secure sockets layer (SSL) technology.

Certificates are based on public key cryptography, which uses pairs of digital keys (very long numbers)
to encrypt, or encode, information so the information can be read only by its intended recipient. The
recipient then decrypts (decodes) the information to read it. A key pair contains a public key and a
private key. The owner distributes the public key and makes it available to anyone. But the owner

20 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#ablok
#ablol
#ablqx
#ablom
#gksdc
#ablqz

About System Security in GlassFish Server

never distributes the private key, which is always kept secret. Because the keys are mathematically
related, data encrypted with one key can only be decrypted with the other key in the pair.

Certificates are issued by a trusted third party called a Certification Authority (CA). The CA is analogous
to a passport office: it validates the certificate holderOs identity and signs the certificate so that it
cannot be forged or tampered with. After a CA has signed a certificate, the holder can present it as
proof of identity and to establish encrypted, confidential communications. Most importantly, a
certificate binds the ownerOs public key to the ownerOs identity.

In addition to the public key, a certificate typically includes information such as the following:

¥ The name of the holder and other identification, such as the URL of the web server using the
certificate, or an individual®s email address

¥ The name of the CA that issued the certificate

¥ An expiration date

Certificates are governed by the technical specifications of the X.509 format. To verify the identity of a
user in the certificate realm, the authentication service verifies an X.509 certificate, using the
common name field of the X.509 certificate as the principal name.

Certificate Chains

A certificate chain is a series of certificates issued by successive CA certificates, eventually ending in a
root CA certificate.

Web browsers are preconfigured with a set of root CA certificates that the browser automatically
trusts. Any certificates from elsewhere must come with a certificate chain to verify their validity.

When a certificate is first generated, it is a self-signed certificate. A self-signed certificate is one for
which the issuer (signer) is the same as the subject (the entity whose public key is being authenticated
by the certificate). When the owner sends a certificate signing request (CSR) to a CA, then imports the
response, the self-signed certificate is replaced by a chain of certificates. At the bottom of the chain is
the certificate (reply) issued by the CA authenticating the subjectOs public key. The next certificate in
the chain is one that authenticates the CAOs public key. Usually, this is a self-signed certificate (that is, a
certificate from the CA authenticating its own public key) and the last certificate in the chain.

In other cases, the CA can return a chain of certificates. In this situation, the bottom certificate in the
chain is the same (a certificate signed by the CA, authenticating the public key of the key entry), but the
second certificate in the chain is a certificate signed by a different CA, authenticating the public key of
the CA to which you sent the CSR. Then, the next certificate in the chain is a certificate authenticating
the second CAQOs key, and so on, until a self-signed root certificate is reached. Each certificate in the
chain (after the first) thus authenticates the public key of the signer of the previous certificate in the
chain.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER1

About System Security in GlassFish Server

Certificate Files

During GlassFish Server installation, a certificate is generated in Java Secure Socket Extension (JSSE)
format suitable for internal testing. (The certificate is self-signed.) By default, GlassFish Server stores
its certificate information in certificate databases in the domain-dir*/config™ directory:

Keystore file

The keystore.jks file contains GlassFish Server certificate, including its private key. The keystore file
is protected with a password.
Each keystore entry has a unique alias. After installation, the GlassFish Server keystore has a single
entry with an alias of slas.

Truststore file

The cacerts.jks file contains the GlassFish Server trusted certificates, including public keys for
other entities. For a trusted certificate, the server has confirmed that the public key in the certificate
belongs to the certificateOs owner. Trusted certificates generally include those of CAs.

By default, GlassFish Server is configured with a keystore and truststore that will work with the
example applications and for development purposes.

Secure Sockets Layer

Secure Sockets Layer (SSL) is the most popular standard for securing Internet communications and
transactions. Secure web applications use HTTPS (HTTP over SSL). The HTTPS protocol uses certificates
to ensure confidential and secure communications between server and clients. In an SSL connection,
both the client and the server encrypt data before sending it. Data is decrypted upon receipt.

When a Web browser (client) wants to connect to a secure site, an SSL handshake happens, like this:
1. The browser sends a message over the network requesting a secure session (typically, by
requesting a URL that begins with https instead of http).

2. The server responds by sending its certificate (including its public key).

3. The browser verifies that the serverOs certificate is valid and is signed by a CA whose certificate is
in the browserOs database (and who is trusted). It also verifies that the CA certificate has not
expired.

4. If the certificate is valid, the browser generates a one time, unique session key and encrypts it with
the serverOs public key. The browser then sends the encrypted session key to the server so that they
both have a copy.

5. The server decrypts the message using its private key and recovers the session key.

After the handshake, the client has verified the identity of the Web site, and only the client and the

22 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

About System Security in GlassFish Server

Web server have a copy of the session key. From this point forward, the client and the server use the
session key to encrypt all their communications with each other. Thus, their communications are
ensured to be secure.

The newest version of the SSL standard is called Transport Layer Security (TLS). The GlassFish Server
supports the SSL 3.0 and the TLS 1.0 encryption protocols.

To use SSL, GlassFish Server must have a certificate for each external interface or IP address that
accepts secure connections. The HTTPS service of most web servers will not run unless a certificate has
been installed. For instructions on applying SSL to HTTP listeners, see " To Configure an HTTP Listener
for SSL" in GlassFish Server Open Source Edition Administration Guide.

Ciphers

A cipher is a cryptographic algorithm used for encryption or decryption. SSL and TLS protocols
support a variety of ciphers used to authenticate the server and client to each other, transmit
certificates, and establish session keys.

Some ciphers are stronger and more secure than others. Clients and servers can support different
cipher suites. During a secure connection, the client and the server agree to use the strongest cipher
that they both have enabled for communication, so it is usually sufficient to enable all ciphers.

Name-based Virtual Hosts

Using name-based virtual hosts for a secure application can be problematic. This is a design limitation
of the SSL protocol itself. The SSL handshake, where the client browser accepts the server certificate,
must occur before the HTTP request is accessed. As a result, the request information containing the
virtual host name cannot be determined prior to authentication, and it is therefore not possible to
assign multiple certificates to a single IP address.

If all virtual hosts on a single IP address need to authenticate against the same certificate, the addition
of multiple virtual hosts probably will not interfere with normal SSL operations on the server. Be
aware, however, that most browsers will compare the serverOs domain name against the domain name
listed in the certificate, if any (applicable primarily to official, CA-signed certificates). If the domain
names do not match, these browsers display a warning. In general, only address-based virtual hosts
are commonly used with SSL in a production environment.

Custom Authentication of Client Certificate in SSL Mutual Authentication

Release 4.0 of GlassFish Server extends the Certificate realm to allow custom authentication and group
assignment based on the client certificate received as part of SSL mutual (two-way) authentication.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER3

../administration-guide/http_https.html#GSADG00469
../administration-guide/http_https.html#GSADG00469

About System Security in GlassFish Server

As in previous releases, you can create only one certificate realm. However, you can now use a
convenient abstract base class to configure a JAAS LoginModule for the Certificate realm. Specifically,

your LoginModule can now extend com.sun.appserv.security.AppservCertificateLoginModule . When
you do this, you need to implement only the authenticateUser method and call the
commitUserAuthentication method to signify success.

This section describes the following topics:

¥ Understanding the AppservCertificateLoginModule Class
¥ Example AppservCertificateLoginModule Code

¥ Setting the JAAS Context

Understanding the AppservCertificateLoginModule Class

The AppservCertificateLoginModule class provides some convenience methods for accessing the
certificates, the application name and so forth, and for adding the group principals to the subject. The
convenience methods include the following:

getAppName()
Returns the name of the application to be authenticated. This may be useful when a single
LoginModule has to handle multiple applications that use certificates.

getCerts()
Returns the certificate chain as an array of ~ java.security.cert. X509Certificate certificates.

getX500Principal()
Returns the Distinguished principal from the first certificate in the chain.

getSubject()
Returns the subject that is being authenticated.

commitUserAuthentication(final String[] groups)
This method sets the authentication status to success if the groups parameter is non-null. Note that
this method is called after the authentication has succeeded. If authentication failed, do not call this
method.

You do not have to extend the convenience base class, you can extend the JAAS
. LoginModule javax.security.auth.spi.LoginModule instead if you so choose.

Example AppservCertificateLoginModule Code

Example 1-1 shows a sample instance of the AppservCertificateLoginModule class.

24 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#gksfl
#gksfl
#gksfl
#gksej
#gksee
#gksel

About System Security in GlassFish Server

Take note of the following points from the example:

¥ The getX500Principal() method returns the subject (subject distinguished name) value from the
first certificate in the client certificate chain as an X500Principal .

¥ From that X500Principal , the getName() method then returns a string representation of the X.500
distinguished name using the format defined in RFC 2253.

¥ The example uses the getAppName()method to determine the application name. It also determines
the organizational unit (Ol from the distinguished name.

¥ The example concatenates the application name with the value of OUand uses it as the group name
in the commitUserAuthentication method.

Example 1-1 Sample AppservCertificateLoginModule Code

/**

E*

E* @author nasradu8

E*/

public class CertificateLM extends AppservCertificateLoginModule {

@Override
protected void authenticateUser() throws LoginException {
/I Get the distinguished name from the X500Principal.
String dname = getX500Principal().getName();
StringTokenizer st = new StringTokenizer(dname, "B \t\n\r\f,");
while (st.hasMoreTokens()) {
String next = st.nextToken();
/I Set the appname:OU as the group.
/I At this point, one has the application name and the DN of
/I the certificate. A suitable login decision can be made here.
if (next.startsWith("OU=")) {
commitUserAuthentication(new String[J{getAppName()
":" + next.substring(3)});
return;

}
}

throw new LoginException("No OU found.");

}

S~ [Ty m + M e e e e e me e ey

Setting the JAAS Context

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER5

About System Security in GlassFish Server

After you create your LoginModule, you must plug it in to a jaas-context, which you then specify as a
parameter to the certificate realm in GlassFish Server.

To do this, perform the following steps:

1. Specify a new jaas-context for the Certificate realm in the file domain-dir’/config/login.conf’. For
example, using the CertificateLM class from Example AppservCertificateLoginModule Code

certRealm {
E com.sun.blogs.certificate.login.CertificateLM required;

h

1. Specify this jaas-context as a parameter to the set subcommand in the configs.config.server-
config.security-service.auth-realm.certificate.property.jaas-context= <jaas-context-name>
property. For example:
asadmin> set configs.config.server-config.security-service.auth-
realm.certificate.property.jaas-context=certRealm
configs.config.server-config.security-service.auth-realm.certificate.property.jaas-
context=certRealm
Command set executed successfully.

2. Optionally, get the value you just set to make sure that it is correct.
asadmin> get configs.config.server-config.security-service.auth-
realm.certificate.property.jaas-context
configs.config.server-config.security-service.auth-realm.certificate.property.jaas-
context=certRealm
Command get executed successfully.

Tools for Managing System Security
GlassFish Server provides the following tools for managing system security:

Administration Console
The Administration Console is a browser-based utility used to configure security for the entire
server. Tasks include managing certificates, users, groups, and realms, and performing other
system-wide security tasks. For a general introduction to the Administration Console, see
"Administration Console " in GlassFish Server Open Source Edition Administration Guide.

The asadminutility

The asadmincommand-line utility performs many of the same tasks as the Administration Console.
You might be able to do some things with the asadmin utility that you cannot do with the

Administration Console. For a general introduction to asadmin see "asadmin Utility " in GlassFish

Server Open Source Edition Administration Guide.

26 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#gksej
../administration-guide/overview.html#GSADG00698
../administration-guide/overview.html#GSADG00699

Administering Passwords

The keytool utility

The keytool Java Platform, Standard Edition (Java SE) command-line utility is used for managing
digital certificates and key pairs. For more information, see Administering JSSE Certificates .

The policytool utility

The policytool Java SE graphical utility is used for managing system-wide Java security policies. As
an administrator, you rarely use policytool

Administering Passwords

There are multiple ways to administer passwords. You can rely on administrators to keep passwords

secret and change the passwords regularly. You can set up files for storing passwords so that asadmin
subcommands can access these files rather than having users type the commands. You can encrypt
passwords by setting up aliases so that sensitive passwords are not visible in the domain.xmlfile.

The following topics are addressed here:

¥ To Change the Master Password

¥ Additional Considerations for the start-instance and start-cluster ~ Subcommands
¥ Using start-instance and start-cluster ~ With a Password File

¥ To Change an Administration Password

¥ To Set a Password From a File

¥ Administering Password Aliases

To Change the Master Password

The master password gives access to the keystore used with the domain. This password is not tied to a
UNIX user. You should treat this overall shared password as sensitive data. GlassFish Server never uses
it for authentication and never transmits it over the network.

You can choose to type the password manually when required, or to obscure the password in a
password file. If there is no password file, you are prompted for the master password. If there is a
password file, but you want to change access to require prompting, remove the file. The default master
password is changeit .

When changing the master password, it has to be changed on all nodes as well as on the DAS. The
master password on nodes is only stored once in the node, for all instances that are on that node.

Use the change-master-passwordsubcommand in local mode to modify the master password.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER7

#ablqz
#giudi
#gktgr
#gktgr
#gktgr
#gktgr
#gktgr
#gktey
#gktey
#gktey
#gktey
#gktey
#ghgpu
#ghytn
#ghgqc

Administering Passwords

If you change the master password and are not using a master password file, the
start-instance and start-cluster ~ subcommands are not able to determine the master
password. In this case, you must start those instances locally by using start-local-
instance.

When the master password is saved, it is saved in the master-passwordfile.
Before You Begin
This subcommand will not work unless the domain is stopped.

1. Stop the domain whose password you are changing.
See "To Stop a Domain " in GlassFish Server Open Source Edition Administration Guide.

2. Change the master password for the domain by using the change-master-passwordsubcommand.
You are prompted for the old and new passwords. All dependent items are re-encrypted.

3. Start the domain.
See "To Start a Domain " in GlassFish Server Open Source Edition Administration Guide.

Example 1-2 Changing the Master Password

The change-master-password subcommand is interactive in that you are prompted for the old master
password as well as the new master password. This example changes the master password for
domain44ps

asadmin> change-master-password domain44ps

If you have already logged into the domain using the login subcommand, you are prompted for the
new master password:

Please enter the new master password>
Please enter the new master password again>

If you are not logged into the domain, you are prompted for both the old and the new master
passwords:

Please enter the master password>
Please enter the new master password>
Please enter the new master password again>

Information similar to the following is displayed:

28 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../administration-guide/domains.html#GSADG00336
../reference-manual/change-master-password.html#GSRFM00006
../administration-guide/domains.html#GSADG00335
../reference-manual/login.html#GSRFM00210

Administering Passwords

Master password changed for domain44ps

See Also

You can also view the full syntax and options of the subcommand by typing asadmin --help change-
master-passwordat the command line.

INY Y VVVVVVVVVVVVVVVVVVVVVVV

Additional Considerations for the start-instance and start-cluster Subcommands

If you change the master password for DAS, the start-domain and start-local-instance subcommands
allow you to provide it during domain or instance startup in one of three ways:

¥ Via the master-password file

¥ By entering it interactively

¥ Via the asadminpasswordfile
The start-instance and start-cluster ~ subcommands are more problematic. If you create a domain
with a master password other than the default, an associated remote instance or cluster must have

access to the master password in order to start. However, for security reasons GlassFish Server never
transmits the master password or the master password file over the network.

Consider the following scenario:

1. Change the master password on the DAS and save it with --savemasterpassword.

2. Create an instance on another host using the subcommand create-instance . GlassFish Server copies
the keystore and truststore from the DAS to the instance, but it does not copy the master password
file.

3. Try to start the instance using the start-instance subcommand. An error results.

The start-instance command is looking for the file master-password in the node directory on the
instance machine, and it is not there by default. Therefore, the subcommand fails.

You can use the change-master-passwordsubcommand to make sure the correct password is used in this
password file, as described in Using start-instance and start-cluster ~ With a Password File .

The start-instance and start-cluster subcommands do not include any other way for
you to provide the password. If you change the master password and are not using a
master password file, the start-instance and start-cluster subcommands are not
able to determine the master password. In this case, you must start the instances
locally by using start-local-instance

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER9

#gktey
#gktey
#gktey
#gktey
#gktey

Administering Passwords

Using start-instance and start-cluster ~ With a Password File

Assume that you have changed the master password on the DAS and you want to make the same
change for all instances.

The start-instance and start-cluster’ subcommands automatically use the master password file if it
exists in the instance filesystem. You can use the change-master-password subcommand to make sure
the password file exists and that the correct password is used.

1. From the DAS, create a domain and set the master password.
asadmin>create-domain --savemasterpassword true domain-name

2. Start the domain.
asadmin>""start-domain domain-name

3. Create a node that is enabled for communication over secure shell (SSH).
asadmin>create-node-ssh --nodehost host-name --installdir/some-dir node-name

4. Create an instance on the node.
asadmin>create-instance --node node-name instance-name

5. Before you start the instance, on the instance machine run change-master-password with the
---savemasterpassword option to create a file called master-passwordin the agents directory to access
the keystores. (The start-instance subcommand is looking for a file called master-password in the
agents directory to access the stores.)
asadmin>change-master-password --savemasterpassword true --nodedir /some-dir node-name
You are prompted to enter the current and new master password:

Enter the current master password>

Enter the new master password>

Enter the new master password again>

Command change-master-password executed successfully.

Remember that when you created the domain you specified a new master password. This master
password was then used to encrypt the keystore and truststore for the DAS, and these stores were
copied to the instance as a result of the create-instance subcommand.

Therefore, enter the master password you set when you created the domain as both the current
master password and again as the new master password. You enter it as the new master password
because you do not want to change the master password for the instance and make it out of sync
with the DAS.

6. Run start-instance from the DAS.
asadmin>start-instance instance-name
The master password file is associated with the node and not with an instance. After the master
password file exists in the node directory on the instance machine, additional instances can be
created, started and stopped from the DAS.

30 EEEECclipse GlassFish Server Security Guide, Release 5.1 DRAFT

Administering Passwords

To Change an Administration Password

Use the change-admin-passwordsubcommand in remote mode to change an administration password.
The default administration useris admin You are prompted for the old and new admin passwords, with
confirmation. The passwords are not echoed to the display.

For the zip bundle of GlassFish Server 5.0, the default administrator login is admin
with no password, which means that no login is required. For Oracle GlassFish Server,

you are prompted to provide a password for the adminuser when you start the domain
for the first time.

If there is a single user called admin that does not have a password, you are not
prompted for login information. Any other situation requires login.

If secure administration is enabled as described in Running Secure Admin , you cannot
change an administration password to a blank value.

Encrypting the admin password is strongly encouraged.

1. Change the admin password by using the change-admin-passwordsubcommand.
2. Enter the old and new admin passwords when prompted.

3. Restart GlassFish Server.
See "To Restart a Domain

in GlassFish Server Open Source Edition Administration Guide.

Example 1-3 Changing the Admin Password

This example changes the admin password for user anonymous from adminadmirto newadmin

asadmin> change-admin-password --username anonymous

You are prompted to enter the old and the new admin passwords:

Enter admin password>adminadmin
Enter new admin password>newadmin
Enter new admin password again>newadmin

Information similar to the following is displayed:

Command change-admin-password executed successfully.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB1

administrative-security.html#gkomz
../reference-manual/change-admin-password.html#GSRFM00004
../administration-guide/domains.html#GSADG00337

Administering Passwords

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help change-admin-
passwordat the command line.

To Set a Password From a File

Instead of typing the password at the command line, you can access the password for a command from

a file such as passwords.txt . The --passwordfile option of the asadminutility takes the name of the file
that contains the passwords. The entry for a password in the file must have the AS_ADMINprefix
followed by the password name in uppercase letters.

Any password file created to pass as an argument by using the --passwordfile
argument to the asadmin utility should be protected with file system permissions.
Additionally, any password file being used for a transient purpose, such as setting up
SSH among nodes, should be deleted after it has served its purpose.

For a list of the types of passwords that can be specified, see the asadmir{1M) help page.

AS_ADMIN_MASTERPASSWORD
AS_ADMIN_USERPASSWORD
AS_ADMIN_ALIASPASSWORD

1. Edit the password file.
For example, to specify the password for the domain administration server (DAS), add an entry
similar to the following to the password file, where adminadminis the administrator password:

AS_ADMIN_PASSWORD=adminadmin

1. Save the password file.
You can now specify the password file inan asadminsubcommand. In this example, passwords.txt is
the file that contains the password:

asadmin>delete-jdbc-resource --user admin --passwordfile passwords.txt jdbc/DerbyPool

Troubleshooting

If AS_ADMIN_PASSWaRibeen exported to the global environment, specifying the --passwordfile option
will produce a warning about using the --passwordfile option. To prevent this warning situation from
happening, unset AS_ADMIN_PASSWORD

32 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../reference-manual/asadmin.html#GSRFM00263
../reference-manual/asadmin.html#GSRFM00263

Administering Passwords

Administering Password Aliases

A password alias is used to indirectly access a password so that the password itself does not appear in
cleartext in the domainOs domain.xml configuration file.

Storing passwords in cleartext format in system configuration files is common in many open source
projects. In addition to GlassFish Server, Apache Tomcat, Maven, and Subversion, among others, store
and pass passwords in cleartext format. However, storing and passing passwords in cleartext can be a
security risk, and may violate some corporate security policies. In such cases, you can use password
aliases.

The following topics are addressed here:

¥ To Create a Password Alias
¥ To List Password Aliases
¥ To Delete a Password Alias

¥ To Update a Password Alias

To Create a Password Alias

Use the create-password-alias subcommand in remote mode to create an alias for a password in the
domainOs keystore. The password corresponding to the alias name is stored in an encrypted form in the
domain configuration file. The create-password-alias subcommand takes both a secure interactive
form, in which users are prompted for all information, and a more script-friendly form, in which the
password is propagated on the command line.

You can also use the set subcommand to remove and replace the password in the configuration file.
For example:

asadmin set --user admin server.jms-service.jms-host.default JMS_host.
admin-password="${ALIAS=jms-password}'

1. Ensure that the server is running.
Remote subcommands require a running server.

2. Go to the directory where the configuration file resides.
By default, the configuration file is located in domain-dir*/config’.

3. Create the password alias by using the create-password-alias subcommand.
4. Type the password for the alias when prompted.

5. Add the alias to a password file.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB3

#ghgrf
#ghgsr
#ghgnv
#giobz
../reference-manual/set.html#GSRFM00226
../reference-manual/create-password-alias.html#GSRFM00049

Administering Passwords

For example, assume the use of a password file such as passwords.txt . Assume further that you
want to add an alias for the AS_ADMIN_USERPASS#Evi®REhat is read by the create-file-user
subcommand. You would add the following line to the password file:
"AS_ADMIN_USERPASSWORD=${ALIAS="user-password-alias}, where user-password-alias is the
new password alias.

6. To continue the example of the previous step, you would then run the create-file-user
subcommand.
You could use this method to create several users (userl, user2, and so forth), all with the same
password.
asadmin>-passwordfile " passwords.txt create-file-user userl

Example 1-4 Creating a Password Alias

This example creates the new jms-passwordalias for the adminuser:

asadmin> create-password-alias --user admin jms-password

You are prompted to type the password for the alias:

Please enter the alias password>secret-password
Please enter the alias password again>secret-password
Command create-password-alias executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
password-alias at the command line.

To List Password Aliases

Use the list-password-aliases subcommand in remote mode to list existing the password aliases.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List password aliases by using the list-password-aliases subcommand.

Example 1-5 Listing Password Aliases

This example lists the existing password aliases:

34 EEEECclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../reference-manual/create-file-user.html#GSRFM00024
../reference-manual/create-file-user.html#GSRFM00024
../reference-manual/list-password-aliases.html#GSRFM00190

Administering Passwords

asadmin> list-password aliases
jmspassword-alias
Command list-password-aliases executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
password-aliases at the command line.

To Delete a Password Alias

Use the delete-password-alias subcommand in remote mode to delete an existing password alias.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List all aliases by using the list-password-aliases subcommand.

3. Delete a password alias by using the list-password-aliases subcommand.

Example 1-6 Deleting a Password Alias

This example deletes the password alias jmspassword-alias :
asadmin> delete-password-alias jmspassword-alias
Command list-password-aliases executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
password-alias at the command line.

To Update a Password Alias

Use the update-password-alias subcommand in remote mode to change the password for an existing
password alias. The update-password-alias subcommand takes both a secure interactive form, in which
the user is prompted for all information, and a more script-friendly form, in which the password is
propagated on the command line.

1. Ensure that the server is running.
Remote subcommands require a running server.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB5

../reference-manual/list-password-aliases.html#GSRFM00190
../reference-manual/list-password-aliases.html#GSRFM00190

Administering Audit Modules

2. Update an alias by using the update-password-alias subcommand.

3. Type the password when prompted.

Example 1-7 Updating a Password Alias

This example updates the password for the jmspassword-alias alias:
asadmin> update-password-alias jsmpassword-alias
You are prompted to type the new password for the alias:

Please enter the alias password>new-secret-password
Please enter the alias password again>new-secret-password
Command update-password-alias executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing
password-alias at the command line.

Administering Audit Modules

The following topics are addressed here:

¥ To Create an Audit Module
¥ To List Audit Modules

¥ To Delete an Audit Module

To Create an Audit Module

asadmin help update-

Use the create-audit-module subcommand in remote mode to create an audit module for the add-on

component that implements the audit capabilities.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. Create an audit module by using the create-audit-module subcommand.

Information about properties for this subcommand is included in this help page.

36 EEEECclipse GlassFish Server Security Guide, Release 5.1

DRAFT

../reference-manual/update-password-alias.html#GSRFM00257
#ghgra
#ghgsm
#ghgpo
../reference-manual/create-audit-module.html#GSRFM00014

Administering Audit Modules

Example 1-8 Creating an Audit Module

This example creates an audit module named sampleAuditModule
asadmin> create-audit-module
--classname com.sun.appserv.auditmodule --property defaultuser=

admin:Password=admin sampleAuditModule
Command create-audit-module executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-audit-
moduleat the command line.

To List Audit Modules

Use the list-audit-modules ~ subcommand in remote mode to list the audit modules on one of the
following targets:

¥ Server instance, server (the default)

¥ Specified server instance

¥ Specified configuration

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List the audit modules by using the list-audit-modules subcommand.

Example 1-9 Listing Audit Modules

This example lists the audit modules on localhost :

asadmin> list-audit-modules

audit-module : default

audit-module : sampleAuditModule

Command list-audit-modules executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-audit-

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB7

../reference-manual/list-audit-modules.html#GSRFM00149

Administering JSSE Certificates

modulesat the command line.

To Delete an Audit Module
Use the delete-audit-module subcommand in remote mode to delete an existing audit module.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List the audit modules by using the list-audit-modules subcommand.

3. Delete an audit module by using the delete-audit-module subcommand.

Example 1-10 Deleting an Audit Module

This example deletes sampleAuditModule

asadmin> delete-audit-module sampleAuditModule
Command delete-audit-module executed successfully.

Administering JSSE Certificates

In the developer profile, the GlassFish Server 5.0 uses the JSSE format on the server side to manage
certificates and key stores. In all profiles, the client side (appclient or stand-alone) uses the JSSE format.

The Java SE SDK ships with the keytool utility, which enables you to set up and work with Java Secure
Socket Extension (JSSE) digital certificates. You can administer public/private key pairs and associated
certificates, and cache the public keys (in the form of certificates) of their communicating peers.

The following topics are addressed here:

¥ To Generate a Certificate by Using keytool
¥ To Sign a Certificate by Using keytool

¥ To Delete a Certificate by Using keytool

To Generate a Certificate by Using keytool

By default, the keytool utility creates a keystore file in the directory where the utility is run.

38 EEEECclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../reference-manual/list-audit-modules.html#GSRFM00149
../reference-manual/delete-audit-module.html#GSRFM00065
#ghlgv
#ghlgv
#ghlgj
#ghlgj
#ghleq
#ghleq

Administering JSSE Certificates

Before You Begin

To run the keytool utility, your shell environment must be configured so that the Java SE /bin directory
is in the path, otherwise the full path to the utility must be present on the command line.

1. Change to the directory that contains the keystore and truststore files.
Always generate the certificate in the directory containing the keystore and truststore files. The
default is domain-dir*/config’.

2. Generate the certificate in the keystore file, keystore.jks , using the following command format:

keytool -genkey -alias keyAlias-keyalg RSA
E-keypass changeit

E-storepass changeit

keystore keystore.jks

Use any unique name as your keyAlias. If you have changed the keystore or private key password from

the default (changeit), substitute the new password for changeit. The default key password aliasis slas.
A prompt appears that asks for your name, organization, and other information. 3. Export the
generated certificate to the server.cer file (or client.cer if you prefer), using the following command
format:

keytool -export -alias keyAlias-storepass changeit
E-file server.cer
E-keystore keystore.jks

1. If a certificate signed by a certificate authority is required, see To Sign a Certificate by Using
keytool .

2. Create the cacerts.jks truststore file and add the certificate to the truststore, using the following
command format:

keytool -import -v -trustcacerts
-alias keyAlias

E-file server.cer

-keystore cacerts.jks
E-keypass changeit

If you have changed the keystore or private key password from the default (changeit), substitute the
new password.

Information about the certificate is displayed and a prompt appears asking if you want to trust the
certificate. 6. Type yes, then press Enter.

Information similar to the following is displayed:

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB9

#ghlgj
#ghlgj

Administering JSSE Certificates

Certificate was added to keystore
[Saving cacerts.jks]

1. To apply your changes, restart GlassFish Server. See " To Restart a Domain

Open Source Edition Administration Guide.

Example 1-11 Creating a Self-Signed Certificate in a JKS Keystore by Using an RSA Key Algorithm

RSA is public-key encryption technology developed by RSA Data Security, Inc.

keytool -genkey -noprompt -trustcacerts -keyalg RSA -alias ${cert.alias}
-dname ${dn.name} -keypass ${key.pass} -keystore ${keystore.file}
-storepass ${keystore.pass}

Example 1-12 Creating a Self-Signed Certificate in a JKS Keystore by Using a Default Key Algorithm

keytool -genkey -noprompt -trustcacerts -alias ${cert.alias} -dname
${dn.name} -keypass ${key.pass} -keystore ${keystore.file} -storepass
${keystore.pass}

Example 1-13 Displaying Available Certificates From a JKS Keystore

keytool -list -v -keystore ${keystore.file} -storepass ${keystore.pass}

Example 1-14 Displaying Certificate information From a JKS Keystore

keytool -list -v -alias ${cert.alias} -keystore ${keystore.file}
-storepass ${keystore.pass}

See Also

40 EEEEclipse GlassFish Server Security Guide, Release 5.1

in GlassFish Server

DRAFT

../administration-guide/domains.html#GSADG00337

Administering JSSE Certificates

To Sign a Certificate by Using keytool

After creating a certificate, the owner must sign the certificate to prevent forgery. E-commerce sites, or
those for which authentication of identity is important, can purchase a certificate from a well-known
Certificate Authority (CA).

If authentication is not a concern, for example if private secure communications are
! all that is required, you can save the time and expense involved in obtaining a CA
certificate by using a self-signed certificate.

1. Delete the default self-signed certificate:
keytool -delete -alias slas -keystore keystore.jks -storepass <store_passwd>

where <store_passwd> is the password for the keystore. For example, "mypass". Note that slasis the
default alias of the GlassFish Server keystore. 2. Generate a new key pair for the application server:

keytool -genkeypair -keyalg <key alg> -keystore keystore.jks
-validity <val_days> -alias slas

where <key_alg> is the algorithm to be used for generating the key pair, for example RSA, and
<val_days> is the number of days that the certificate should be considered valid. For example, 365.

In addition to generating a key pair, the command wraps the public key into a self-signed certificate
and stores the certificate and the private key in a new keystore entry identified by the alias.

For HTTPS hostname verification, it is important to ensure that the name of the certificate (CN)
matches the fully-qualified hostname of your site (fully-qualified domain name). If the names do not
match, clients connecting to the server will see a security alert stating that the name of the certificate
does not match the name of the site. 3. Generate a Certificate Signing Request (CSR):

keytool -certreq -alias slas -file <certreq_file> -keystore keystore.jks
-storepass <store_passwd>

where <certreq_file> is the file in which the CSR is stored (for example, slas.csr) and <store_passwd>
is the password for the keystore. For example, changeit. 4. Submit the CSR to a Certificate Authority
such as VeriSign (at http://www.verisign.com/ ssl/ buy-ssl-certificates/ index.html). In response, you

should receive a signed server certificate. Make sure to import into your browser the CA certificate of

the CA (if not already present) and any intermediate certificates indicated by the CA in the reply. 5.

Store the signed server certificate from the CA, including the markers - BEGIN CERTIFICATE----- and
————— END CERTIFICATE-----, into a file such as slas.cert . Download the CA certificate and any
intermediate CA certificates and store them in local files. 6. Import the CA certificate (if not already
present) and any intermediate CA certificates (if not already present) indicated by the CA into the
truststore cacerts.jks

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER1

http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html

Administering JSSE Certificates

keytool -import -v -trustcacerts -alias <CA-Name> -file ca.cert
E-keystore cacerts.jks -storepass <store_passwd>

1. Replace the original self-signed certificate with the certificate you obtained from the CA, as stored
in a file such as slas.cert :

keytool -import -v -trustcacerts -alias slas -file slas.cert
E -keystore keystore.jks -storepass <store_passwd>

When you import the certificate using the same original alias'slas’, keytool treats it as a command to
replace the original certificate with the certificate obtained as a reply to a CSR.

After running the command, you should see that the certificate slas in the keystore is no longer the
original self-signed certificate, but is now the response certificate from the CA.
Consider the following example that compares an original slas certificate with a new slas certificate

obtained from VeriSign:

Original slas (self-signed):

Owner: CN=FQDN, OU=Sun Java System Application Server, O=Sun
Microsystems, L=Santa Clara, ST=California, C=US

Issuer: CN=KUMAR, OU=Sun Java System Application Server, O=Su
n Microsystems, L=Santa Clara, ST=California, C=US

Serial number: 472acd34

Valid from: Fri Nov 02 12:39:40 GMT+05:30 2007 until: Mon Oct

30 12:39:40 GMT+05:30 2017

New slas (contains signed cert from CA):

Owner: CN=FQDN, OU=Terms of use at www.verisign.com/cps/test
ca (c)05, OU=Sun Java System Application Server, O=Sun Micros
ystems, L=Santa Clara, ST=California, C=US

Issuer: CN=VeriSign Trial Secure Server Test CA, OU=Terms of
use at https://www.verisign.com/cps/testca (c)05, OU="For Test
Purposes Only. No assurances.", O="VeriSign, Inc.", C=US

Serial number: 1375de18b223508c2cb0123059d5c440

Valid from: Sun Nov 11 05:30:00 GMT+05:30 2007 until: Mon Nov
26 05:29:59 GMT+05:30 2007

1. To apply your changes, restart GlassFish Server.
See '"To Restart a Domain " in GlassFish Server Open Source Edition Administration Guide.

Example 1-15 Importing an RFC/Text-Formatted Certificate Into a JKS Keystore

42 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../administration-guide/domains.html#GSADG00337

Administering JSSE Certificates

Certificates are often stored using the printable encoding format defined by the Internet Request for
Comments (RFC) 1421 standard instead of their binary encoding. This certificate format, also known as
Base 64 encoding, facilitates exporting certificates to other applications by email or through some
other mechanism.

keytool -import -noprompt -trustcacerts -alias ${cert.alias} -file
${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

Example 1-16 Exporting a Certificate From a JKS Keystore in PKCS7 Format

The reply format defined by the Public Key Cryptography Standards #7, Cryptographic Message Syntax
Standard, includes the supporting certificate chain in addition to the issued certificate.

keytool -export -noprompt -alias ${cert.alias} -file ${cert.file}
-keystore ${keystore.file} -storepass ${keystore.pass}

Example 1-17 Exporting a Certificate From a JKS Keystore in RFC/Text Format

keytool -export -noprompt -rfc -alias ${cert.alias} -file
${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

See Also

To Delete a Certificate by Using keytool
Use the keytool delete command to delete an existing certificate.

Delete a certificate using the following command format:

keytool -delete

E-alias keyAlias
E-keystore keystore-name
E-storepass password

Example 1-18 Deleting a Certificate From a JKS Keystore

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER3

Administering JACC Providers

keytool -delete -noprompt -alias ${cert.alias} -keystore ${keystore.file}
-storepass ${keystore.pass}

See Also

Administering JACC Providers

The Java Authorization Contract for Containers (JACC) is part of the J2EE 1.4 specification that defines
an interface for pluggable authorization providers. This enables the administrator to set up third-party
plug-in modules to perform authorization.

GlassFish Server includes Administration Console support and subcommands to support JACC
providers, as follows:

¥ create create-jacc-provider
¥ delete delete-jacc-provider

¥ list list-jacc-providers

The default GlassFish Server installation includes two JACC providers, named default and simple. You

should not delete these default providers. Any JACC providers you create with the create-jacc-provider

subcommand are in addition to these two default providers.

The GlassFish Server creates a JSR-115-compliant JACC provider that you can use with third-party
authorization modules for applications running in GlassFish Server. The JACC provider is created as a
jacc-provider element within the security-service element in the domainOs domain.xmlfile.

Administering JACC Providers From the Administration Console
To use the Administration Console to administer JACC providers, perform the following steps:

1. Select Configurations and expand the entry.

2. Select the server configuration for which you want to administer JACC providers and expand the
entry.

3. Select Security and expand the entry.

4. Select JACC Providers. The JACC Providers page is displayed. The existing JACC providers are shown
on this page.

44 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

Administering JACC Providers

JACC Providers

Manage Java Authorization Contract for Containers (JACC) providers,

JACC Providers (2)

5% (8) | Delete

Name +, | Policy Provider
[default corm. sun.enterprise. security. provider. PolicyWrapper
O simple com.sun. enterprise. security. jacc. pravider, SimpleFPolicyProvider

5. To create a new provider, click New.
Enter the Name, Policy Configuration (the class that implements the policy configuration factory)
and the Policy Provider (the class that implements the policy factory) for the new JACC provider.
You can also enter optional properties (name/value) for the provider.

6. To delete an existing JACC provider, select that provider and click Delete.

Administering JACC Providers from the Command Line
To use the command line to administer JACC providers, perform the following steps:
1. To create a JACC provider, use the create-jacc-provider subcommand. The following example

shows how to create a JACC provider named testJACC on the default server target.

asadmin> create-jacc-provider

E --policyproviderclass com.sun.enterprise.security.provider.PolicyWrapper
E --policyconfigfactoryclass com.sun.enterprise.security.provider.PolicyCon
figurationFactorylmpl

E testJACC

1. To delete a JACC provider, use the create-jacc-provider = subcommand. The following example
shows how to delete a JACC provider named testJACC from the default domain:

asadmin> delete-jacc-provider testJACC

1. To list the available providers, use the list-jacc-providers subcommand. The following example
shows how to list JACC providers for the default domain:

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER5

Administering JACC Providers

asadmin> list-jacc-providers

default

simple

Command list-jacc-providers executed successfully.

46 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

Administering Authentication Realms

2 Administering User Security

This chapter provides instructions for administering user security in the Oracle GlassFish Server
environment by using the asadmincommand-line utility. GlassFish Server enforces its authentication
and authorization policies upon realms, users, and groups. This chapter assumes that you are familiar
with security features such as authentication, authorization, and certificates. If you are not, see
Administering System Security

The following topics are addressed here:

¥ Administering Authentication Realms

¥ Administering File Users

Instructions for accomplishing these tasks by using the Administration Console are contained in the
Administration Console online help.

JSR-375 defines the concept of an Identity Store, and an SPI interface for writing
providers that can authenticate users against ldentity Stores. It also provides two
built-in providers. This mechanism is conceptually similar to Authentication Realms,

but can be configured and managed by applications. See Working with Identity Stores
in The Java EE Tutorial for more information about Identity Stores.

Administering Authentication Realms

The following topics are addressed here:

¥ Overview of Authentication Realms

¥ To Create an Authentication Realm

¥ To List Authentication Realms

¥ To Update an Authentication Realm

¥ To Delete an Authentication Realm

¥ To Configure a JDBC or Digest Authentication Realm
¥ To Configure LDAP Authentication with OID

¥ To Configure LDAP Authentication with OVD

¥ To Enable LDAP Authentication on the GlassFish Server DAS

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER7

system-security.html#ablnk
#ggkuk
#ggnxq
https://javaee.github.io/tutorial/security-intro005a.html#working-with-identity-stores
#gkbiy
#ggnca
#ggngh
#giwlt
#ggngf
#ggmww
#gkbeo
#gksgi
#gkbjp

Administering Authentication Realms

Overview of Authentication Realms

An authentication realm, also called a security policy domain or security domain, is a scope over which

the GlassFish Server defines and enforces a common security policy. GlassFish Server is preconfigured
with the file, certificate, and administration realms. In addition, you can set up LDAP, JDBC, digest,
Oracle Solaris, or custom realms. An application can specify which realm to use in its deployment
descriptor. If the application does not specify a realm, GlassFish Server uses its default realm (file).

File realm

GlassFish Server stores user credentials locally in a file named keyfile . The file realm is the initial
default realm.

Administration realm

The administration realm is also a file realm and stores administrator user credentials locally in a
file named admin-keyfile .

Certificate realm

GlassFish Server stores user credentials in a certificate database. When using the certificate realm,
the server uses certificates with the HTTPS protocol to authenticate web clients.

LDAP realm

GlassFish Server can get user credentials from a Lightweight Directory Access Protocol (LDAP)
server such as Oracle Virtual Directory (OVD) (http://www.oracle.com/ technetwork/ middleware/id-
mgmtbverview/ index.html), Oracle Internet Directory (OID) (http://www.oracle.com/ technetwork/
indexes/ products/ index.html), and Oracle Directory Server Enterprise Edition
(http://www.oracle.com/ us/ products/ middleware/identity-management/ oracle-directory-services/
index.html). LDAP is a protocol for enabling anyone to locate organizations, individuals, and other
resources such as files and devices in a network, whether on the public Internet or on a corporate
intranet.

See To Configure LDAP Authentication with OID for instructions on configuring GlassFish Server to
work with an OVD/OID LDAP provider.

48 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
#gkbeo

Administering Authentication Realms

Note:

By default, GlassFish Server performs LDAP group search. If you have not created any groups in
LDAP, the search fails.

To disable LDAP group search in LDAP user name search, set the
com.oracle.enterprise.security.auth.realm.ldap.DISABLEGROUP_SEARCHJava system property to true in
the required GlassFish Server instance or cluster configurations:

asadmin>create-jvm-options --target="target
“-Dcom.oracle.enterprise.security.auth.realm.ldap.DISABLEGROUP_SEARCH=true

where target is the GlassFish Server instance or cluster for which you are disabling LDAP group
search. For more information about the create-jvm-options subcommand, see the GlassFish Server
Open Source Edition Reference Manual

JDBC realm

GlassFish Server gets user credentials from a database. The server uses the database information
and the enabled JDBC realm option in the configuration file.

Digest realm

Digest Authentication authenticates a user based on a user name and a password. However, the
authentication is performed by transmitting the password in an encrypted form.

Oracle Solaris realm

GlassFish Server gets user credentials from the Oracle Solaris operating system. This realm is
supported on the Oracle Solaris 9 and Oracle Solaris 10 operating systems. Consult your Oracle
Solaris documentation for information about managing users and groups in the Oracle Solaris
realm.

PAM realm

A Pluggable Authentication Module (PAM) realm allows applications deployed on GlassFish Server

to authenticate users against a native Unix (Solaris/Linux/Mac OS) users list. PAM realms use the
class name com.sun.enterprise.security.auth.realm.pam.PamRealm and the JAAS Context pamRealm
This realm is supported on all Unix Operating Systems, including the Oracle Solaris 9 and Oracle
Solaris 10 operating systems

Custom realm

You can create other repositories for user credentials, such as a relational database or third-party
components. For more information about custom realms, see the Administration Console online

help. For instructions on creating a custom realm, see " Creating a Custom Realm " in GlassFish
Server Open Source Edition Application Development Guide.

The GlassFish Server authentication service can govern users in multiple realms.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EER9

../reference-manual/toc.html#GSRFM
../reference-manual/toc.html#GSRFM
../application-development-guide/securing-apps.html#GSDVG00367

Administering Authentication Realms

To Create an Authentication Realm

Use the create-auth-realm subcommand in remote mode to create an authentication realm.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. Create a realm by using the create-auth-realm subcommand.
Information about properties for this subcommand is included in this help page.

Example 2-1 Creating a Realm

This example creates a realm named db.

asadmin> create-auth-realm --classname com.iplanet.ias.security.
auth.realm.DB.Database --property defaultuser=admin:Password=admin db
Command create-auth-realm executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-auth-
realm at the command line.

For information on creating a custom realm, see " Creating a Custom Realm " in GlassFish Server Open
Source Edition Application Development Guide.

To List Authentication Realms

Use the list-auth-realms subcommand in remote mode to list the existing authentication realms.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List realms by using the list-auth-realms subcommand.

Example 2-2 Listing Realms

This example lists the authentication realms on localhost .

50 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../reference-manual/create-auth-realm.html#GSRFM00015
../application-development-guide/securing-apps.html#GSDVG00367
../reference-manual/list-auth-realms.html#GSRFM00150

Administering Authentication Realms

asadmin> list-auth-realms

db

certificate

file

admin-realm

Command list-auth-realms executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-auth-
realms at the command line.

To Update an Authentication Realm

Use the set subcommand to modify an existing authentication realm.
! A custom realm does not require server restart.

1. List realms by using the list-auth-realms subcommand.

2. Modify the values for the specified thread pool by using the set subcommand.
The thread pool is identified by its dotted name.

3. To apply your changes, restart GlassFish Server.
See '"To Restart a Domain " in GlassFish Server Open Source Edition Administration Guide.

To Delete an Authentication Realm

Use the delete-auth-realm subcommand in remote mode to delete an existing authentication realm.
1. Ensure that the server is running.

Remote subcommands require a running server.

List realms by using the list-auth-realms subcommand.

If necessary, notify users that the realm is being deleted.

Delete the realm by using the delete-auth-realm subcommand.

ag > w D

To apply your changes, restart GlassFish Server. See " To Restart a Domain " in GlassFish Server
Open Source Edition Administration Guide.

Example 2-3 Deleting a Realm

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEG1

../reference-manual/list-auth-realms.html#GSRFM00150
../reference-manual/set.html#GSRFM00226
../administration-guide/domains.html#GSADG00337
../reference-manual/list-auth-realms.html#GSRFM00150
../reference-manual/delete-auth-realm.html#GSRFM00066
../administration-guide/domains.html#GSADG00337

Administering Authentication Realms

This example deletes an authentication realm named db.

asadmin> delete-auth-realm db
Command delete-auth-realm executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-auth-
realm at the command line.

To Configure a JDBC or Digest Authentication Realm

GlassFish Server enables you to specify a userOs credentials (user name and password) in the JDBC
realm instead of in the connection pool. Using the jdbc type realm instead of the connection pool
prevents other applications from browsing the database tables for user credentials.

I By default, storage of passwords as clear text is not supported in the JDBC realm.
. Under normal circumstances, passwords should not be stored as clear text.

Create the database tables in which to store user credentials for the realm.
How you create the database tables depends on the database that you are using.

2. Add user credentials to the database tables that you created.
How you add user credentials to the database tables depends on the database that you are using.

3. Create a JDBC connection pool for the database.
See "To Create a JDBC Connection Pool" in GlassFish Server Open Source Edition Administration
Guide.

4. Create a JDBC resource for the database.
"To Create a JDBC Resource' in GlassFish Server Open Source Edition Administration Guide.

Create a realm.
For instructions, see To Create an Authentication Realm

| The JAAS context should be jdbcDigestRealm for digest authentication or jdbcRealmfor
. other authentication types.

Modify the deployment descriptor to specify the jdbc realm.
Modify the deployment descriptor that is associated with your application.

I For an enterprise application in an Enterprise Archive (EAR) file, modify the sun-

52 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../administration-guide/jdbc.html#GSADG00420
../administration-guide/jdbc.html#GSADG00426
#ggnca

Administering Authentication Realms

application.xml file.

I For a web application in a Web Application Archive (WAR) file, modify the web.xmlfile.

! For an enterprise bean in an EJB JAR file, modify the sun-ejb-jar.xml file.
For more information about how to specify a realm, see " How to Configure a Realm " in
GlassFish Server Open Source Edition Application Development Guide.

2. Assign security roles to users in the realm.

To assign a security role to a user, add a security-role-mapping element to the deployment
descriptor that you modified.

3. Verify that the database is running.

If needed, see "To Start the Database " in GlassFish Server Open Source Edition Administration
Guide.

4. To apply the authentication, restart the server.
See '"To Restart a Domain " in GlassFish Server Open Source Edition Administration Guide.

Example 2-4 Assigning a Security Role

This example shows a security-role-mapping element that assigns the security role Employeeto user
Calvin

<security-role-mapping>

E <role-name>Employee</role-name>

E <principal-name>Calvin</principal-name>
E </security-role-mapping>

To Configure LDAP Authentication with OID

This procedure explains how to configure GlassFish Server to use LDAP authentication with Oracle
Internet Directory.

1. Install Oracle Enterprise Manager 11g and the latest Enterprise Manager patches, if they are not
installed already.

Instructions for installing Oracle Enterprise Manager are provided in the Oracle Enterprise
Manager (http://docs.oracle.com/ cd/E11857_0lihdex.html) documentation set.

2. Install the Oracle Identity Management Suite (IDM) 11g and Patch Set 2 or later, if they are not
installed already.
Instructions for installing the Oracle Identity Management suite are provided in Oracle Fusion

Middleware Installation Guide for Oracle Identity Management (http://docs.oracle.com/ cd/
E12839 Olihstall.1111/ e12002toc.html).

3. Configure SSL for Oracle Internet Directory (OID), if it is not configured already. Configure the OID

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEG3

../application-development-guide/securing-apps.html#GSDVG00365
../administration-guide/jdbc.html#GSADG00417
../administration-guide/domains.html#GSADG00337
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E11857_01/index.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html
http://docs.oracle.com/cd/E12839_01/install.1111/e12002/toc.html

Administering Authentication Realms

instance in the server authentication mode and with the protocol version set to SSLv3

Instructions for configuring SSL for OID are provided in the SSL chapter of Oracle Internet
Directory AdministratorOs Guide (http://docs.oracle.com/ c¢d/B14099 19%dmanage.1012b14082/
ssl.html).

4. Using Oracle Wallet Manager, export an SSL self-signed certificate you want to use with GlassFish
Server.
Instructions for using Oracle Wallet Manager to create and export SSL certificates are provided in
the "Configure Oracle Internet Directory for SSL" (http://docs.oracle.com/ cd/B14099 19/
idmanage.1012b14082/sl.html# CHDCADIXkection of the SSL chapter in Oracle Internet Directory
AdministratorOs Guide (http:/docs.oracle.com/ cd/B14099 196Hmanage.1012b14082/ssl.html).

5. On the GlassFish Server side, use the keytool command import the certificate you exported with
Oracle Wallet Manager.
The keytool command is available inthe $JAVA_HOME/hilirectory. Use the following syntax:

keytool -importcert -alias "alias-name" -keystore domain-dir/config/cacerts.jks
-file cert-name

where the variables are defined as follows
alias-name

Name of an alias to use for the certificate

domain-dir

Name of the domain for which the certificate is used

cert-name

Path to the certificate that you exported with Oracle Wallet Manager.

For example, to import a certificate named oi.cer for a GlassFish Server domain in
/glassfishv3/glassfish/domains/domainl , using an alias called "OID self-signed certificate," you
would use the following command:

keytool -importcert -alias "OID self signed certificate" -keystore \
/glassfishv3/glassfish/domains/domainl/config/cacerts.jks -file oid.cer

1. Restart the GlassFish Server domain.
See '"To Restart a Domain " in GlassFish Server Open Source Edition Administration Guide.
2. Use the Oracle Enterprise Manager |dapmodify command to enable Anonymous Bind for OID.
For example:
ldapmodify -D cn=orcladmin -q -p portNum -h hostname -f IdifFile

In this example, the LDIF file might contain the following:

54 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html#CHDCADIJ
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
http://docs.oracle.com/cd/B14099_19/idmanage.1012/b14082/ssl.html
../administration-guide/domains.html#GSADG00337

Administering Authentication Realms

dn: cn=0id1,cn=0sdldapd,cn=subconfigsubentry
changetype: modify

replace: orclAnonymousBindsFlag
orclAnonymousBindsFlag: 1

To disable all anonymous binds, you would use a similar LDIF file with the last line changed to:

orclAnonymousBindsFlag: 0

See "Managing Anonymous Binds" (http://docs.oracle.com/ cd/E14571 016id.1111/ e10029/
authentication.html# CACJEJDAn Oracle Fusion Middleware AdministratorOs Guide for Oracle Internet
Directory (http://docs.oracle.com/ cd/E14571 016id.1111/ e100294oc.html) for complete instructions
on the Idapmodify command.

To Configure LDAP Authentication with OVD

This procedure explains how to configure GlassFish Server to use LDAP authentication with Oracle
Virtual Directory.

1. Create the OVD adapter, as described in the "Creating and Configuring Oracle Virtual Directory
Adapters" (http://docs.oracle.com/ cd/E12839 016id.1111/ e10046basic_adapters.html# BABCBGUJA
chapter of AdministratorOs Guide for Oracle Virtual Directory (http://docs.oracle.com/ cd/
E12839 016id.1111/ e10046toc.html).

2. Configure SSL for Oracle Virtual Directory (OVD), if it is not configured already. For instructions on
configuring SSL for OVD, see the section "Enable SSL for Oracle Virtual Directory Using Fusion
Middleware Control" in SSL Configuration in Oracle Fusion Middleware (http://docs.oracle.com/
cd/E12839 01¢ore.1111/ e10105/slconfig.html# ASADM1800
Also, configure the SSL for the OVD listener in server authentication mode.

3. Export the certificate from JKS keystore you want to use with GlassFish Server. See "Exporting a
Keystore Using Fusion Middleware Control* (http:/docs.oracle.com/ cd/E16764 0l¢ore.1111/
el0105Mallets.html# CIHECAIBfor information.

4. On the GlassFish Server side, use the keytool command to import the certificate you exported from
the JKS keystore.
The keytool command is available inthe $JAVA_HOME/hilirectory. Use the following syntax:

keytool -importcert -alias "alias-name" -keystore domain-dir/config/cacerts.jks
-file cert-name

where the variables are defined as follows

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEG5

http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/authentication.html#CACJEJDA
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E14571_01/oid.1111/e10029/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/basic_adapters.html#BABCBGJA
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/oid.1111/e10046/toc.html
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E12839_01/core.1111/e10105/sslconfig.html#ASADM1800
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB
http://docs.oracle.com/cd/E16764_01/core.1111/e10105/wallets.html#CIHECAIB

Administering Authentication Realms

alias-name

Name of an alias to use for the certificate

domain-dir

Name of the domain for which the certificate is used

cert-name

Path to the certificate that you exported from the keystore.

For example, to import a certificate named ovd.cer for a GlassFish Server domain in
/glassfishv3/glassfish/domains/domainl , using an alias called "OVD self-signed certificate," you
would use the following command:

keytool -importcert -alias "OVD self signed certificate" -keystore \
/glassfishv3/glassfish/domains/domainl/config/cacerts.jks -file ovd.cer

1. Restart the GlassFish Server domain.

See '"To Restart a Domain " in GlassFish Server Open Source Edition Administration Guide.

To Enable LDAP Authentication on the GlassFish Server DAS

This procedure explains how to enable LDAP authentication for logins to the GlassFish Server Domain
Administration Server (DAS). Logging in to the DAS is typically only performed by GlassFish Server
administrators who want to use the GlassFish Server Administration Console or asadmincommand. See
To Configure LDAP Authentication with OID for instructions on enabling general LDAP authentication

for GlassFish Server.

Before You Begin

Ensure that you have followed the configuration instructions in To Configure LDAP Authentication
with OID

Use the asadmin configure-ldap-for-admin subcommand to enable user authentication to the GlassFish
Server DAS.

Use the following syntax:

asadmin configure-ldap-for-admin --basedn "dn-list" --url [Idap|ldaps]://Idap-url
--ldap-group group-name

where the variables are defined as follows:

dn-list

56 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

../administration-guide/domains.html#GSADG00337
#gkbeo
#gkbeo
#gkbeo

Administering File Users

basedn parameters

Idap-url

URL and port number for the LDAP server; can use standard (Idap) or secure (Idaps) protocol

group-name

LDAP group name for allowed users, as defined on the LDAP server.

For example:

asadmin configure-ldap-for-admin --basedn "dc=red,dc=iplanet,dc=com" \
--url l[dap://interopoel54-1:3060 --ldap-group sgestaticgroup

asadmin configure-ldap-for-admin --basedn "dc=red,dc=iplanet,dc=com" \
--url Idaps://interopoel54-1:7501 --Idap-group sgestaticgroup

See Also

Seeconfigure-ldap-for-admin ~ for more information about the configure-ldap-for-admin subcommand .

Administering File Users

A user is an individual (or application program) identity that is defined in GlassFish Server. A user who
has been authenticated is sometimes called a principal.

As the administrator, you are responsible for integrating users into the GlassFish Server environment
so that their credentials are securely established and they are provided with access to the applications
and services that they are entitled to use.

The following topics are addressed here:

¥ To Create a File User
¥ To List File Users

¥ To List File Groups

¥ To Update a File User

¥ To Delete a File User

To Create a File User

Use the create-file-user ~ subcommand in remote mode to create a new user by adding a new entry to

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEG7

../reference-manual/configure-ldap-for-admin.html#GSRFM00010
#ggocf
#ggoab
#ghlgs
#ggoaw
#ggoah

Administering File Users

the keyfile . The entry includes the user name, password, and any groups for the user. Multiple groups
can be specified by separating the groups with colons (:).

If secure administration is enabled as described in Running Secure Admin , you cannot
create an administrative user with a blank password.

Creating a new file realm user is a dynamic event and does not require server restart.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. If the user will belong to a particular group, see the current groups by using the list-file-groups
subcommand.

3. Create a file user by using the create-file-user subcommand.

Example 2-5 Creating a User
This example create user Jennifer on the default realm file (no groups are specified).

The asadmin--passwordfile option specifies the name of a file that contains the password entries in a
specific format. The entry for a password must have the AS_ADMINprefix followed by the password
name in uppercase letters, an equals sign, and the password. See asadmir{(1M) for more information.

asadmin> create-file-user --user admin
--passwordfile=c:\tmp\asadminpassword.txt Jennifer
Command create-file-user executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-file-
user at the command line.

To List File Users

Use the list-file-users subcommand in remote mode to list the users that are in the keyfile .

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List users by using the list-file-users subcommand.

58 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

administrative-security.html#gkomz
../reference-manual/list-file-groups.html#GSRFM00164
../reference-manual/create-file-user.html#GSRFM00024
../reference-manual/asadmin.html#GSRFM00263
../reference-manual/asadmin.html#GSRFM00263
../reference-manual/list-file-users.html#GSRFM00165

Administering File Users

Example 2-6 Listing File Users

This example lists file users on the default file realm file.

asadmin> list-file-users
Jennifer
Command list-file-users executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-file-
users at the command line.

To List File Groups

A group is a category of users classified by common traits, such as job title or customer profile. For
example, users of an e-commerce application might belong to the customer group, and the big spenders
might also belong to the preferred group. Categorizing users into groups makes it easier to control the
access of large numbers of users. A group is defined for an entire server and realm. A user can be
associated with multiple groups of users.

A group is different from a role in that a role defines a function in an application, while a group is a set

of users who are related in some way. For example, in the personnel application there might be groups

such as full-time , part-time , and on-leave . Users in these groups are all employees (the employeerole).
In addition, each user has its own designation that defines an additional level of employment.

Use the list-file-groups subcommand in remote mode to list groups for a file user, or all file groups if
the --nameoption is not specified.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List file groups by using the list-file-groups subcommand.

Example 2-7 Listing Groups for a User

This example lists the groups for user joesmith .
asadmin> list-file-groups --name joesmith
staff

manager
Command list-file-groups executed successfully

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEG9

../reference-manual/list-file-groups.html#GSRFM00164

Administering File Users

To Update a File User

Use the update-file-user subcommand in remote mode to modify the information in the keyfile for a
specified user.

If secure administration is enabled as described in Running Secure Admin , you cannot
. update an administrative user to have a blank password.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. Update the user information by using the update-file-user subcommand.

3. To apply your changes, restart GlassFish Server.
See '"To Restart a Domain " in GlassFish Server Open Source Edition Administration Guide.

Example 2-8 Updating a User

The following subcommand updates the groups for user Jennifer .
asadmin> update-file-user --passwordfile c:\\tmp\asadminpassword.txt --groups
staff:manager:engineer Jennifer
Command update-file-user executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help update-file-
user at the command line.

To Delete a File User

Use the delete-file-user subcommand in remote mode to remove a user entry from the keyfile by
specifying the user name. You cannot delete yourself, that is, the user you are logged in as cannot be
deleted during your session.

1. Ensure that the server is running.
Remote subcommands require a running server.

2. List users by using the list-file-users subcommand.

3. Delete the user by using the delete-file-user subcommand.

60 EEEECclipse GlassFish Server Security Guide, Release 5.1 DRAFT

administrative-security.html#gkomz
../reference-manual/update-file-user.html#GSRFM00254
../administration-guide/domains.html#GSADG00337
../reference-manual/list-file-users.html#GSRFM00165
../reference-manual/delete-file-user.html#GSRFM00076

Administering File Users

Example 2-9 Deleting a User

This example deletes user Jennifer from the default file realm.

asadmin> delete-file-user Jennifer
Command delete-file-user executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-file-
user at the command line.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB1

About Message Security in GlassFish Server

3 Administering Message Security

This chapter provides information and procedures on configuring the message layer security for web
services in the GlassFish Server environment.

Message security (JSR 196) is supported only in the Full Platform Profile of GlassFish
Server, not in the Web Profile.

The following topics are addressed here:

¥ About Message Security in GlassFish Server

¥ Enabling Default Message Security Providers for Web Services
¥ Configuring Message Protection Policies

¥ Administering Non-default Message Security Providers

¥ Enabling Message Security for Application Clients

¥ Additional Information About Message Security

Some of the material in this chapter assumes a basic understanding of security and web services
concepts. For more information about security, see About System Security in GlassFish Server

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About Message Security in GlassFish Server

Message security enables a server to perform end-to-end authentication of web service invocations
and responses at the message layer. Security information is inserted into messages so that it travels
through the networking layers and arrives with the intact message at the message destination(s).
Message security differs from transport layer security in that message security can be used to decouple
message protection from message transport so that messages remain protected after transmission.

Web services deployed on GlassFish Server are secured by binding SOAP layer message security
providers and message protection policies to the containers in which the applications are deployed, or

to web service endpoints served by the applications. SOAP layer message security functionality is
configured in the client-side containers of GlassFish Server by binding SOAP layer message security
providers and message protection policies to the client containers or to the portable service references
declared by client applications.

Message-level security can be configured for the entire GlassFish Server or for specific applications or
methods. Configuring message security at the application level is discussed in the GlassFish Server
Open Source Edition Application Development Guide

62 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#ablrn
#giood
#giouf
#giosl
#gdhgg
#gglrb
system-security.html#ggktf
../application-development-guide/toc.html#GSDVG
../application-development-guide/toc.html#GSDVG

About Message Security in GlassFish Server

The following topics are addressed here:

¥ Security Tokens and Security Mechanisms
¥ Authentication Providers

¥ Message Protection Policies

¥ Application-Specific Web Services Security
¥ Message Security Administration

¥ Sample Application for Web Services

Security Tokens and Security Mechanisms

WS-Security is a specification that provides a communications protocol for applying security to web

services. The security mechanisms implement the specification. Web Services Interoperability
Technologies (WSIT) implements WS-Security so as to provide interoperable message content integrity
and confidentiality, even when messages pass through intermediary nodes before reaching their

destination endpoint. WS-Security as provided by WSIT is in addition to existing transport-level

security, which can still be used.

The Simple Object Access Protocol (SOAP) layer message security providers installed with GlassFish
Server can be used to employ username/password and X.509 certificate security tokens to authenticate
and encrypt SOAP web services messages.

¥ Username Tokens. GlassFish Server uses username tokens in SOAP messages to authenticate the
message sender. The recipient of a message containing a username token (within embedded
password) validates that the message sender is authorized to act as the user (identified in the
token) by confirming that the sender knows the password of the user.
When using a username token, a valid user database must be configured on GlassFish Server.

¥ Digital Signatures. GlassFish Server uses XML digital signatures to bind an authentication identity
to message content. Clients use digital signatures to establish their caller identity. Digital signatures
are verified by the message receiver to authenticate the source of the message content (which
might be different from the sender of the message.)
When using digital signatures, valid keystore and truststore files must be configured on GlassFish
Server.

¥ Encryption. The purpose of encryption is to modify the data so that it can only be understood by its
intended audience. This is accomplished by substituting an encrypted element for the original
content. When based on public key cryptography, encryption can be used to establish the identity
of the parties who are authorized to read a message.
When using encryption, a Java Cryptography Extension (JCE) provider that supports encryption
must be installed.

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB3

#ablrs
#ablrx
#ablrw
#ablrz
#gioom
#ablsa

About Message Security in GlassFish Server

Authentication Providers

The authentication layer is the message layer on which authentication processing must be performed.
GlassFish Server enforces web services message security at the SOAP layer. The types of authentication
that are supported include the following:

¥ Sender authentication, including username-password authentication

¥ Content authentication, including XML digital signatures

GlassFish Server invokes authentication providers to process SOAP message layer security. The
message security providers provide information such as the type of authentication that is required for

the request and response messages. The following message security providers are included with
GlassFish Server:

¥ Client-side Provider. A client-side provider establishes (by signature or username/password) the
source identity of request messages and/or protects (by encryption) request messages such that
they can only be viewed by their intended recipients. A client-side provider also establishes its
container as an authorized recipient of a received response (by successfully decrypting it) and
validates passwords or signatures in the response to authenticate the source identity associated
with the response. Client-side providers configured in GlassFish Server can be used to protect the
request messages sent and the response messages received by server-side components (servlets
and EJB components) acting as clients of other services.
The default client provider is used to identify the client???side provider to be invoked for any
application for which a specific client provider has not been bound.

¥ Server-side Provider. A server-side provider establishes its container as an authorized recipient of
a received request (by successfully decrypting it), and validates passwords or signatures in the
request to authenticate the source identity associated with the request. A server-side provider also
establishes (by signature or username/password) the source identity of response messages and/or
protects (by encryption) response messages such that they can only be viewed by their intended
recipients. Server-side providers are only invoked by server-side containers.

The default server provider is used to identify the server???side provider to be invoked for any
application for which a specific server provider has not been bound.

Message Protection Policies

A request policy defines the authentication policy requirements associated with request processing
performed by the authentication provider. Policies are expressed in message sender order such that a
requirement that encryption occur after content would mean that the message receiver would expect
to decrypt the message before validating the signature. The response policy defines the authentication
policy requirements associated with response processing performed by the authentication provider.

Message protection policies are defined for request message processing and response message

64 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

About Message Security in GlassFish Server

processing. The policies are expressed in terms of requirements for source and/or recipient
authentication. The providers apply specific message security mechanisms to cause the message
protection policies to be realized in the context of SOAP web services messages.

¥ Source Authentication Policy. A source authentication policy represents a requirement that the
identity of the entity that sent a message or that defined the content of a message be established in
the message such that it can be authenticated by the message receiver.

¥ Recipient Authentication Policy. A recipient authentication policy represents a requirement that the
message be sent such that the identity of the entities that can receive the message can be
established by the message sender.

Request and response message protection policies are defined when a security provider is configured

into a container. Application-specific message protection policies (at the granularity of the web service

port or operation) can also be configured within the GlassFish Server deployment descriptors of the
application or application client. In any situation where message protection policies are defined, the
request and response message protection policies of the client must be equivalent t) the request and
response message protection policies of the server. For more information about defining application-
specific message protection policies, see " Securing Applications " in GlassFish Server Open Source
Edition Application Development Guide.

Application-Specific Web Services Security

Application-specific web services security functionality is configured (at application assembly) by
defining the message-security-binding elements in the GlassFish Server deployment descriptors of the
application. These message-security-binding elements are used to associate a specific security provider
or message protection policy with a web service endpoint or service reference, and might be qualified

so that they apply to a specific port or method of the corresponding endpoint or referenced service.

For information about defining application-specific message protection policies, see
Applications " in GlassFish Server Open Source Edition Application Development Guide.

Securing

Message Security Administration

When GlassFish Server is installed, SOAP layer message security providers are configured in the client
and server-side containers of GlassFish Server, where they are available for binding for use by the
containers, or by individual applications or clients deployed in the containers. During installation, the
default providers are configured with a simple message protection policy that, if bound to a container,
or to an application or client in a container, would cause the source of the content in all request and
response messages to be authenticated by XML digital signature.

GlassFish Server administrative interfaces can be used as follows:

DRAFT Eclipse GlassFish Server Security Guide, Release 5.1EEB5

../application-development-guide/securing-apps.html#GSDVG00006
../application-development-guide/securing-apps.html#GSDVG00006
../application-development-guide/securing-apps.html#GSDVG00006

About Message Security in GlassFish Server

¥ To modify the message protection policies enforced by the providers

¥ To bind the existing providers for use by the server-side containers of GlassFish Server

¥ To create new security provider configurations with alternative message protection policies
Analogous administrative operations can be performed on the SOAP message layer security
configuration of the application client container. If you want web services security to protect all web

services applications deployed on GlassFish Server. See Enabling Message Security for Application
Clients.

By default, message layer security is disabled on GlassFish Server. To configure message layer security
for the GlassFish Server see Enabling Default Message Security Providers for Web Services

In most cases, you must restart GlassFish Server after performing administrative tasks. This is
especially true if you want the effects of the administrative change to be applied to applications that
were already deployed on GlassFish Server at the time the operation was performed.

Message Security Tasks

The general implementation tasks for message security include some or all of the following:
1. If you are using a version of the Java SDK prior to version 1.5.0, and using encryption technology,
configuring a JCE provider

2. If you are using a username token, verifying that a user database is configured for an appropriate
realm
When using a username/password token, an appropriate realm must be configured and a user
database must be configured for the realm.

3. Managing certificates and private keys, if necessary
4. Enabling the GlassFish Server default providers

5. Configuring new message security providers

Message Security Roles

In GlassFish Server, the administrator and the application deployer are expected to take primary
responsibility for configuring message security. In some situations, the application developer might
also contribute.

System Administrator

The system administrator is responsible for the following message security tasks:

66 EEEEclipse GlassFish Server Security Guide, Release 5.1 DRAFT

#gdhgg
#gdhgg
#giood

