
Eclipse GlassFish Administration
Guide, Release 7

Eclipse GlassFish
Administration Guide

Release 7

Contributed 2018 - 2024

Eclipse GlassFish 7 Administration Guide provides instructions for configuring and administering
Eclipse GlassFish.

Eclipse GlassFish Administration Guide, Release 7

Copyright © 2013, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

1

http://www.eclipse.org/legal/epl-2.0

Preface
The Eclipse GlassFish Administration Guide provides instructions for configuring and
administering Eclipse GlassFish.

This preface contains information about and conventions for the entire Eclipse GlassFish (Eclipse
GlassFish) documentation set.

Eclipse GlassFish 7 is developed through the GlassFish project open-source community at
https://github.com/eclipse-ee4j/glassfish. The GlassFish project provides a structured process for
developing the Eclipse GlassFish platform that makes the new features of the Jakarta EE platform
available faster, while maintaining the most important feature of Jakarta EE: compatibility. It
enables Java developers to access the Eclipse GlassFish source code and to contribute to the
development of the Eclipse GlassFish.

The following topics are addressed here:

• Eclipse GlassFish Documentation Set

• Related Documentation

• Typographic Conventions

• Symbol Conventions

• Default Paths and File Names

Eclipse GlassFish Documentation Set
The Eclipse GlassFish documentation set describes deployment planning and system installation.
For an introduction to Eclipse GlassFish, refer to the books in the order in which they are listed in
the following table.

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based
summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide Explains how to get started with the Eclipse GlassFish product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of Eclipse GlassFish.
This guide also describes differences between adjacent product
releases and configuration options that can result in incompatibility
with the product specifications.

Deployment Planning Guide Explains how to build a production deployment of Eclipse GlassFish
that meets the requirements of your system and enterprise.

2

https://github.com/eclipse-ee4j/glassfish
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/quick-start-guide.pdf#GSQSG
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/upgrade-guide.pdf#GSUPG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG

Book Title Description

Administration Guide Explains how to configure, monitor, and manage Eclipse GlassFish
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Security Guide Provides instructions for configuring and administering Eclipse
GlassFish security.

Application Deployment
Guide

Explains how to assemble and deploy applications to the Eclipse
GlassFish and provides information about deployment descriptors.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Jakarta EE platform) applications that are intended to run
on the Eclipse GlassFish. These applications follow the open Java
standards model for Jakarta EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of Eclipse GlassFish to
develop add-on components for Eclipse GlassFish. This document
explains how to perform only those tasks that ensure that the add-
on component is suitable for Eclipse GlassFish.

Embedded Server Guide Explains how to run applications in embedded Eclipse GlassFish and
to develop applications in which Eclipse GlassFish is embedded.

High Availability
Administration Guide

Explains how to configure Eclipse GlassFish to provide higher
availability and scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of Eclipse GlassFish.

Troubleshooting Guide Describes common problems that you might encounter when using
Eclipse GlassFish and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using
Eclipse GlassFish.

Reference Manual Provides reference information in man page format for Eclipse
GlassFish administration commands, utility commands, and related
concepts.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue
Administration Guide

Explains how to set up and manage a Message Queue messaging
system.

3

https://glassfish.org/docs/latest/administration-guide.pdf#GSADG
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/add-on-component-development-guide.pdf#GSACG
https://glassfish.org/docs/latest/add-on-component-development-guide.pdf#GSACG
https://glassfish.org/docs/latest/embedded-server-guide.pdf#GSESG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG
https://glassfish.org/docs/latest/troubleshooting-guide.pdf#GSTSG
https://glassfish.org/docs/latest/error-messages-reference.pdf#GSEMR
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html

Book Title Description

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue
for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions
(JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing
Java messaging applications (Java clients) that work with Eclipse
GlassFish.

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers
working with Message Queue who want to use the C language
binding to the Message Queue messaging service to send, receive,
and process Message Queue messages.

Related Documentation
The following tutorials explain how to develop Jakarta EE applications:

• Your First Cup: An Introduction to the Jakarta EE Platform. For beginning Jakarta EE
programmers, this short tutorial explains the entire process for developing a simple enterprise
application. The sample application is a web application that consists of a component that is
based on the Enterprise JavaBeans specification, a JAX-RS web service, and a JavaServer Faces
component for the web front end.

• The Jakarta EE Tutorial. This comprehensive tutorial explains how to use Jakarta EE platform
technologies and APIs to develop Jakarta EE applications.

Javadoc tool reference documentation for packages that are provided with Eclipse GlassFish is
available as follows.

• The Jakarta EE specifications and API specification is located at https://jakarta.ee/specifications/.

• The API specification for Eclipse GlassFish 7, including Jakarta EE platform packages and
nonplatform packages that are specific to the Eclipse GlassFish product, is located at
https://glassfish.org/docs/.

For information about creating enterprise applications in the NetBeans Integrated Development
Environment (IDE), see the NetBeans Documentation, Training & Support page.

For information about the Derby database for use with the Eclipse GlassFish, see the Derby page.

The Jakarta EE Samples project is a collection of sample applications that demonstrate a broad
range of Jakarta EE technologies. The Jakarta EE Samples are bundled with the Jakarta EE Software
Development Kit (SDK) and are also available from the repository (https://github.com/eclipse-
ee4j/glassfish-samples).

Typographic Conventions
The following table describes the typographic changes that are used in this book.

4

https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://github.com/eclipse-ee4j/jakartaee-firstcup-examples
https://eclipse-ee4j.github.io/jakartaee-tutorial
https://jakarta.ee/specifications/
https://glassfish.org/docs/
https://netbeans.apache.org/kb/docs/java-ee.html
https://db.apache.org/derby/index.html
https://github.com/eclipse-ee4j/glassfish-samples
https://github.com/eclipse-ee4j/glassfish-samples

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a
real name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to
be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

5

Placeho
lder

Description Default Value

as-
install

Represents the base installation directory
for Eclipse GlassFish. In configuration files,
as-install is represented as follows:
${com.sun.aas.installRoot}

• Installations on the Oracle Solaris
operating system, Linux operating
system, and Mac OS operating system:

user’s-home-
directory/glassfish7/glassfish

• Installations on the Windows operating
system:

SystemDrive:\glassfish7\glassfish

as-
install-
parent

Represents the parent of the base
installation directory for Eclipse GlassFish.

• Installations on the Oracle Solaris
operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfish7

• Installations on the Windows operating
system:

SystemDrive:\glassfish7

domain-
root-dir

Represents the directory in which a domain
is created by default.

as-install/domains/

domain-
dir

Represents the directory in which a
domain’s configuration is stored. In
configuration files, domain-dir is
represented as follows:
${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instanc
e-dir

Represents the directory for a server
instance.

domain-dir/instance-name

6

1 Overview of Eclipse GlassFish
Administration
Eclipse GlassFish provides a server for developing and deploying Java Platform Enterprise Edition
(Jakarta EE) applications and web Java Web Services.

As an administrator ofEclipse GlassFish, your main responsibilities are to establish a secure Eclipse
GlassFish environment and to oversee the services, resources, and users that participate in that
environment. Your key tasks include configuring resources and services, managing Eclipse
GlassFish at runtime, and fixing problems that are associated with the server. You might also be
involved in installing software, integrating add-on components, and deploying applications.

The following topics are addressed here:

• Default Settings and Locations

• Configuration Tasks

• Administration Tools

• Instructions for Administering Eclipse GlassFish

Default Settings and Locations
After installation, you might need to perform some immediate configuration tasks to make your
installation function as intended. If configuration defaults have been accepted, some features are
enabled and some not. For an overview of initial configuration tasks for Eclipse GlassFish services
and resources, see Initial Configuration Tasks.

In addition, you might want to reset default passwords, change names or locations of files, and so
on. The following tables list the default administration values.

For the zip bundle of Eclipse GlassFish 7, the default administrator login is admin,
with no password, which means that no login is required.

Table 1-1 Default Administration Values

Item Default

Domain Name domain1

Master Password changeit

Administration User admin

Administration Server Port 4848

HTTP Port 8080

HTTPS Port 8181

Pure JMX Clients Port 8686

7

Item Default

Message Queue Port 7676

IIOP Port 3700

IIOP/SSL Port 3820

IIOP/SSL Port With Mutual
Authentication

3920

Table 1-2 Default Locations

Item Default

Command-line Utility (asadmin) as-install/bin

Configuration Files domain-dir/config

Log Files domain-dir/logs

Upgrade Tool (asupgrade Command) as-install/bin

For information about replaceable items and default paths and files, see Default Paths and File
Names.

Configuration Tasks
Some configuration tasks must be performed directly after installation for your Eclipse GlassFish
environment to work as intended. For example, if you are using a database with Eclipse GlassFish,
you need to set up database connectivity right away.

Some configuration situations are ongoing and will require you to make changes many times
during the life of your installation. You can use either the Administration Console or the asadmin
utility to modify the configuration. Changes are automatically applied to the appropriate
configuration file.

The following topics are addressed here:

• Initial Configuration Tasks

• How Dotted Names Work for Configuration

• Configuration Files

• Impact of Configuration Changes

Initial Configuration Tasks

This section maps the common configuration tasks to the command-line procedures in this guide.
In some situations, the resource or service is automatically enabled and your configuration tasks
involve adjusting or changing the default settings to suit your specific needs.

The following resources and services frequently require configuration immediately after
installation:

8

System Properties

See Administering System Properties.

Domains

The initial domain1 is created during installation. Additional configuration tasks might include
such tasks as configuring additional domains or setting up automatic restart. See Administering
Domains.

JVM

The initial tasks for configuring the JVM include creating JVM options and profilers. See
Administering the Virtual Machine for the Java Platform.

Logging

By default, logging is enabled, so basic logging works without additional configuration. However,
you might want to change log levels, property values, or the location of log files. See
Administering the Logging Service.

Monitoring

By default, the monitoring service is enabled. However, monitoring for the individual modules is
not enabled, so your first monitoring task is to enable monitoring for the modules that you want
to monitor. See Administering the Monitoring Service.

Life Cycle Modules

See Administering Life Cycle Modules.

Security

• System Security. Initial configuration tasks might include setting up passwords, audit
modules, and certificates. See "Administering System Security" in Eclipse GlassFish Security
Guide.

• User Security. Initial configuration tasks might include creating authentication realms and
file users. See "Administering User Security" in Eclipse GlassFish Security Guide.

• Message Security. Initial configuration tasks might include configuring a Java Cryptography
Extension (JCE) provider, enabling default and non-default security providers, and
configuring message protection policies. See "Administering Message Security" in Eclipse
GlassFish Security Guide.

Database Connectivity

The initial tasks involved in configuring Eclipse GlassFish to connect to the Apache Derby
database include creating a Java Database Connectivity (JDBC) connection pool, creating a JDBC
resource, and integrating a JDBC driver. See Administering Database Connectivity.

EIS Connectivity

The initial tasks involved in configuring Eclipse GlassFish to connect to an enterprise
information system (EIS) include creating a connector connection pool, creating a connector
resource, editing a resource adapter configuration, creating a connector security map, creating a
connector work security map, and creating an administered object (if needed). See
Administering EIS Connectivity.

9

https://glassfish.org/docs/latest/security-guide.pdf#administering-system-security
https://glassfish.org/docs/latest/security-guide.pdf#administering-user-security
https://glassfish.org/docs/latest/security-guide.pdf#administering-message-security

Internet Connectivity

The initial tasks involved in making deployed web applications accessible by internet clients
include creating HTTP network listeners and virtual servers, and configuring the HTTP listeners
for SSL (if needed). See Administering Internet Connectivity.

Object Request Broker (ORB)

An initial configuration task might involve creating an IIOP listener. See Administering the
Object Request Broker (ORB).

Jakarta Mail Service

An initial configuration task might involve creating a Jakarta Mail resource. See Administering
the Jakarta Mail Service.

Java Message Service (JMS)

Initial configuration tasks might include creating a physical destination, creating connection
factories or destination resources, creating a JMS host (if the default JMS host is not adequate),
adjusting connection pool settings (if needed), and configuring resource adapters for JMS. See
Administering the Java Message Service (JMS).

JNDI Service

An initial configuration task might involve creating a JNDI resource. See Administering the Java
Naming and Directory Interface (JNDI) Service.

Information and instructions for accomplishing the tasks by using the Administration Console are
contained in the Administration Console online help.

How Dotted Names Work for Configuration

After the initial configuration is working, you will continue to manage ongoing configuration for
the life of your Eclipse GlassFish installation. You might need to adjust resources to improve
productivity, or issues might arise that require settings to be modified or defaults to be reset. In
some situations, an asadmin subcommand is provided for updating, such as the update-connector-
work-security-map subcommand. However, most updating is done by using the list, get, and set
subcommands with dotted names. For detailed information about dotted names, see the dotted-
names(5ASC) help page.

Dotted names also apply to monitoring, but the method is different. For
information on using dotted names for monitoring, see How the Monitoring Tree
Structure Works.

The general process for working with configuration changes on the command line is as follows:

1. List the modules for the component of interest.

The following single mode example uses the | (pipe) character and the grep command to
narrow the search:

10

https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names
https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names
https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names

asadmin list "*" | grep http | grep listener

Information similar to the following is returned:

configs.config.server-config.network-config.network-listeners.network-
listener.http-listener-1
configs.config.server-config.network-config.network-listeners.network-
listener.http-listener-2
configs.config.server-config.network-config.protocols.protocol.admin-listener.http
configs.config.server-config.network-config.protocols.protocol.admin-
listener.http.file-cache
configs.config.server-config.network-config.protocols.protocol.http-listener-1
configs.config.server-config.network-config.protocols.protocol.http-listener-1.http
configs.config.server-config.network-config.protocols.protocol.http-listener-
1.http.file-cache
configs.config.server-config.network-config.protocols.protocol.http-listener-2
configs.config.server-config.network-config.protocols.protocol.http-listener-2.http
configs.config.server-config.network-config.protocols.protocol.http-listener-
2.http.file-cache
configs.config.server-config.network-config.protocols.protocol.http-listener-2.ssl

2. Get the attributes that apply to the module you are interested in.

The following multimode example gets the attributes and values for http-listener-1:

asadmin> get server-config.network-config.network-listeners.network-listener.http-
listener-1.*

Information similar to the following is returned:

server.http-service.http-listener.http-listener-1.acceptor-threads = 1
server.http-service.http-listener.http-listener-1.address = 0.0.0.0
server.http-service.http-listener.http-listener-1.blocking-enabled = false
server.http-service.http-listener.http-listener-1.default-virtual-server = server
server.http-service.http-listener.http-listener-1.enabled = true
server.http-service.http-listener.http-listener-1.external-port =
server.http-service.http-listener.http-listener-1.family = inet
server.http-service.http-listener.http-listener-1.id = http-listener-1
server.http-service.http-listener.http-listener-1.port = 8080
server.http-service.http-listener.http-listener-1.redirect-port =
server.http-service.http-listener.http-listener-1.security-enabled = false
server.http-service.http-listener.http-listener-1.server-name =
server.http-service.http-listener.http-listener-1.xpowered-by = true

3. Modify an attribute by using the set subcommand.

11

This example sets the security-enabled attribute of http-listener-1 to true:

asadmin> set server.http-service.http-listener.http-listener-1.security-enabled =
true

Configuration Files

The bulk of the configuration information about Eclipse GlassFish resources, applications, and
instances is stored in the domain.xml configuration file. This file is the central repository for a given
administrative domain and contains an XML representation of the Eclipse GlassFish domain model.
The default location for the domain.xml file is domain-dir/config.

Eclipse GlassFish maintains a backup of the domain.xml file that is named
domain.xml.bak. The purpose of this file is solely to enable Eclipse GlassFish to start
a domain if the domain.xml file cannot be read. Do not modify or delete the
domain.xml.bak file and do not use this file for any other purpose.

The logging.properties file is used to configure the Java Util Logging system. The default
logging.properties file is located in the same directory as the domain.xml file. For further
information on the logging.properties file, see Logging Properties.

The asenv.conf file is located in the as-install/config directory. Its purpose is to store the Eclipse
GlassFish environment variables, such as the installation location of the database, Message Queue,
and so on.

Changes are automatically applied to the appropriate configuration file. Do not
edit the configuration files directly. Manual editing is prone to error and can have
unexpected results.

Impact of Configuration Changes

Some configuration changes require that you restart the DAS or Eclipse GlassFish instances for the
changes to take effect. Other changes are applied dynamically without requiring that the DAS or
instances be restarted. The procedures in this guide indicate when a restart is required. Eclipse
GlassFish enables you to determine whether the DAS or an instance must be restarted to apply
configuration changes.

Some changes to resources or connection pools affect the applications that use the resources or
connection pools. These changes do not require restart. However, any applications that use the
resources or connection pools must be disabled and re-enabled or redeployed for the change to
take effect.

The following topics are addressed here:

• To Determine Whether the DAS or an Instance Requires Restart

• Configuration Changes That Require Restart

• Dynamic Configuration Changes

12

• Changes That Affect Applications

To Determine Whether the DAS or an Instance Requires Restart

1. Ensure that the DAS is running. To obtain information about the DAS or an instance, a running
server is required.

2. Do one of the following:

◦ To determine if the DAS requires restart, list the domains in your Eclipse GlassFish
installation. Use the list-domains subcommand for this purpose.

asadmin> list-domains [--domaindir domain-root-dir]

The domain-root-dir is the directory that contains the directories in which individual
domains' configuration is stored. The default is as-install/domains, where as-install is the
base installation directory of the Eclipse GlassFish software. If the DAS requires restart, a
statement that restart is required is displayed.

◦ To determine if an instance requires restart, list information about the instance. Use the
list-instances subcommand for this purpose.

asadmin> list-instances instance-name

The instance-name is the name of the instance for which you are listing information. If the
instance requires restart, one of the following pieces of information is displayed: a
statement that restart is required, or a list of configuration changes that are not yet applied
to the instance.

Example 1-1 Determining if the DAS Requires Restart

This example determines that the DAS for the domain domain1 requires restart to apply
configuration changes.

asadmin> list-domains
domain1 running, restart required to apply configuration changes
Command list-domains executed successfully.

Example 1-2 Determining if an Instance Requires Restart

This example determines that the instance pmd-i1 requires restart to apply configuration changes.

asadmin> list-instances pmd-i1
pmd-i1 running; requires restart
Command list-instances executed successfully.

See Also

13

https://glassfish.org/docs/latest/reference-manual.pdf#list-domains
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances

• list-domains(1)

• list-instances(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line.

• asadmin help list-domains

• asadmin help list-instances

Configuration Changes That Require Restart

The following configuration changes require restart for the changes to take effect:

• Changing JVM options

• Changing port numbers

Changes to some port numbers, for example HTTP listener ports, do not
require restart.

• Changing log handler elements

• Configuring certificates

• Managing HTTP, JMS, IIOP, JNDI services

• Enabling or disabling secure administration as explained in "Running Secure Admin" in Eclipse
GlassFish Security Guide

Dynamic Configuration Changes

With dynamic configuration, changes take effect while the DAS or instance is running. The
following configuration changes do not require restart:

• Adding or deleting add-on components

• Adding or removing JDBC, JMS, and connector resources and pools (Exception: Some connection
pool properties affect applications.)

• Changing a system property that is not referenced by a JVM option or a port

• Adding file realm users

• Changing logging levels

• Enabling and disabling monitoring

• Changing monitoring levels for modules

• Enabling and disabling resources and applications

• Deploying, undeploying, and redeploying applications

Changes That Affect Applications

Some changes to resources or connection pools affect the applications that use the resources or

14

https://glassfish.org/docs/latest/reference-manual.pdf#list-domains
https://glassfish.org/docs/latest/reference-manual.pdf#list-domains
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/reference-manual.pdf#list-instances
https://glassfish.org/docs/latest/security-guide.pdf#running-secure-admin

connection pools. These changes do not require restart. However, any applications that use the
resources or connection pools must be disabled and re-enabled or redeployed for the change to
take effect.

If you do not know which applications use the changed resources or connection
pools, you can apply these changes by restarting the clusters orEclipse GlassFish
instances to which applications are deployed. However, to minimize the disruption
to the services that your applications provide, avoid restarting clusters or
instances to apply these changes if possible.

The following changes affect applications:

• Creating or deleting resources (Exception: Changes to some JDBC, JMS, or connector resources
do not affect applications.)

• Modifying the following JDBC connection pool properties:

◦ datasource-classname

◦ associate-with-thread

◦ lazy-connection-association

◦ lazy-connection-enlistment

◦ JDBC driver vendor-specific properties

• Modifying the following connector connection pool properties:

◦ resource-adapter-name

◦ connection-definition-name

◦ transaction-support

◦ associate-with-thread

◦ lazy-connection-association

◦ lazy-connection-enlistment

◦ Vendor-specific properties

Administration Tools
For the most part, you can perform the same tasks by using either the graphical Administration
Console or the asadmin command-line utility, however, there are exceptions.

The following Eclipse GlassFish administration tools are described here:

• Administration Console

• <<`asadmin` Utility>>

• REST Interfaces

• OSGi Module Management Subsystem

• <<`keytool` Utility>>

15

• Java Monitoring and Management Console (JConsole)

Administration Console

The Administration Console is a browser-based utility that features an easy-to-navigate graphical
interface that includes extensive online help for the administrative tasks.

To use the Administration Console, the domain administration server (DAS) must be running. Each
domain has its own DAS, which has a unique port number. When Eclipse GlassFish was installed,
you chose a port number for the DAS, or used the default port of 4848. You also specified a user
name and password if you did not accept the default login (admin with no password).

When specifying the URL for the Administration Console, use the port number for the domain to be
administered. The format for starting the Administration Console in a web browser is
http://`hostname:`port. For example:

http://kindness.example.com:4848

If the Administration Console is running on the host where Eclipse GlassFish was installed, specify
localhost for the host name. For example:

http://localhost:4848

If the Administration Console is run on a host different from the host where Eclipse GlassFish was
installed, a secure connection (https instead of http) is used. Some browsers do not display pages on
secure connections by default and must be configured to permit secure protocols (SSL and TLS).

For Microsoft Windows, an alternate way to start the Eclipse GlassFish Administration Console is by
using the Start menu.

You can display the help material for a page in the Administration Console by clicking the Help
button on the page. The initial help page describes the functions and fields of the page itself.
Associated task instructions can be accessed on additional pages by clicking a link in the See Also
list.

If you try to use the Administration Console from a system through a proxy server
on another system back to the original system, while using the system’s full host
name (instead of localhost or 127.0.0.1) you are denied access because the request
is treated as a remote request, which requires that the secure administration
feature (secure admin) be enabled.

To avoid this situation, do one of the following:

• Do not use a proxy server.

• Use localhost or 127.0.0.1 as the host name.

• Enable secure admin so that what Eclipse GlassFish interprets as a remote
request is accepted as such.

16

http://`hostname

To enable secure admin, see "Managing Administrative Security" in Eclipse
GlassFish Security Guide.

asadmin Utility

The asadmin utility is a command-line tool that runs subcommands for identifying the operation or
task that you want to perform. You can run asadmin subcommands either from a command prompt
or from a script. Running asadmin subcommands from a script is helpful for automating repetitive
tasks. Basic information about how the asadmin utility works can be found in the asadmin(1M) help
page. For instructions on using the asadmin utility, see Using the asadmin Utility.

To issue an asadmin subcommand in the standard command shell (single mode), go to the as-
install/bin directory and type the asadmin command followed by a subcommand. For example:

asadmin list-jdbc-resources

You can invoke multiple command mode (multimode) by typing asadmin at the command prompt,
after which the asadmin> prompt is presented. The asadmin utility continues to accept subcommands
until you exit multimode and return to the standard command shell. For example:

asadmin> list-jdbc-resources

You can display a help page for any asadmin subcommand by typing help before the subcommand
name. For example:

asadmin> help restart-domain

or

asadmin help restart-domain

A collection of the asadmin help pages is available in HTML and PDF format in the Eclipse GlassFish
Reference Manual.

REST Interfaces

Eclipse GlassFish provides representational state transfer (REST) interfaces to enable you to access
monitoring and configuration data for Eclipse GlassFish, including data that is provided by newly
installed add-on components. For more information, see Using REST Interfaces to Administer
Eclipse GlassFish.

OSGi Module Management Subsystem

The OSGi module management subsystem that is provided with Eclipse GlassFish is the Apache
Felix OSGi framework . To administer this framework, use the either of the following tools:

17

https://glassfish.org/docs/latest/security-guide.pdf#managing-administrative-security
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
http://felix.apache.org/
http://felix.apache.org/

• Apache Felix Gogo remote shell. This shell is provided with Eclipse GlassFish. The shell uses the
Felix Gogo shell service to interact with the OSGi module management subsystem.

• GlassFish OSGi Administration Console. This console is distributed as an add-on component for
Eclipse GlassFish or as a set of files from the Maven GlassFish repository. In both distributions,
the GlassFish OSGi Web Console is provided as an extension to the Administration Console and
as a standalone web application. The GlassFish OSGi Administration Console is a customized
version of the Apache Felix Web Console.

These tools enable you to perform administrative tasks on OSGi bundles such as:

• Browsing installed OSGi bundles

• Viewing the headers of installed OSGi bundles

• Installing OSGi bundles

• Controlling the life cycle of installed bundles

To Enable the Apache Felix Gogo Remote Shell

By default, the Apache Felix Gogo remote shell in Eclipse GlassFish is disabled. Before using the
shell to administer OSGi bundles in Eclipse GlassFish, you must enable the shell.

Enabling the Apache Felix Gogo remote shell in Eclipse GlassFish involves changing the value of the
property glassfish.osgi.start.level.final. This property controls whether the OSGi start level
service enables the shell when the DAS or a Eclipse GlassFish instance is started.

1. Ensure that the DAS is running.

2. Change the value of the glassfish.osgi.start.level.final property from 2 to 3. If the domain
includes clustered or standalone instances on remote hosts, perform this step on each remote
host. You can change this value either by creating a Java system property or by editing a file.

◦ To change this value by creating a Java system property, create the Java system property
glassfish.osgi.start.level.final with a value of 3.

asadmin> create-jvm-options --target target -Dglassfish.osgi.start.level.final=3

target

The target for which you are creating the property.

For the DAS, the target is `server`.

 For a clustered or standalone instance, the target is the name of the
 instance.
* To change this value by editing a file, edit the plain-text file
as-install``/config/osgi.properties`` to change the value of the
`glassfish.osgi.start.level.final` property from 2 to 3.

18

http://felix.apache.org/documentation/subprojects/apache-felix-remote-shell.html
http://felix.apache.org/documentation/subprojects/apache-felix-web-console.html

3. Restart the DAS. For instructions, see To Restart a Domain.

To Run Apache Felix Gogo Remote Shell Commands

The Apache Felix Gogo remote shell is integrated with the Eclipse GlassFish asadmin command line
utility. You can use the asadmin subcommands osgi and osgi-shell to access the remote shell and
run OSGi shell commands.

To Run Remote Shell Commands Using the osgi Subcommand

The osgi subcommand delegates the command line to the Apache Felix Gogo remote shell for the
execution of OSGi shell commands. Commands are executed by the remote shell and results are
returned by the asadmin utility. The osgi subcommand is supported in remote mode only.

1. Ensure that the server is running. Remote commands require a running server.

2. Access the remote shell by using the osgi subcommand. For the full syntax and options for this
subcommand, see osgi(1).

To Run Remote Shell Commands Using the osgi-shell Subcommand

The osgi-shell subcommand provides interactive access to the Apache Felix Gogo remote shell for
the execution of OSGi shell commands. OSGi shell commands are executed on the server and results
are printed on the client. You can run multiple commands from a file or run commands
interactively. The osgi-shell subcommand is supported in local mode only. Unlike other local
subcommands, however, the DAS and the server instance whose shell is being accessed must be
running.

1. Ensure that the server is running.

2. Access the remote shell by using the osgi-shell subcommand. For the full syntax and options
for this subcommand, see osgi-shell(1).

Example 1-3 Listing Apache Felix Gogo Remote Shell Commands

This example lists Apache Felix Gogo remote shell commands. Some lines of output are omitted
from this example for readability.

asadmin> osgi help
felix:bundlelevel
felix:cd
felix:frameworklevel
gogo:cat
gogo:each
gogo:echo
...
asadmin> osgi-shell
Use "exit" to exit and "help" for online help.
gogo$ help
felix:bundlelevel
felix:cd
felix:frameworklevel

19

https://glassfish.org/docs/latest/reference-manual.pdf#redeploy
https://glassfish.org/docs/latest/reference-manual.pdf#redeploy

gogo:cat
gogo:each
gogo:echo

Example 1-4 Running a Remote Shell Command

This example runs the Felix Remote Shell Command lb without any arguments to list all installed
OSGi bundles. Some lines of output are omitted from this example for readability.

asadmin> osgi lb
START LEVEL 2
ID|State |Level|Name
 0|Active | 0|System Bundle
 1|Active | 1|Metro Web Services API OSGi Bundle
 2|Active | 1|jakarta.annotation API
Command osgi executed successfully.
...
asadmin> osgi-shell
Use "exit" to exit and "help" for online help.
gogo$ lb
START LEVEL 2
ID|State |Level|Name
 0|Active | 0|System Bundle
 1|Active | 1|Metro Web Services API OSGi Bundle
 2|Active | 1|jakarta.annotation API
gogo$

Example 1-5 Determining the Services That an OSGi Bundle Provides

This example runs the Felix Remote Shell Command inspect with the service option and the
capability option to determine the services that OSGi bundle 251 provides. Some lines of output are
omitted from this example for readability.

asadmin> osgi inspect service capability 251
== GlassFish EJB Container for OSGi Enabled EJB Applications (251) provides services:
objectClass = org.glassfish.osgijavaeebase.Extender
service.id = 68

objectClass = org.glassfish.osgijavaeebase.OSGiDeployer
service.id = 69
service.ranking = -2147483648
Command osgi executed successfully.
...
asadmin> osgi -shell
Use "exit" to exit and "help" for online help.
gogo$ inspect service capability 251
== GlassFish EJB Container for OSGi Enabled EJB Applications (251) provides services:
objectClass = org.glassfish.osgijavaeebase.Extender
service.id = 68

20

...
gogo$

To Download and Install the GlassFish OSGi Web Console

The GlassFish OSGi Web Console is distributed as follows:

• As an add-on component for Eclipse GlassFish

• As a set of files from the GlassFish Maven repository

In both distributions, the GlassFish OSGi Web Console is provided as an extension to the
Administration Console and as a standalone web application.

1. Perform one of the following sets of steps, depending on how you are obtaining the GlassFish
OSGi Web Console.

◦ If you are obtaining the console as an add-on component, install the GlassFish OSGi Admin
Console component.

◦ If you are obtaining the console from the Maven repository, download and unzip the
required files.

2. Download the following files to the parent of the glassfish7 directory of your Eclipse GlassFish
installation. glassfish-osgi-http-3.1.2.zip

glassfish-osgi-gui-3.1.2.zip

3. Unzip the files that you downloaded.

The contents of the files are added to the as-install/modules/autostart directory of your Eclipse
GlassFish installation.

4. Restart the DAS. For instructions, see To Restart a Domain.

Next Steps

After downloading and installing the GlassFish OSGi Web Console, you can access the console as
explained in the following sections:

• To Access the GlassFish OSGi Web Console Through the Eclipse GlassFish Administration
Console

• To Access the GlassFish OSGi Web Console as a Standalone Web Application

To Access the GlassFish OSGi Web Console Through the Eclipse GlassFish Administration
Console

A tab for the GlassFish OSGi Web Console is provided for the DAS and for every Eclipse GlassFish
instance in a domain.

1. Ensure that the DAS and the instance for which you want to access the GlassFish OSGi Web
Console are running.

21

https://maven.java.net
http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-http/3.1.2/glassfish-osgi-http-3.1.2.zip
http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-gui/3.1.2/glassfish-osgi-gui-3.1.2.zip

2. Start the Eclipse GlassFish Administration Console. For instructions, see Administration Console.

3. Open the Administration Console page for the DAS or instance for which you are accessing the
GlassFish OSGi Web Console.

◦ For the DAS, in the navigation tree, select the server (Admin Server) node.

◦ For a standalone instance, perform these steps:

a. In the navigation tree, expand the Standalone Instances node.

b. Under the Standalone Instances node, select the instance.

◦ For a clustered instance, perform these steps:

a. In the navigation tree, expand the Clusters node.

b. Under the Clusters node, select the cluster that contains the instance. The General
Information page for the cluster opens.

c. In the General Information page for the cluster, click the Instances tab. The Clustered
Server Instances page for the cluster opens.

d. In the Server Instances table on the Clustered Server Instances page, select the instance.

4. On the Administration Console page for the DAS or instance, click the OSGi Console tab. You are
prompted for the user name and password of the administrative user of the GlassFish OSGi Web
Console.

5. In response to the prompt, provide the user name and password of the administrative user of
the GlassFish OSGi Web Console. The user name and password of this user are both preset to
admin. The GlassFish OSGi Web Console page opens.

To Access the GlassFish OSGi Web Console as a Standalone Web Application

1. Ensure that the DAS or the instance for which you want to access the GlassFish OSGi Web
Console is running.

2. In a web browser, open the following location:

http://host:http-port/osgi/system/console/

host

The host where the DAS or instance is running.

http-port

The port on which Eclipse GlassFish listens for HTTP requests. The default is 8080.

For example, if the DAS is running on the local host and Eclipse GlassFish listens for HTTP
requests on the default port, open the following location:

+

http://localhost:8080/osgi/system/console/

22

3. When prompted, provide the user name and password of the administrative user of the
GlassFish OSGi Web Console.

The user name and password of this user are both preset to admin.

keytool Utility

The keytool utility is used to set up and work with Java Security Socket Extension (JSSE) digital
certificates. See "Administering JSSE Certificates" in Eclipse GlassFish Security Guide for
instructions on using keytool.

Java Monitoring and Management Console (JConsole)

Java SE provides tools to connect to an MBean server and view the MBeans that are registered with
the server. JConsole is one such popular JMX Connector Client and is available as part of the
standard Java SE distribution. For instructions on implementing JConsole in the Eclipse GlassFish
environment, see Configuring JConsole to View Eclipse GlassFish Monitoring Data.

Instructions for Administering Eclipse GlassFish
Information and instructions on performing most of the administration tasks from the command
line are provided in this document and in the asadmin utility help pages. For instructions on
accessing asadmin online help, see To Display Help Information for the asadmin Utility or a
Subcommand.

Information and instructions for accomplishing the tasks by using the Administration Console are
contained in the Administration Console online help.

Instructions written for the Eclipse GlassFish tools use standard UNIX forward
slashes (/) for directory path separators in commands and file names. If you are
running Eclipse GlassFish on a Microsoft Windows system, use backslashes (\)
instead. For example:

• UNIX: as-install/bin/asadmin

• Windows: as-install\bin\asadmin

The following additional documents address specific administration areas:

• Verifying and deploying applications Eclipse GlassFish Application Deployment Guide

23

https://glassfish.org/docs/latest/security-guide.pdf#administering-jsse-certificates
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

Part I

24

Runtime Administration

25

2 General Administration
This chapter provides instructions for performing general administration tasks in the Eclipse
GlassFish 7 environment by using the asadmin command-line utility.

The following topics are addressed here:

• Using the asadmin Utility

• Administering System Properties

• Using Configuration Modularity

• Administering Resources

• Listing Various System Elements

• Using REST Interfaces to Administer Eclipse GlassFish

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

Using the asadmin Utility
Use the asadmin utility to perform administrative tasks for Eclipse GlassFish from the command line
or from a script. You can use this utility instead of the Administration Console interface.

The following topics are addressed here:

• Path to the asadmin Utility

• <<`asadmin` Utility Syntax>>

• To Run an asadmin Utility Subcommand in Single Mode

• To Display Help Information for the asadmin Utility or a Subcommand

• To Start a Multimode Session

• To End a Multimode Session

• To Run a Set of asadmin Subcommands From a File

• To Run asadmin Subcommands in --detach Mode

Path to the asadmin Utility

The asadmin utility is located in the as-install/bin directory. To run the asadmin utility without
specifying the path, ensure that this directory is in your path.

asadmin Utility Syntax

The syntax for running the asadmin utility is as follows:

asadmin [asadmin-util-options] [subcommand [subcommand-options] [operands]]

26

The replaceable items in this syntax are described in the subsections that follow. For full details of
this syntax, see the asadmin(1M) help page.

Subcommands of the asadmin Utility

The subcommand identifies the operation or task that you are performing. Subcommands are case-
sensitive. Each subcommand is either a local subcommand or a remote subcommand.

• A local subcommand can be run without a running domain administration server (DAS).
However, to run the subcommand and have access to the installation directory and the domain
directory, the user must be logged in to the machine that hosts the domain.

• A remote subcommand is always run by connecting to a DAS and running the subcommand
there. A running DAS is required.

For a list of the subcommands for this release of Eclipse GlassFish, see Section 1 of the Eclipse
GlassFish Reference Manual.

asadmin Utility Options and Subcommand Options

Options control the behavior of the asadmin utility and its subcommands. Options are case-sensitive.

The asadmin utility has the following types of options:

• asadmin utility options. These options control the behavior of the asadmin utility, not the
subcommand. The asadmin utility options may precede or follow the subcommand, but asadmin
utility options after the subcommand are deprecated. All asadmin utility options must either
precede or follow the subcommand. If asadmin utility options are specified both before and after
the subcommand, an error occurs. For a description of the asadmin utility options, see the
asadmin(1M) help page.

• Subcommand Options. These options control the behavior of the subcommand, not the asadmin
utility. Subcommand options must follow the subcommand. For a description of a
subcommand’s options, see the entry for the subcommand in the Eclipse GlassFish Reference
Manual.

Not all subcommand options are supported for this release of Eclipse GlassFish.
If you specify an unsupported option, a syntax error does not occur. Instead,
the command runs successfully and the unsupported option is silently ignored.

A subcommand option may have the same name as an asadmin utility option, but the effects of the
two options are different.

Options have a long form and a short form.

• The short form of an option has a single dash (-) followed by a single character.

• The long form of an option has two dashes (--) followed by an option word.

For example, the short form and the long form of the option for specifying terse output are as
follows:

27

https://github.com/eclipse-ee4j/glassfishdoc/5.0/reference-manual.pdf
https://github.com/eclipse-ee4j/glassfishdoc/5.0/reference-manual.pdf
https://github.com/eclipse-ee4j/glassfishdoc/5.0/reference-manual.pdf
https://github.com/eclipse-ee4j/glassfishdoc/5.0/reference-manual.pdf
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://github.com/eclipse-ee4j/glassfishdoc/5.0/reference-manual.pdf
https://github.com/eclipse-ee4j/glassfishdoc/5.0/reference-manual.pdf

• Short form: -t

• Long form: --terse

Most options require argument values, except Boolean options, which toggle to enable or disable a
feature.

Operands of asadmin Utility Subcommands

Operands specify the items on which the subcommand is to act. Operands must follow the
argument values of subcommand options, and are set off by a space, a tab, or double dashes (--).
The asadmin utility treats anything that follows the subcommand options and their values as an
operand.

To Run an asadmin Utility Subcommand in Single Mode

In single mode, you must type a separate asadmin command for each subcommand that you want to
use. After the subcommand has run, you are returned to the operating system’s command shell.
Any asadmin utility options must be specified in each separate asadmin command that you run. If you
require the same asadmin utility options for multiple subcommands, use the asadmin utility in
multimode. For more information, see To Start a Multimode Session.

1. In the operating system’s command shell, run the asadmin utility, specifying the subcommand.

2. If necessary, also specify any required asadmin utility options, subcommand options, and
operands.

Example 2-1 Running an asadmin Utility Subcommand in Single Mode

This example runs the list-applications subcommand in single mode. In this example, the default
values for all options are used.

The example shows that the application hello is deployed on the local host.

asadmin list-applications
hello <web>
Command list-applications executed successfully.

Example 2-2 Specifying an asadmin Utility Option With a Subcommand in Single Mode

This example specifies the --host asadmin utility option with the list-applications subcommand in
single mode. In this example, the DAS is running on the host srvr1.example.com.

The example shows that the applications basic-ezcomp, scrumtoys, ejb31-war, and automatic-timer-
ejb are deployed on the host srvr1.example.com.

asadmin --host srvr1.example.com list-applications
basic-ezcomp <web>
scrumtoys <web>
ejb31-war <ejb, web>

28

https://glassfish.org/docs/latest/reference-manual.pdf#list-applications

automatic-timer-ejb <ejb>
Command list-applications executed successfully.

Example 2-3 Specifying an asadmin Utility Option and a Subcommand Option in Single Mode

This example specifies the --host asadmin utility option and the --type subcommand option with the
list-applications subcommand in single mode. In this example, the DAS is running on the host
srvr1.example.com and applications of type web are to be listed.

asadmin --host srvr1.example.com list-applications --type web
basic-ezcomp <web>
scrumtoys <web>
ejb31-war <ejb, web>
Command list-applications executed successfully.

To Display Help Information for the asadmin Utility or a Subcommand

Eclipse GlassFish provides help information about the syntax, purpose, and options of the asadmin
utility and its subcommands. This help information is written in the style of UNIX platform man
pages. This help information is also available in the Eclipse GlassFish Reference Manual.

1. If you are displaying help information for a remote subcommand, ensure that the server is
running.

Remote subcommands require a running server.

2. Specify the subcommand of interest as the operand of the help subcommand.

If you run the help subcommand without an operand, help information for the asadmin utility is
displayed.

Example 2-4 Displaying Help Information for the asadmin Utility

This example displays the help information for the asadmin utility.

asadmin help

Example 2-5 Displaying Help Information for an asadmin Utility Subcommand

This example displays the help information for the create-jdbc-resource subcommand.

asadmin help create-jdbc-resource

See Also

To display the available subcommands, use the list-commands subcommand. Local subcommands
are displayed before remote subcommands. If the server is not running, only local subcommands

29

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#list-commands

are displayed.

To Start a Multimode Session

The asadmin utility can be used in multiple command mode, or multimode. In multimode, you run
the asadmin utility once to start a multimode session. During the session, the asadmin utility
continues to accept subcommands until you end the session and return to the operating system’s
command shell. Any asadmin utility options that you set for your multimode session are used for all
subsequent subcommands in the session.

 Starting a multimode session does not require a running DAS.

1. Do one of the following:

◦ Run the asadmin utility without a subcommand.

◦ Use the multimode subcommand.

2. If necessary, also specify any asadmin utility options that will apply throughout the multimode
session.

3. In a multimode session, the asadmin> prompt is displayed on the command line. You can now
type asadmin subcommands at this prompt to administer Eclipse GlassFish.

Example 2-6 Starting a Multimode Session With asadmin Utility Options

This example starts a multimode session in which the asadmin utility options --user and
--passwordfile are set for the session.

asadmin --user admin1 --passwordfile pwd.txt multimode

Example 2-7 Starting a Multimode Session by Using the multimode Subcommand

This example uses the multimode subcommand to start a multimode session in which the default
asadmin utility options are used.

asadmin multimode

The asadmin> prompt is displayed on the command line.

Example 2-8 Running a Subcommand in a Multimode Session

This example starts a multimode session and runs the list-domains subcommand in the session.

asadmin
Enter commands one per "line", ^D to quit
asadmin> list-domains
Name: domain1 Status: Running
Command list-domains executed successfully.

30

https://glassfish.org/docs/latest/reference-manual.pdf#multimode

asadmin>

Starting a Multimode Session From Within an Existing Multimode Session

You can start a multimode session from within an existing session by running the multimode
subcommand from within the existing session. After you end the second multimode session, you
return to your original multimode session.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help multimode
at the command line.

To End a Multimode Session

At the asadmin> prompt, type one of the following commands or key combinations:

• exit

• quit

• UNIX and Linux systems: Ctrl-D

• Windows systems: Ctrl-Z

Do not type Ctrl-C to end a multimode session. If a domain or Eclipse GlassFish
instance is started from the multimode session, typing Ctrl-C kills the domain or
instance process.

You are returned to the operating system’s command shell and the asadmin> prompt is no longer
displayed. If the asadmin> prompt is still displayed, you might have opened a multimode session
within a multimode session. In this situation, repeat this procedure to end the remaining
multimode session.

To Run a Set of asadmin Subcommands From a File

Running a set of asadmin subcommands from a file enables you to automate repetitive tasks.

1. Create a plain text file that contains the sequence of subcommands that you want to run.

2. Run the multimode subcommand, specifying the file that you created.

If necessary, also specify any asadmin utility options that are required to enable subcommands in
the file to run.

Example 2-9 Running a Set of asadmin Subcommands From a File

This example contains the following:

• A listing of a file that is named commands_file.txt, which contains a sequence of asadmin
subcommands

• The command to run the subcommands in the file commands_file.txt

31

https://glassfish.org/docs/latest/reference-manual.pdf#multimode

The commands_file.txt file contains the asadmin utility subcommands to perform the following
sequence of operations:

1. Creating the domain customdomain

2. Starting the domain customdomain

3. Listing all available subcommands

4. Stopping the domain customdomain

5. Deleting the domain customdomain

The content of the commands_file.txt file is as follows:

create-domain --portbase 9000 customdomain
start-domain customdomain
list-commands
stop-domain customdomain
delete-domain customdomain

This example runs the sequence of subcommands in the commands_file.txt file. Because the
--portbase option is specified for the create-domain subcommand in the file, the --port asadmin
utility option must also be set.

asadmin --port 9048 multimode --file commands_file.txt

See Also

For more information about the subcommands in the preceding example, see the following help
pages:

• create-domain(1)

• delete-domain(1)

• list-commands(1)

• multimode(1)

• start-domain(1)

• stop-domain(1)

To Run asadmin Subcommands in --detach Mode

You can use the --detach option of the asadmin utility to detach asadmin subcommands and run them
in the background in detach mode. The asadmin --detach option is useful for long-running
subcommands and enables you to run several independent subcommands from one console or
script.

1. Ensure that the server is running. Remote commands require a running server.

2. Detach and run the subcommand by using the asadmin --detach option.

32

https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#delete-domain
https://glassfish.org/docs/latest/reference-manual.pdf#delete-domain
https://glassfish.org/docs/latest/reference-manual.pdf#list-commands
https://glassfish.org/docs/latest/reference-manual.pdf#list-commands
https://glassfish.org/docs/latest/reference-manual.pdf#multimode
https://glassfish.org/docs/latest/reference-manual.pdf#multimode
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain

Example 2-10 Using the --detach Option in Single Mode

This example uses the asadmin --detach option in single mode to run the create-cluster
subcommand.

asadmin --detach create-cluster Cluster1
Job ID: 1
Command create-cluster started successfully.

Example 2-11 Using the --detach Option in Multimode

This example uses the asadmin --detach option in multimode to run the create-cluster
subcommand.

asadmin> create-cluster Cluster1 --detach
Job ID: 1
Command create-cluster started successfully.

Job IDs are assigned to subcommands that are started using the asadmin --detach option or that
contain progress information. You can use the list-jobs subcommand to list jobs and their job IDs,
the attach subcommand to reattach to a job and view its status, and the configure-managed-jobs
subcommand to configure how long information about jobs is kept.

Example 2-12 Listing Jobs

This example runs the list-jobs subcommand in multimode to list jobs and job information.

asadmin> list-jobs
JOB ID COMMAND STATE EXIT CODE TIME OF COMPLETION
1 create-cluster COMPLETED SUCCESS 2013-02-15 16:16:16 PST
2 deploy COMPLETED FAILURE 2013-02-15 18:26:30 PST
Command list-jobs executed successfully

Example 2-13 Attaching to a Subcommand and Checking Its Status

This example runs the attach subcommand in multimode to attach to the create-cluster
subcommand with a job ID of 1. If a subcommand is still in progress, the output displays the current
status, such as percentage complete.

asadmin> attach 1
Command create-cluster executed with status SUCCESS.
Command attach executed successfully.

Example 2-14 Configuring Managed Jobs

This example runs the configure-managed-jobs subcommand in multimode to set the job retention

33

period to 36 hours. Time periods can be specified in Hh|Mm|Ss for hours, minutes, or seconds.

asadmin> configure-managed-jobs --job-retention-period=36h
Command configure-managed-jobs executed successfully.

See Also

For the full syntax and options of the subcommands in the preceding examples, see the following
help pages:

• attach(1)

• configure-managed-jobs(1)

• list-jobs(1)

Administering System Properties
Shared server instances will often need to override attributes defined in their referenced
configuration. Any configuration attribute can be overridden through a system property of the
corresponding name.

The following topics are addressed here:

• To Create System Properties

• To List System Properties

• To Delete a System Property

To Create System Properties

Use the create-system-properties subcommand in remote mode to create or update one or more
system properties of the domain or configuration. Any configuration attribute can be overwritten
through a system property of the corresponding name.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create system properties by using the create-system-properties subcommand.

Information about properties for the subcommand is included in this help page.

Example 2-15 Creating a System Property

This example creates a system property associated with http-listener-port=1088 on localhost.

asadmin> create-system-properties http-listener-port=1088
Command create-system-properties executed successfully.

See Also

34

https://glassfish.org/docs/latest/reference-manual.pdf#attach
https://glassfish.org/docs/latest/reference-manual.pdf#attach
https://glassfish.org/docs/latest/reference-manual.pdf#configure-managed-jobs
https://glassfish.org/docs/latest/reference-manual.pdf#configure-managed-jobs
https://glassfish.org/docs/latest/reference-manual.pdf#list-jobs
https://glassfish.org/docs/latest/reference-manual.pdf#list-jobs
https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties

You can also view the full syntax and options of the subcommand by typing asadmin help create-
system-properties at the command line.

To List System Properties

Use the list-system-properties subcommand in remote mode to list the system properties that
apply to a domain, cluster, or server instance or configuration.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List system properties by using the list-system-properties subcommand.

The existing system properties are displayed, including predefined properties such as
HTTP_LISTENER_PORT and HTTP_SSL_LISTENER_PORT.

Example 2-16 Listing System Properties

This example lists the system properties on host localhost.

asadmin> list-system-properties
http-listener-port=1088
Command list-system-properties executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
system-properties at the command line.

To Delete a System Property

Use the delete-system-property subcommand in remote mode to delete system properties.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the existing system properties by using the list-system-properties subcommand.

3. Delete the system property by using the delete-system-property subcommand.

4. If necessary, notify users that the system property has been deleted.

Example 2-17 Deleting a System Property

This example deletes a system property named http-listener-port from localhost.

asadmin> delete-system-property http-listener-port
Command delete-system-property executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
system-property at the command line.

35

https://glassfish.org/docs/latest/reference-manual.pdf#list-system-properties
https://glassfish.org/docs/latest/reference-manual.pdf#list-system-properties
https://glassfish.org/docs/latest/reference-manual.pdf#delete-system-property

Using Configuration Modularity
With configuration modularity in Eclipse GlassFish, new modules can be added to Eclipse GlassFish
distributions without modifying the global domain.xml configuration file. Default configuration data
for modules is stored in the modules themselves, rather than in domain.xml, and loaded when
needed.

Module configuration elements are stored in domain.xml only when the default configuration
included in the module is changed or when module configuration elements are added to domain.xml
using the create-module-config subcommand. The delete-module-config subcommand removes
module configuration elements from domain.xml, and the get-active-module-config subcommand
displays the current active configuration of a module.

To Add the Default Configuration of a Module to domain.xml

Use the create-module-config subcommand to add the default configuration of a module to
domain.xml.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Add the default configuration of a module to domain.xml by using the create-module-config
subcommand.

Example 2-18 Adding Module Configuration to domain.xml

This example adds the default configuration of the web container module to domain1 in server-
config (the default configuration). Use the --dryrun option to preview the configuration before it is
added.

asadmin> create-module-config web-container
Command create-module-config executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
module-config at the command line.

To Remove the Configuration of a Module From domain.xml

Use the delete-module-config subcommand to remove the configuration of a module from
domain.xml and cause the module to use the default configuration included in the module.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Remove the configuration of a module from domain.xml by using the delete-module-config
subcommand.

36

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource

Example 2-19 Removing Module Configuration From domain.xml

This example deletes the configuration of the web container module from domain1 in server-config
(the default configuration).

asadmin> delete-module-config web-container
Command delete-module-config executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
module-config at the command line.

To Display the Current Active Configuration of a Module

Use the get-active-module-config subcommand to display the current active configuration of a
module.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Display the current active configuration of a module by using the get-active-module-config
subcommand.

Example 2-20 Displaying the Current Active Configuration of a Module

This example displays the current active configuration of the JMS service in server-config (the
default configuration).

asadmin> get-active-module-config jms-service
At location: domain/configs/config[server-config]
<jms-service default-jms-host="default_JMS_host" type="EMBEDDED"
 <jms-host port="7676" host="localhost" name="default_JMS_host"/>
</jms-service>
Command get-active-module-config executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help get-
active-module-config at the command line.

Administering Resources
This section contains instructions for integrating resources into the Eclipse GlassFish environment.
Information about administering specific resources, such as JDBC, is contained in other chapters.

To Add Resources From an XML File

Use the add-resources subcommand in remote mode to create the resources named in the specified

37

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource

XML file. The following resources are supported: JDBC connection pool and resource, JMS, JNDI,
and Jakarta Mail resources, custom resource, connector resource and work security map, admin
object, and resource adapter configuration.

The XML file must reside in the domain-dir/config directory. If you specify a relative path or simply
provide the name of the XML file, this subcommand will prepend domain-dir/config to this
operand.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Add resources from an XML file by using the add-resources subcommand.

Information about properties for the subcommand is included in this help page.

3. Restart Eclipse GlassFish.

See To Restart a Domain.

Example 2-21 Adding Resources

This example creates resources using the contents of the resource.xml file on localhost.

asadmin> add-resources c:\tmp\resource.xml
Command : JDBC resource jdbc1 created successfully.
Command : JDBC connection pool poolA created successfully.
Command add-resources executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help add-
resources at the command line.

Listing Various System Elements
The following topics are addressed here:

• To Display the Eclipse GlassFish Version

• To List Applications

• To List Containers

• To List Modules

• To List Subcommands

• To List Timers

• To Show Component Status

To Display the Eclipse GlassFish Version

Use the version subcommand in remote mode to display information about the Eclipse GlassFish

38

https://glassfish.org/docs/latest/reference-manual.pdf#add-resources

version for a particular server. If the subcommand cannot communicate with the server by using
the specified login (user/password) and target (host/port) information, then the local version is
displayed along with a warning message.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Display the version by using the version subcommand.

Example 2-22 Displaying Version Information

This example displays the version of Eclipse GlassFish on the local host.

asadmin> version
Version = Eclipse GlassFish 7.0.0 (build 19)
Command version executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help version at
the command line.

To List Applications

Use the list-applications subcommand in remote mode to list the deployed Java applications. If the
--type option is not specified, all applications are listed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List applications by using the list-applications subcommand.

Example 2-23 Listing Applications

This example lists the web applications on localhost.

asadmin> list-applications --type web
hellojsp <web>
Command list-applications executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
applications at the command line.

To List Containers

Use the list-containers subcommand in remote mode to list application containers.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List containers by using the list-containers subcommand.

39

https://glassfish.org/docs/latest/reference-manual.pdf#version
https://glassfish.org/docs/latest/reference-manual.pdf#list-applications
https://glassfish.org/docs/latest/reference-manual.pdf#list-containers

Example 2-24 Listing Containers

This example lists the containers on localhost.

asadmin> list-containers
List all known application containers
Container : grizzly
Container : ejb
Container : webservices
Container : ear
Container : appclient
Container : connector
Container : jpa
Container : web
Container : security
Container : webbeans
Command list-containers executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
containers at the command line.

To List Modules

Use the list-modules subcommand in remote mode to list the modules that are accessible to the
Eclipse GlassFish module subsystem. The status of each module is included. Possible statuses
include NEW and READY.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List modules by using the list-modules subcommand.

Example 2-25 Listing Modules

This example lists the accessible modules.

asadmin> list-modules

Information similar to the following is displayed (partial output):

List Of Modules
Module : org.glassfish.web.jstl-connector:10.0.0.b28
 properties=(visibility=public,State=READY,Sticky=true)
 Module Characteristics : List of Jars implementing the module
 Jar : file:/C:/Preview/v3_Preview_release/distributions/web/target/glass
fish/modules/web/jstl-connector.jar
 Module Characteristics : List of imported modules
 Module Characteristics : Provides to following services

40

https://glassfish.org/docs/latest/reference-manual.pdf#list-modules

Module : org.glassfish.admingui.console-common:10.0.0.b28
 properties=(visibility=public,State=NEW,Sticky=true)
Module : org.glassfish.admin.launcher:10.0.0.b28
 properties=(visibility=public,State=NEW,Sticky=true)
Module : org.glassfish.external.commons-codec-repackaged:10.0.0.b28
 properties=(visibility=public,State=NEW,Sticky=true)
Module : com.sun.enterprise.tiger-types-osgi:0.3.32.Preview-b28
 properties=(visibility=public,State=READY,Sticky=true)
 Module Characteristics : List of imported modules
 Module Characteristics : Provides to following services
 Module Characteristics : List of Jars implementing the module
 Jar : file:/C:/Preview/v3_Preview_release/distributions/web/target/glass
fish/modules/tiger-types-osgi.jar.
...
Command list-modules executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
modules at the command line.

To List Subcommands

Use the list-commands subcommand in remote mode to list the deployed asadmin subcommands. You
can specify that only remote subcommands or only local subcommands are listed. By default, this
subcommand displays a list of local subcommands followed by a list of remote subcommands.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List subcommands by using the list-commands subcommand.

Example 2-26 Listing Subcommands

This example lists only local subcommands.

asadmin> list-commands --localonly
create-domain
delete-domain
list-commands
list-domains
login
monitor
start-database
start-domain
stop-domain
stop-database
version
Command list-commands executed successfully.

See Also

41

https://glassfish.org/docs/latest/reference-manual.pdf#list-commands

You can also view the full syntax and options of the subcommand by typing asadmin help list-
commands at the command line.

To List Timers

The timer service is a persistent and transactional notification service that is provided by the
enterprise bean container and is used to schedule notifications or events used by enterprise beans.
All enterprise beans except stateful session beans can receive notifications from the timer service.
Persistent timers set by the service are not destroyed when the server is shut down or restarted.

Use the list-timers subcommand in remote mode to list the persistent timers owned by a specific
server instance. You can use this information to decide whether to do a timer migration, or to verify
that a migration has been completed successfully.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List timers by using the list-timers subcommand.

Example 2-27 Listing Timers

This example lists the timers in a particular standalone server instance. There is one currently
active timer set.

asadmin> list-timers server
1
The list-timers command was executed successfully.

To Show Component Status

Use the show-component-status subcommand in remote mode to get the status (either enabled or
disabled) of the specified deployed component.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Show component status by using the show-component-status subcommand.

Example 2-28 Showing Status of a Component

This example shows the status of the MEjbApp component.

asadmin> show-component-status MEjbApp
Status of MEjbApp is enabled
Command show-component-status executed successfully.

Using REST Interfaces to Administer Eclipse GlassFish
Eclipse GlassFish provides representational state transfer (REST) interfaces to enable you to access
monitoring and configuration data for Eclipse GlassFish, including data that is provided by newly
installed add-on components.

42

https://glassfish.org/docs/latest/reference-manual.pdf#list-timers
https://glassfish.org/docs/latest/reference-manual.pdf#show-component-status

You can access the Eclipse GlassFish REST interfaces through client applications such as:

• Web browsers

• cURL

• GNU Wget

You can also use the Eclipse GlassFish REST interfaces in REST client applications that are
developed in languages such as:

• JavaScript

• Ruby

• Perl

• Java

• JavaFX

The implementation of the Eclipse GlassFish REST interfaces is based on project Jersey. Project
Jersey is the reference implementation of Java Specification Request (JSR) 311: JAX-RS: The Java API
for RESTful Web Services. Information about JSR 311 is also available from the JSR 311 project
home page . Information about Jakarta RESTful Web Services is here: https://jakarta.ee/
specifications/restful-ws/

The following topics are addressed here:

• Using REST URLs to Administer Eclipse GlassFish

• Using REST Resource Methods to Administer Eclipse GlassFish

• Resources for asadmin Subcommands That Perform Non-CRUD Operations

• Securing Eclipse GlassFish REST Interfaces

• Formats for Resource Representation of Configuration Objects

• Formats for Resource Representation of Monitoring Objects

• Formats for Resource Representation of Log File Details

• Supported Content Types in Requests to REST Resources

Using REST URLs to Administer Eclipse GlassFish

Each object in the configuration and monitoring object trees is represented as a REST resource that
is accessible through an HTTP uniform resource locator (URL). Access to REST resources for Eclipse
GlassFish monitoring and configuration data requires a running DAS.

REST URLs to Resources for Configuration and Monitoring Objects

The formats of the URLs to resources that represent objects in the configuration and monitoring
object trees are as follows:

• Configuration: http://`host:`port`/management/domain/`path

43

http://curl.haxx.se/
http://www.gnu.org/software/wget/
https://eclipse-ee4j.github.io/jersey/
http://jcp.org/en/jsr/summary?id=311
http://jcp.org/en/jsr/summary?id=311
https://javaee.github.io/jsr311/
https://javaee.github.io/jsr311/
https://jakarta.ee/specifications/restful-ws/
https://jakarta.ee/specifications/restful-ws/
http://`host

• Monitoring: http://`host:`port`/monitoring/domain/`path

The replaceable items in these URLs are as follows:

host

The host where the DAS is running.

port

The HTTP port or HTTPS port for administration.

path

The path to the object. The path is the dotted name of the object in which each dot (.) is replaced
with a slash (/).

The path to a Eclipse GlassFish instance is servers/server/instance-name,
where instance-name is the name of the instance. For the DAS, instance-name is
server and the path is servers/server/server.

For more information, see the following documentation:

• The dotted-names(5ASC) help page

• How the Monitoring Tree Structure Works

• How Dotted Names Work for Configuration

If the URL to a REST resource for Eclipse GlassFish monitoring or configuration data is opened in a
web browser, the browser displays a web page that contains the following information about the
resource:

• A list of the attributes of the resource and their values. If the resource represents an object in
the configuration tree, these attributes are presented in an HTML form that you can use to
update the resource. Attributes of a resource for an object in the monitoring tree are read only.

• A list of hypertext links to the children of the resource. This list of links enables you to traverse
the tree that contains the resource and to discover the all resources in the tree.

• A list of hypertext links to resources that represent asadmin subcommands for non-CRUD
operations on the resource.

The following figure shows the web page for the REST resource for managing a domain.

Figure 2-1 Web Page for the REST Resource for Managing a Domain

44

http://`host
https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names
https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names

REST URLs for Accessing the Log File

The server.log file of the DAS is represented as a child that is named view-log of the resource for
managing the domain. A child of the resource for the server.log file represents the log file details

The formats of the URLs to resources that represent the log file are as follows:

• Log file: http://host:port/management/domain/view-log

• Log file details: http://host:port/monitoring/domain/view-log/details

The replaceable items in these URLs are as follows:

host

The host where the DAS is running.

port

The HTTP port or HTTPS port for administration.

You can use the optional start parameter in the URL to the resource for the log file to specify the
number of characters at the start of the file to skip. For example, to skip 10,000 characters, specify
the URL as http://localhost:4848/management/domain/view-log?start=10000. This example assumes
that the DAS is running on the local host and uses the default port for administration.

45

http://localhost:4848/management/domain/view-log?start=10000

The resource for the log file returns the HTTP header "X-Text-Append-Next", which contains the
entire URL to pass to the GET method to return the changes since the last call. You can use this
header in client applications to get all log entries that were added in particular interval. For
example, by testing the value of the "X-Text-Append-Next" header in a client thread every 10
seconds, you can monitor the log entries that were added in the last 10 seconds.

Using REST Resource Methods to Administer Eclipse GlassFish

The Eclipse GlassFish REST interfaces support methods for accessing objects in the monitoring and
configuration object trees.

The following table shows the REST methods for administering monitoring and configuration data
and the tasks that you can perform with each method. These methods are HTTP 1.1 primitives. For
the detailed specification of these primitives, see Hypertext Transfer Protocol — HTTP/1.1 .

Table 2-1 REST Resource Methods for Administering Monitoring and Configuration Data

Task REST Method

Determine the methods and method parameters that an object in the
tree supports

GET

Retrieve data for an object in the tree GET

Add an object to the tree POST

Update an object in the tree POST

Delete an object from the tree DELETE

REST requests that add, update, or delete objects must specify the X-Requested-By
header with the value GlassFish REST HTML interface.

The GET method determines the methods and method parameters that an object in
the tree supports and provides additional information about the object. For details,
see To Retrieve Data for an Object in the Tree.

To Determine the Methods and Method Parameters That an Object in the Tree Supports

The methods and method parameters that an object in the tree supports depend on the REST
resource that represents the object:

• REST resources for monitoring support only the GET method.

• All REST resources for configuration support the GET method. However, only some REST
resources for configuration also support the POST method and the DELETE method.

Before performing any operations on an object in the tree, determine the methods and method
parameters that the object supports.

You can specify the format in which this information is presented. For more information, see
Formats for Resource Representation of Configuration Objects.

46

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Each POST method and DELETE method that a REST resource supports has an
equivalent asadmin subcommand. The parameters of a POST method or a DELETE
method correspond to the options of the method’s equivalent asadmin
subcommand. For information about the options of asadmin subcommand, see the
Eclipse GlassFish Reference Manual.

1. Ensure that the server is running.

Operations on REST resources for Eclipse GlassFish data require a running server.

2. Use the GET method on the REST resource that represents the object.

The GET method returns the list of methods that the resource supports. For each method, the list
of acceptable message parameters or the list of acceptable query parameters are returned.

Example 2-29 Determining the Methods and Method Parameters That an Object in the Tree
Supports

This example uses the cURL utility to determine the methods and method parameters that the
resource for the node sj01 supports. The example uses the following options of the cURL utility:

• -X to specify that the GET method is used

• -H to specify that the resource is represented in JavaScript Object Notation (JSON)

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.
The resource supports the GET method and the POST method.

Line breaks and white space are added to enhance readability.

curl -X GET -H "Accept: application/json"
http://localhost:4848/management/domain/nodes/node/sj01
{
 "command":"Node",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[
 {"path":"_delete-node","command":"delete-node","method":"DELETE"},
 {"path":"_update-node","command":"_update-node","method":"POST"},
 {"path":"ping-node-ssh","command":"ping-node-ssh","method":"GET"},
 {"path":"update-node-ssh","command":"update-node-ssh","method":"POST"},
 {"path":"update-node-config","command":"update-node-config","method":"POST"}],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{
 "installDir":{"optional":"true","type":"string","key":"false"},
 "nodeDir":{"optional":"true","type":"string","key":"false"},
 "nodeHost":{"optional":"true","type":"string","key":"false"},
 "type":{"optional":"true","type":"string","key":"false"}
 }
 }

47

https://glassfish.org/docs/latest/reference-manual.pdf

],
 "entity":{
 "installDir":"\/export\/glassfish7",
 "name":"sj01",
 "nodeDir":null,
 "nodeHost":
 "sj01.example.com",
 "type":"SSH"
 },
 "childResources":{
 "application-ref":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/application-
ref",
 "resource-ref":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/resource-
ref",
 "ssh-connector":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/ssh-
connector"
 }
 }
}

To Retrieve Data for an Object in the Tree

Retrieving data for an object in the tree obtains the following information about the REST resource
that represents the object:

• A list of the REST methods that the resource supports

• A list of the attributes of the resource and their values

• A list of URLs to the children of the resource

You can specify the format in which this information is presented. For more information, see
Formats for Resource Representation of Configuration Objects.

1. Ensure that the server is running.

Operations on REST resources for Eclipse GlassFish data require a running server.

2. Use the GET method on the REST resource that represents the object.

Example 2-30 Retrieving Data for an Object in the Tree

This example uses the cURL utility to retrieve data for the resource for a the node sj01. The
example uses the following options of the cURL utility:

• -X to specify that the GET method is used

• -H to specify that the resource is represented in JavaScript Object Notation (JSON)

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.

48

Line breaks and white space are added to enhance readability.

curl -X GET -H "Accept: application/json"
http://localhost:4848/management/domain/nodes/node/sj01
{
 "command":"Node",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[
 {"path":"_delete-node","command":"delete-node","method":"DELETE"},
 {"path":"_update-node","command":"_update-node","method":"POST"},
 {"path":"ping-node-ssh","command":"ping-node-ssh","method":"GET"},
 {"path":"update-node-ssh","command":"update-node-ssh","method":"POST"},
 {"path":"update-node-config","command":"update-node-config","method":"POST"}],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{
 "installDir":{"optional":"true","type":"string","key":"false"},
 "nodeDir":{"optional":"true","type":"string","key":"false"},
 "nodeHost":{"optional":"true","type":"string","key":"false"},
 "type":{"optional":"true","type":"string","key":"false"}
 }
 }
],
 "entity":{
 "installDir":"\/export\/glassfish7",
 "name":"sj01",
 "nodeDir":null,
 "nodeHost":
 "sj01.example.com",
 "type":"SSH"
 },
 "childResources":{
 "application-ref":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/application-
ref",
 "resource-ref":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/resource-
ref",
 "ssh-connector":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/ssh-
connector"
 }
 }
}

To Add an Object to the Tree

1. Ensure that the server is running.

49

Operations on REST resources for Eclipse GlassFish data require a running server.

2. Determine the acceptable message parameters for the POST method of the resource that
represents the parent of the object.

For information about how to perform this step, see To Determine the Methods and Method
Parameters That an Object in the Tree Supports.

3. Use the POST method on the REST resource that represents the parent of the object that you are
adding.

4. Confirm that the object has been added.

Perform this step on the resource that represents the object that you have just added, not the
parent. For information about how to perform this step, see To Retrieve Data for an Object in
the Tree.

Example 2-31 Adding an Object to the Tree

This example uses the cURL utility to add a JDBC resource object to the tree by creating a REST
resource to represent the JDBC resource.

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.

Line breaks are added to enhance readability.

1. This step determines the acceptable message parameters for the POST method of the resource
jdbc-resource.

curl -X GET -H "Accept: application/json"
http://localhost:4848/management/domain/resources/jdbc-resource
{
 "command":"Jdbc-resource",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{

"description":{"acceptableValues":"","optional":"true","type":"string","defaultValu
e":""},

"enabled":{"acceptableValues":"",optional":"true","type":"boolean",defaultValue":"t
rue"},

"id":{"acceptableValues":"","optional":"false","type":"string","defaultValue":""},

"poolName":{"acceptableValues":"","optional":"false","type":"string","defaultValue"
:""},

50

"property":{"acceptableValues":"","optional":"true","type":"string","defaultValue":
"},

"target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""
}
 }
 }
],
 "childResources":{
 "jdbc\/__TimerPool":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-
resource\/jdbc%2F__TimerPool",
 "jdbc\/__default":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-
resource\/jdbc%2F__default"
 }
 }
}

2. This step adds a resource as a child of the jdbc-resource resource. The -d option of the cURL
utility sets the required message parameters as follows:

◦ id is set to jdbc/myjdbcresource.

◦ connectionpoolid is set to DerbyPool.

curl -X POST -H "X-Requested-By: GlassFish REST HTML interface"
-d id=jdbc/myjdbcresource -d connectionpoolid=DerbyPool
http://localhost:4848/management/domain/resources/jdbc-resource

3. This step confirms that the object has been added by retrieving data for the REST resource that
represents the object.

curl -X GET -H "Accept: application/json"
http://localhost:4848/management/domain/resources/
jdbc-resource/jdbc%2Fmyjdbcresource
{
 "command":"Jdbc-resource",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{
 "description":{"optional":"true","type":"string","key":"false"},

"enabled":{"optional":"true","type":"boolean","defaultValue":"true","key":"false"},
 "jndiName":{"optional":"true","type":"string","key":"true"},

"objectType":{"optional":"true","type":"string","defaultValue":"user","key":"false"

51

},
 "poolName":{"optional":"true","type":"string","key":"false"}
 }
 },
 {"name":"DELETE","messageParameters":{

"target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""
}
 }
 }
],
 "childResources":{
 "property":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-
resource\/jdbc%2Fmyjdbcresource\/property"
 }
 }
}

To Update an Object in the Tree

1. Ensure that the server is running. Operations on REST resources for Eclipse GlassFish data
require a running server.

2. Determine the acceptable message parameters for the POST method of the resource that
represents the object. For information about how to perform this step, see To Determine the
Methods and Method Parameters That an Object in the Tree Supports.

3. Use the POST method on the REST resource that represents the object that you are updating.

4. Confirm that the object has been updated. For information about how to perform this step, see
To Retrieve Data for an Object in the Tree.

Example 2-32 Updating an Object in the Tree

This example uses the cURL utility to update a JDBC resource in the tree by modifying the REST
resource that represents the JDBC resource.

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.

Line breaks are added to enhance readability.

1. This step determines the acceptable message parameters for the POST method of the resource
jdbc-myjdbcresource.

curl -X OPTIONS -H "Accept: application/json"
http://localhost:4848/management/domain/resources/
jdbc-resource/jdbc-myjdbcresource
{
 "command":"Jdbc-resource",
 "exit_code":"SUCCESS",

52

 "extraProperties":{
 "commands":[],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{
 "description":{"optional":"true","type":"string","key":"false"},

"enabled":{"optional":"true","type":"boolean","defaultValue":"true","key":"false"},
 "jndiName":{"optional":"true","type":"string","key":"true"},

"objectType":{"optional":"true","type":"string","defaultValue":"user","key":"false"
},
 "poolName":{"optional":"true","type":"string","key":"false"}
 }
 },
 {"name":"DELETE","messageParameters":{

"target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""
}
 }
 }
],
 "childResources":{
 "property":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-
resource\/jdbc%2Fmyjdbcresource\/property"
 }
 }
}

2. This step updates the REST resource jdbc-myjdbcresource to disable the JDBC resource that jdbc-
myjdbcresource represents. The -d option of the cURL utility sets the enabled message parameter
to disabled.

curl -X POST -H "X-Requested-By: GlassFish REST HTML interface"
-d "enabled=false" http://localhost:4848/management/domain/resources/
jdbc-resource/jdbc%2Fmyjdbcresource

3. This step confirms that the object has been updated by retrieving data for the REST resource
that represents the object.

curl -X GET -H "Accept: application/json"
http://localhost:4848/management/domain/resources/
jdbc-resource/jdbc%2Fmyjdbcresource
{
 "command":"Jdbc-resource",
 "exit_code":"SUCCESS",
 "extraProperties":{

53

 "commands":[],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{
 "description":{"optional":"true","type":"string","key":"false"},

"enabled":{"optional":"true","type":"boolean","defaultValue":"true","key":"false"},
 "jndiName":{"optional":"true","type":"string","key":"true"},
 "objectType":{"optional":"true","type":"string","defaultValue":
 "user","key":"false"},
 "poolName":{"optional":"true","type":"string","key":"false"}
 }
 },
 {"name":"DELETE","messageParameters":{

"target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""
}
 }
 }
],
 "entity":{
 "description":null,
 "enabled":"false",
 "jndiName":"jdbc\/myjdbcresource",
 "objectType":
 "user",
 "poolName":"DerbyPool"
 },
 "childResources":{
 "property":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-resource\/
 jdbc%2Fmyjdbcresource\/property"
 }
 }
}

To Delete an Object From the Tree

1. Ensure that the server is running.

Operations on REST resources for Eclipse GlassFish data require a running server.

2. Confirm that the object can be deleted.

For information about how to perform this step, see To Determine the Methods and Method
Parameters That an Object in the Tree Supports.

3. Confirm that the object has been deleted.

Perform this step on the resource that represents the parent of the object that you have just
deleted. For information about how to perform this step, see To Retrieve Data for an Object in

54

the Tree.

Example 2-33 Deleting an Object From the Tree

This example uses the cURL utility to delete a JDBC resource from the tree by deleting the REST
resource that represents the JDBC resource.

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.

Line breaks and white space are added to enhance readability.

1. This step confirms that the object can be deleted by retrieving the REST methods that the
resource jdbc-myjdbcresource supports.

curl -X GET -H "Accept: application/json"
http://localhost:4848/management/domain/resources/
jdbc-resource/jdbc%2Fmyjdbcresource
{
 "command":"Jdbc-resource",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{
 "description":{"optional":"true","type":"string","key":"false"},

"enabled":{"optional":"true","type":"boolean","defaultValue":"true","key":"false"},
 "jndiName":{"optional":"true","type":"string","key":"true"},

"objectType":{"optional":"true","type":"string","defaultValue":"user","key":"false"
},
 "poolName":{"optional":"true","type":"string","key":"false"}
 }
 },
 {"name":"DELETE","messageParameters":{

"target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""
}
 }
 }
],
 "childResources":{
 "property":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-resource\/
 jdbc%2Fmyjdbcresource\/property"
 }
 }
}

55

2. This step deletes the jdbc/myjdbcresource resource.

curl -X DELETE -H "X-Requested-By: GlassFish REST HTML interface"
http://localhost:4848/management/domain/resources/
jdbc-resource/jdbc%2Fmyjdbcresource

3. This step confirms that the object has been deleted by retrieving data for the REST resource that
represents the parent of the object.

curl -X GET -H "Accept: application/json"
http://localhost:4848/management/domain/resources/jdbc-resource
{
 "command":"Jdbc-resource",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{

"description":{"acceptableValues":"","optional":"true","type":"string","defaultValu
e":""},

"enabled":{"acceptableValues":"",optional":"true","type":"boolean",defaultValue":"t
rue"},

"id":{"acceptableValues":"","optional":"false","type":"string","defaultValue":""},

"poolName":{"acceptableValues":"","optional":"false","type":"string","defaultValue"
:""},

"property":{"acceptableValues":"","optional":"true","type":"string","defaultValue":
"},

"target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""
}
 }
 }
],
 "childResources":{
 "jdbc\/__TimerPool":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-
resource\/jdbc%2F__TimerPool",
 "jdbc\/__default":
 "https:\/\/localhost:4848\/management\/domain\/resources\/jdbc-
resource\/jdbc%2F__default"
 }
 }

56

}

Resources for asadmin Subcommands That Perform Non-CRUD Operations

The Eclipse GlassFish REST interfaces also support operations other than create, read, update, and
delete (CRUD) operations, for example:

• State management

• Queries

• Application deployment

These operations are supported through REST resources that represent the asadmin subcommands
for performing these operations. Each resource is a child of the resource on which the operation is
performed. The child resources do not represent objects in the configuration object tree.

For example, the resource that represents a node provides child resources for the following asadmin
subcommands that perform non-CRUD operations on the node:

• ping-node-ssh

• update-node-config

• update-node-ssh

Securing Eclipse GlassFish REST Interfaces

The Eclipse GlassFish REST interfaces support the following authentication schemes for securing
the REST interfaces:

• Basic authentication over a secure connection

• Authentication by using session tokens

When security is enabled, you must specify https as the protocol in the URLs to REST resources and
provide a user name and password.

Setting Up Basic Authentication Over a Secure Connection

Setting up basic authentication over a secure connection to secure Eclipse GlassFish REST interfaces
involves the following sequence of tasks:

1. Adding an admin-realm user to the asadmin user group

2. Enabling Secure Sockets Layer (SSL)

For information about how to perform these tasks from the command line, see the following
documentation:

• "To Create an Authentication Realm" in Eclipse GlassFish Security Guide

• "To Create a File User" in Eclipse GlassFish Security Guide

• To Configure an HTTP Listener for SSL

57

https://glassfish.org/docs/latest/security-guide.pdf#to-create-an-authentication-realm
https://glassfish.org/docs/latest/security-guide.pdf#to-create-a-file-user

For information about how to perform these tasks by using the Administration Console, see the
following topics in the Administration Console online help:

• To Add a User to the Admin Realm

• To Edit SSL Settings for a Protocol

To Secure REST Interfaces by Using Session Tokens

Basic authentication requires a REST client to cache a user’s credentials to enable the client to pass
the credentials with each request. If you require a REST client not to cache credentials, your client
must use session tokens for authentication.

1. Request a session token by using the POST method on the resource at
http://`host:`port`/management/sessions`. Eclipse GlassFish uses basic authentication to
authenticate the client, generates a session token, and passes the token to the client.

2. In each subsequent request that requires authentication, use the token to authenticate the
client.

a. Create a cookie that is named gfresttoken the value of which is the token.

b. Send the cookie with the request.

c. When the token is no longer required, retire the token by using the DELETE method on the
resource at http://`host:`port`/management/sessions/{tokenvalue}`.

If a client does not explicitly retire a token, the token is retired after 30
minutes of inactivity.

Formats for Resource Representation of Configuration Objects

The Eclipse GlassFish REST interfaces represent resources for configuration objects in the following
formats:

• JSON

• XML

• HTML

Eclipse GlassFish enables you to specify the resource representation through the filename
extension in the URL or through the HTTP header:

• To specify the resource representation through the filename extension in the URL, specify the
appropriate extension as follows:

◦ For JSON, specify the .json extension.

◦ For XML, specify the .xml extension.

◦ For HTML, omit the extension.

• How to specify the resource representation through the HTTP header depends on the client that
you are using to access the resource. For example, if you are using the cURL utility, specify the
resource representation through the -H option as follows:

58

http://`host
http://`host
https://www.json.org/
https://www.w3.org/XML/

◦ For JSON, specify -H "Accept: application/json".

◦ For XML, specify -H "Accept: application/xml".

◦ For HTML, omit the -H option.

JSON Resource Representation for Configuration Objects

The general format for the JSON representation of a resource for a configuration object is as
follows:

{
 "command":"resource",
 "exit_code":"code",
 "extraProperties":{
 "commands":[command-list],
 "methods":[method-list],
 "entity":{attributes},
 "childResources":{children}
 }
}

The replaceable items in this format are as follows:

resource

The name of the resource.

code

The result of the attempt to get the resource.

command-list

One or more metadata sets separated by a comma (,) that represent the asadmin subcommands
for performing non—CRUD operations on the resource. For the format of each metadata set, see
JSON Representation of a Command in a Command List.

method-list

One or more metadata sets separated by a comma (,) that represent the methods that the
resource supports. For the format of each metadata set, see JSON Representation of a Method in
a Method List.

attributes

Zero or more name-value pairs separated by a comma (,). Each name-value pair is specified as
`“name”:`value.

children

Zero or more child resources separated by a comma (,). Each child resource is specified as
"resource-name":"url".

59

resource-name

The name of the resource as displayed in client applications that access the parent of the
resource.

url

The URL to the child resource.

JSON Representation of a Command in a Command List

The JSON representation of a command in a command list is as follows:

{
 "path":"command-path",
 "command":"command-name",
 "method":"rest-method"
}

The replaceable items in this format are as follows:

command-path

The relative path to REST resource that represents the command. This path is relative to the URL
of the REST resource that is the parent of the resource that represents the command.

command-name

The name of the command as displayed in client applications that access the resource.

rest-method

The REST resource method that the command invokes when the command is run. The method is
GET, POST, or DELETE.

JSON Representation of a Method in a Method List

The JSON representation of a method in a method list is as follows:

{
 "name":"method-name",
 "messageParameters":{
 message-parameter-list
 }
 "queryParameters":{
 queryparameter- list
 }
}

The replaceable items in this format are as follows:

method-name

The name of the method, which is GET, POST, or DELETE.

60

message-parameter-list

Zero or more metadata sets separated by a comma (,) that represent the message parameters
that are allowed for the method. For the format of each metadata set, see JSON Representation of
a Message Parameter or a Query Parameter.

query-parameter-list

Zero or more metadata sets separated by a comma (,) that represent the query parameters that
are allowed for the method. For the format of each metadata set, see JSON Representation of a
Message Parameter or a Query Parameter.

JSON Representation of a Message Parameter or a Query Parameter

The JSON representation of a message parameter or a query parameter is as follows:

"parameter-name":{attribute-list}

The replaceable items in this format are as follows:

parameter-name

The name of the parameter.

attribute-list

A comma-separated list of name-value pairs of attributes for the parameter. Each pair is in the
following format:

"name":"value"

Possible attributes are as follows:

defaultValue

The default value of the parameter.

acceptableValues

The set or range of acceptable values for the parameter.

type

The data type of the parameter, which is one of the following types:

• boolean

• int

• string

optional

Indicates whether the parameter is optional. If true, the parameter is optional. If false, the
parameter is required.

61

key

Indicates whether the parameter is key. If true, the parameter is key. If false, the parameter is
not key.

Example JSON Resource Representation for a Configuration Object

This example shows the JSON representation of the resource for the node sj01. In this example, the
DAS is running on the local host and the HTTP port for administration is 4848. The URL to the
resource in this example is http://localhost:4848/management/domain/nodes/node/sj01.

Line breaks and white space are added to enhance readability.

{
 "command":"Node",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[
 {"path":"_delete-node","command":"delete-node","method":"DELETE"},
 {"path":"_update-node","command":"_update-node","method":"POST"},
 {"path":"ping-node-ssh","command":"ping-node-ssh","method":"GET"},
 {"path":"update-node-ssh","command":"update-node-ssh","method":"POST"},
 {"path":"update-node-config","command":"update-node-config","method":"POST"}],
 "methods":[
 {"name":"GET"},
 {"name":"POST","messageParameters":{
 "installDir":{"optional":"true","type":"string","key":"false"},
 "nodeDir":{"optional":"true","type":"string","key":"false"},
 "nodeHost":{"optional":"true","type":"string","key":"false"},
 "type":{"optional":"true","type":"string","key":"false"}
 }
 }
],
 "entity":{
 "installDir":"\/export\/glassfish7",
 "name":"sj01",
 "nodeDir":null,
 "nodeHost":
 "sj01.example.com",
 "type":"SSH"
 },
 "childResources":{
 "application-ref":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/application-
ref",
 "resource-ref":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/resource-ref
",
 "ssh-connector":
 "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/ssh-
connector"

62

http://localhost:4848/management/domain/nodes/node/sj01

 }
 }
}

XML Resource Representation for Configuration Objects

The general format for the XML representation of a resource for a configuration object is as
follows:

<map>
 <entry key="extraProperties">
 <map>
 <entry key="methods">
 <list>
 methods
 </list>
 </entry>
 <entry key="entity">
 <map>
 attributes
 </map>
 </entry>
 <entry key="commands">
 <list>
 commands
 </list>
 </entry>
 <entry key="childResources">
 <map>
 children
 </map>
 </entry>
 </map>
 </entry>
 <entry key="message"></entry>
 <entry key="exit_code" value="code"></entry>
 <entry key="command" value="resource"></entry>
</map>

The replaceable items in this format are as follows:

methods

One or more XML elements that represent the methods that the resource supports. For the
format of each element, see XML Representation of a Resource Method.

attributes

Zero or more XML elements that represent the attributes of the resource. Each element specifies
a name-value pair as follows:

63

<entry key="name" value="value"></entry>

commands

One or more XML elements that represent the asadmin subcommands for performing non—CRUD
operations on the resource. For the format of each element, see XML Representation of a
Command.

children

Zero or more XML elements that represent the children of the resource. Each element is
specified as follows:

<entry key="resource-name" value="url"></entry>

resource-name

The name of the resource as displayed in client applications that access the parent of the
resource.

url

The URL to the child resource.

code

The result of the attempt to get the resource.

resource

The name of the resource.

XML Representation of a Resource Method

The XML representation of a method in a method list is as follows:

<map>
 <entry key="name" value="method-name"></entry>
 <entry key="messageParameters">
 message-parameter-list
 </entry>
 <entry key="queryParameters">
 message-parameter-list
 </entry>
</map>

The replaceable items in this format are as follows:

method-name

The name of the method, which is GET, POST, or DELETE.

64

message-parameter-list

Zero or more XML elements that represent the message parameters that are allowed for the
method. For the format of each element, see XML Representation of a Message Parameter or a
Query Parameter.

query-parameter-list

Zero or more XML elements that represent the query parameters that are allowed for the
method. For the format of each element, see XML Representation of a Message Parameter or a
Query Parameter.

XML Representation of a Command

The XML representation of a command is as follows:

<map>
 <entry key="command" value="command-name"></entry>
 <entry key="path" value="command-path"></entry>
 <entry key="method" value="rest-method"></entry>
</map>

The replaceable items in this format are as follows:

command-name

The name of the command as displayed in client applications that access the resource.

command-path

The relative path to REST resource that represents the command. This path is relative to the URL
of the REST resource that is the parent of the resource that represents the command.

rest-method

The REST resource method that the command invokes when the command is run. The method is
GET, POST, or DELETE.

XML Representation of a Message Parameter or a Query Parameter

The XML representation of a message parameter or a query parameter is as follows:

<map>
 <entry key="parameter-name">
 <map>
 attributes
 </map>
 </entry>
</map>

The replaceable items in this format are as follows:

65

parameter-name

The name of the parameter.

attributes

One or more XML elements that represent the attributes for the parameter. Each element
specifies a name-value pair as follows:

<entry key="name" value="value"></entry>

Possible attributes are as follows:

defaultValue

The default value of the parameter.

acceptablevalues

The set or range of acceptable values for the parameter.

type

The data type of the parameter, which is one of the following types:

• boolean

• int

• string

optional

Indicates whether the parameter is optional. If true, the parameter is optional. If false, the
parameter is required.

key

Indicates whether the parameter is key. If true, the parameter is key. If false, the parameter is
not key.

Example XML Resource Representation

This example shows the XML representation of the resource for the node sj01. In this example, the
DAS is running on the local host and the HTTP port for administration is 4848. The URL to the
resource in this example is http://localhost:4848/management/domain/nodes/node/sj01.

Line breaks and white space are added to enhance readability.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<map>
 <entry key="extraProperties">
 <map>
 <entry key="methods">
 <list>
 <map>
 <entry key="name" value="GET"/>

66

http://localhost:4848/management/domain/nodes/node/sj01

 </map>
 <map>
 <entry key="name" value="POST"/>
 <entry key="messageParameters">
 <map>
 <entry key="installDir">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 <entry key="nodeDir">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 <entry key="type">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 <entry key="nodeHost">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 </map>
 </entry>
 </map>
 </list>
 </entry>
 <entry key="entity">
 <map>
 <entry key="installDir" value="/export/glassfish7"/>
 <entry key="name" value="sj01"/>
 <entry key="nodeDir" value=""/>
 <entry key="type" value="SSH"/>
 <entry key="nodeHost" value="sj01example.com"/>
 </map>
 </entry>
 <entry key="commands">
 <list>
 <map>
 <entry key="command" value="delete-node"/>

67

 <entry key="path" value="_delete-node"/>
 <entry key="method" value="DELETE"/>
 </map>
 <map>
 <entry key="command" value="_update-node"/>
 <entry key="path" value="_update-node"/>
 <entry key="method" value="POST"/>
 </map>
 <map>
 <entry key="command" value="ping-node-ssh"/>
 <entry key="path" value="ping-node-ssh"/>
 <entry key="method" value="GET"/>
 </map>
 <map>
 <entry key="command" value="update-node-ssh"/>
 <entry key="path" value="update-node-ssh"/>
 <entry key="method" value="POST"/>
 </map>
 <map>
 <entry key="command" value="update-node-config"/>
 <entry key="path" value="update-node-config"/>
 <entry key="method" value="POST"/>
 </map>
 </list>
 </entry>
 <entry key="childResources">
 <map>
 <entry key="application-ref"
 value="https://localhost:4848/management/domain/nodes/node/sj01/application-ref
"/>
 <entry key="ssh-connector"
 value="https://localhost:4848/management/domain/nodes/node/sj01/ssh-connector"/>
 <entry key="resource-ref"
 value="https://localhost:4848/management/domain/nodes/node/sj01/resource-ref"/>
 </map>
 </entry>
 </map>
 </entry>
 <entry key="message"/>
 <entry key="exit_code" value="SUCCESS"/>
 <entry key="command" value="Node"/>
</map>

HTML Resource Representation for Configuration Objects

The format for the HTML representation of a resource for a configuration object is a web page that
provides the following information about the resource:

• A list of the attributes of the resource and their values.

• A list of the methods and method parameters that the resource supports. Each method and its

68

parameters are presented as a field of the appropriate type in an HTML form.

• A list of hypertext links to the children of the resource.

• A list of hypertext links to resources that represent asadmin subcommands for non-CRUD
operations on the resource.

For a sample web page, see Figure 2-1 Web Page for the REST Resource for Managing a Domain. In
this example, the DAS is running on the local host and the HTTP port for administration is 4848. The
URL to the resource in this example is http://localhost:4848/management/domain/nodes/node/sj01.

Formats for Resource Representation of Monitoring Objects

The Eclipse GlassFish REST interfaces represent resources for monitoring data in the following
formats:

• JSON

• XML

• HTML

JSON Resource Representation for Monitoring Objects

The general format for the JSON representation of a resource for a monitoring object is as follows:

{
 "message":"",
 "command":"Monitoring Data",
 "exit_code":"code",
 "extraProperties":{
 "entity":{
 statistics-list
 },
 "childResources":{
 children
 }
 }
}

The replaceable items in this format are as follows:

code

The result of the attempt to get the resource.

statistics-list

Zero or more metadata sets separated by a comma (,) that represent the statistics that the
monitoring object provides. For the format of each metadata set, see JSON Representation of a
Statistic in a Statistics List.

69

http://localhost:4848/management/domain/nodes/node/sj01
https://www.json.org/
https://www.w3.org/XML/

children

Zero or more child resources separated by a comma (,). Each child resource is specified as
"resource-name":"url".

resource-name

The name of the resource as displayed in client applications that access the parent of the
resource.

url

The URL to the child resource.

JSON Representation of a Statistic in a Statistics List

The JSON representation of a counter statistic in a statistics list is as follows:

"statistic":{
 "count":count,
 "lastsampletime":last-sample-time,
 "description":"description",
 "unit":"unit",
 "name":"name",
 "starttime":start-time
}

The JSON representation of a range statistic in a statistics list is as follows:

"statistic":{
 "highwatermark":highest-value,
 "lowwatermark":lowest-value,
 "current":current-value
 "lastsampletime":last-sample-time,
 "description":"description",
 "unit":"unit",
 "name":"name",
 "starttime":start-time
}

The replaceable items in these formats are as follows:

statistic

The name of the statistic.

count

Counter statistics only: The current value of the statistic.

highest-value

Range statistics only: The highest value of the statistic since monitoring of the statistic began.

70

lowest-value

Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

current-value

Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

last-sample-time

The time in UNIX time at which the statistic was last sampled.

description

A textual description of what the statistic represents.

unit

The unit of measurement of the statistic, which is one of the following units of measurement:

count

The cumulative value of an attribute that increases with time.

range

The lowest value, highest value, and current value of an attribute that can increase or
decrease with time.

boundedrange

The lowest value, highest value, and current value of an attribute that can increase or
decrease with time and has fixed limits.

string

A string that represents an attribute value. A string statistic is similar to a count, except that
the values are not ordered. Typically, a string statistic represents the state of an object, for
example, CONNECTED, CLOSED, or DISCONNECTED.

time

Values of an attribute that provide the following timing measurements for an operation:

• The number of times the operation was performed.

• The maximum amount of time to perform the operation once.

• The minimum amount of time to perform the operation once.

• The total amount of time that has been spent performing the operation.

• The average amount of time to perform the operation.

name

The name of the statistic as displayed in client applications that access the resource that contains
the statistic.

start-time

The time in UNIX time at which monitoring of the statistic began.

71

Example JSON Resource Representation for a Monitoring Object

This example shows the JSON representation of the monitoring object that provides class loader
statistics for the virtual machine for the Java platform. In this example, the DAS is running on the
local host and the HTTP port for administration is 4848. The URL to the resource in this example is
http://localhost:4848/monitoring/domain/server/jvm/class-loading-system.

Line breaks and white space are added to enhance readability.

{
 "message":"",
 "command":"Monitoring Data",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "entity":{
 "loadedclass-count":{
 "count":8521,
 "lastsampletime":1300726961018,
 "description":"Number of classes currently loaded in the Java virtual
 machine",
 "unit":"count",
 "name":"LoadedClassCount",
 "starttime":1300483924126
 },
 "totalloadedclass-count":{
 "count":8682,
 "lastsampletime":1300726961018,
 "description":"Total number of classes that have been loaded since the
 Java virtual machine has started execution",
 "unit":"count",
 "name":"TotalLoadedClassCount",
 "starttime":1300483924127
 },
 "unloadedclass-count":{
 "count":161,
 "lastsampletime":1300726961018,
 "description":"Total number of classes unloaded since the Java virtual
 machine has started execution",
 "unit":"count",
 "name":"UnLoadedClassCount",
 "starttime":1300483924127
 }
 },"childResources":{}
 }
}

XML Resource Representation for Monitoring Objects

The general format for the XML representation of a resource for a monitoring object is as follows:

72

http://localhost:4848/monitoring/domain/server/jvm/class-loading-system

<?xml version="1.0" encoding="UTF-8"?>
<map>
 <entry key="extraProperties">
 <map>
 <entry key="entity">
 <map>
 statistics
 </map>
 </entry>
 <entry key="childResources">
 <map>
 children
 </map>
 </entry>
 </map>
 </entry>
 <entry key="message" value=""></entry>
 <entry key="exit_code" value="code"></entry>
 <entry key="command" value="Monitoring Data"></entry>
</map>

The replaceable items in this format are as follows:

statistics

Zero or more XML elements that represent the statistics that the monitoring object provides. For
the format of each element, see XML Representation of a Statistic.

children

Zero or more XML elements that represent the children of the resource. Each element is
specified as follows:

<entry key="resource-name" value="url"></entry>

resource-name

The name of the resource as displayed in client applications that access the parent of the
resource.

url

The URL to the child resource.

code

The result of the attempt to get the resource.

XML Representation of a Statistic

The XML representation of a counter statistic is as follows:

73

<entry key="statistic">
 <map>
 <entry key="unit" value="unit"></entry>
 <entry key="starttime">
 <number>start-time</number>
 </entry>
 <entry key="count">
 <number>count</number>
 </entry>
 <entry key="description" value="description"></entry>
 <entry key="name" value="name"></entry>
 <entry key="lastsampletime">
 <number>last-sample-time</number>
 </entry>
 </map>
</entry>

The XML representation of a range statistic is as follows:

<entry key="statistic">
 <map>
 <entry key="unit" value="unit"></entry>
 <entry key="starttime">
 <number>start-time</number>
 </entry>
 <entry key="highwatermark">
 <number>highest-value</number>
 </entry>
 <entry key="lowwatermark">
 <number>lowest-value</number>
 </entry>
 <entry key="current">
 <number>current-value</number>
 </entry>
 <entry key="description" value="description"></entry>
 <entry key="name" value="name"></entry>
 <entry key="lastsampletime">
 <number>last-sample-time</number>
 </entry>
 </map>
</entry>

The replaceable items in these formats are as follows:

statistic

The name of the statistic.

74

unit

The unit of measurement of the statistic, which is one of the following units of measurement:

count

The cumulative value of an attribute that increases with time.

range

The lowest value, highest value, and current value of an attribute that can increase or
decrease with time.

boundedrange

The lowest value, highest value, and current value of an attribute that can increase or
decrease with time and has fixed limits.

string

A string that represents an attribute value. A string statistic is similar to a count, except that
the values are not ordered. Typically, a string statistic represents the state of an object, for
example, CONNECTED, CLOSED, or DISCONNECTED.

time

Values of an attribute that provide the following timing measurements for an operation:

• The number of times the operation was performed.

• The maximum amount of time to perform the operation once.

• The minimum amount of time to perform the operation once.

• The total amount of time that has been spent performing the operation.

• The average amount of time to perform the operation.

start-time

The in time in UNIX time at which monitoring of the statistic began.

count

Counter statistics only: The current value of the statistic.

highest-value

Range statistics only: The highest value of the statistic since monitoring of the statistic began.

lowest-value

Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

current-value

Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

description

A textual description of what the statistic represents.

75

name

The name of the statistic as displayed in client applications that access the resource that contains
the statistic.

last-sample-time

The time in UNIX time at which the statistic was last sampled.

Example XML Resource Representation for a Monitoring Object

This example shows the XML representation of the monitoring object that provides class loader
statistics for the virtual machine for the Java platform. In this example, the DAS is running on the
local host and the HTTP port for administration is 4848. The URL to the resource in this example is
http://localhost:4848/monitoring/domain/server/jvm/class-loading-system.

Line breaks and white space are added to enhance readability.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<map>
 <entry key="extraProperties">
 <map>
 <entry key="entity">
 <map>
 <entry key="unloadedclass-count">
 <map>
 <entry key="unit" value="count"/>
 <entry key="starttime">
 <number>1300483924127</number>
 </entry><entry key="count">
 <number>161</number>
 </entry>
 <entry key="description" value="Total number of classes unloaded since
 the Java virtual machine has started execution"/>
 <entry key="name" value="UnLoadedClassCount"/>
 <entry key="lastsampletime">
 <number>1300726989505</number>
 </entry>
 </map>
 </entry>
 <entry key="totalloadedclass-count">
 <map>
 <entry key="unit" value="count"/>
 <entry key="starttime">
 <number>1300483924127</number>
 </entry>
 <entry key="count">
 number>8682</number>
 </entry>
 <entry key="description" value="Total number of classes that have been
 loaded since the Java virtual machine has started execution"/>
 <entry key="name" value="TotalLoadedClassCount"/>

76

http://localhost:4848/monitoring/domain/server/jvm/class-loading-system

 <entry key="lastsampletime">
 <number>1300726989505</number>
 </entry>
 </map>
 </entry>
 <entry key="loadedclass-count">
 <map>
 <entry key="unit" value="count"/>
 <entry key="starttime">
 <number>1300483924126</number>
 </entry><entry key="count">
 <number>8521</number>
 </entry>
 <entry key="description" value="Number of classes currently loaded in
 the Java virtual machine"/>
 <entry key="name" value="LoadedClassCount"/>
 <entry key="lastsampletime">
 <number>1300726989505</number>
 </entry>
 </map>
 </entry>
 </map>
 </entry>
 <entry key="childResources">
 <map/>
 </entry>
 </map>
 </entry>
 <entry key="message" value=""/>
 <entry key="exit_code" value="SUCCESS"/>
 <entry key="command" value="Monitoring Data"/>
</map>

HTML Resource Representation for Monitoring Objects

The format for the HTML representation of a resource for a monitoring object is a web page that
provides the following information about the resource:

• A list of the statistics that the resource provides.

• A list of hypertext links to the children of the resource.

The following figure shows the web page for the REST resource that provides class loader statistics
for the virtual machine for the Java platform.

Figure 2-2 Web Page for the REST Resource That Provides Class Loader Statistics

77

Formats for Resource Representation of Log File Details

The Eclipse GlassFish REST interfaces represent resources for log file details in the following
formats:

• JSON

• XML

JSON Resource Representation for Log File Details

The general format for the JSON representation of a resource for log file details is as follows:

{
 "records": [
 record-list
]
}

The replaceable item in this format is the record-list, which is one or more metadata sets separated
by a comma (,) that represent the log records in the log file. For the format of each metadata set,
see JSON Representation of a Log Record in a Record List.

78

https://www.json.org/
https://www.w3.org/XML/

JSON Representation of a Log Record in a Record List

The JSON representation of a log record in a record list is as follows:

{
 "recordNumber":record-number,
 "loggedDateTimeInMS":logged-date,
 "loggedLevel":"log-level",
 "productName":"product-name",
 "loggerName":"logger-name",
 "nameValuePairs":"_ThreadID=thread-id;_ThreadName=thread-name;",
 "messageID":"message-id",
 "Message":"message-text"
}

The replaceable items in this format are as follows:

record-number

A serial number in the form of a decimal integer that uniquely identifies the log record.

logged-date

time when the record was created - a number of milliseconds from the epoch of 1970-01-
01T00:00:00Z.

log-level

The severity level of the message in the log record. For more information, see Setting Log Levels.

product-name

The application that created the log message, for example, GlassFish 7.0.

logger-name

The logger name, which is usually a fully qualified name of the Java class owning the logger
class that created the log record. For detailed information how to get names of logger classes
used in Eclipse GlassFish, see Listing Loggers.

thread-id

The numerical identifier of the thread that created the message.

thread-name

The name of the thread that created the message.

message-id

A unique identifier for the message. For messages from Eclipse GlassFish, this identifier consists
of a module code and a numerical value, for example, CORE5004. All SEVERE and WARNING messages
and some INFO messages from Eclipse GlassFish contain a message identifier. For more
information, see the Eclipse GlassFish Error Message Reference.

79

https://glassfish.org/docs/latest/error-messages-reference.pdf#GSEMR

message-text

The text of the log message.

Example JSON Resource Representation for Log File Details

This example shows the JSON representation of the resource for log file details. In this example, the
DAS is running on the local host and the HTTP port for administration is 4848. The URL to the
resource in this example is http://localhost:4848/management/domain/view-log/details.

Line breaks and white space are added to enhance readability.

{
 "records": [
 {
 "recordNumber":475,
 "loggedDateTimeInMS":1300743782815,
 "loggedLevel":"INFO",
 "productName":"glassfish7",
 "loggerName":"org.glassfish.admingui",
 "nameValuePairs": "_ThreadID=25;_ThreadName=Thread-1;",
 "messageID":"",
 "Message":"Admin Console: Initializing Session Attributes..."
 },
 {
 "recordNumber":474,
 "loggedDateTimeInMS":1300728893368,
 "loggedLevel":"INFO",
 "productName":"glassfish7",
 "loggerName":"
jakarta.enterprise.system.core.com.sun.enterprise.v3.admin.adapter",
 "nameValuePairs":"_ThreadID=238;_ThreadName=Thread-1;",
 "messageID":"",
 "Message":"The Admin Console application is loaded."
 },
 {
 "recordNumber":473,
 "loggedDateTimeInMS":1300728893367,
 "loggedLevel":"INFO",
 "productName":"glassfish7",
 "loggerName":"jakarta.enterprise.system.core.com.sun.enterprise.v3.server",
 "nameValuePairs":"_ThreadID=238;_ThreadName=Thread-1;",
 "messageID":"CORE10010",
 "Message":" Loading application __admingui done in 40,063 ms"
 }
]
}

80

http://localhost:4848/management/domain/view-log/details

XML Resource Representation for Log File Details

The general format for the XML representation of a resource for log file details is as follows:

<records>
 records
 </records>

The replaceable item in this format is the records, which is one or more XML elements that
represent the log records in the log file. For the format of each element, see XML Representation of
a Log Record.

XML Representation of a Log Record

The XML representation of a log record is as follows:

<record loggedDateTimeInMS="logged-date" loggedLevel="log-level"
 loggerName="logger-class-name" messageID="message-id"
 nameValuePairs="_ThreadID=thread-id;_thread-name;" productName="product-name"
 recordNumber="record-number"/>

The replaceable items in this format are as follows:

logged-date

time when the record was created - a number of milliseconds from the epoch of 1970-01-
01T00:00:00Z.

log-level

The severity level of the message in the log record. For more information, see Setting Log Levels.

logger-class-name

The fully qualified name of the Java class of the logger class that created the log message. Each
component of Eclipse GlassFish provides its own logger class. For detailed information about the
names of logger classes in Eclipse GlassFish, see Listing Loggers.

message-id

A unique identifier for the message. For messages from Eclipse GlassFish, this identifier consists
of a module code and a numerical value, for example, CORE5004. All SEVERE and WARNING messages
and some INFO messages from Eclipse GlassFish contain a message identifier. For more
information, see the Eclipse GlassFish Error Message Reference.

thread-id

The numerical identifier of the thread that created the message.

thread-name

The name of the thread that created the message.

81

https://glassfish.org/docs/latest/error-messages-reference.pdf#GSEMR

product-name

The application that created the log message, for example, GlassFish 7.0.

record-number

A serial number in the form of a decimal integer that uniquely identifies the log record.

Example XML Resource Representation for Log File Details

This example shows the XML representation of the resource for log file details. In this example, the
DAS is running on the local host and the HTTP port for administration is 4848. The URL to the
resource in this example is http://localhost:4848/management/domain/view-log/details.

Line breaks and white space are added to enhance readability.

<records>
 <record loggedDateTimeInMS="1300743782815" loggedLevel="INFO"
 loggerName="org.glassfish.admingui" messageID=""
 nameValuePairs="_ThreadID=25;_ThreadName=Thread-1;"
 productName="glassfish7" recordNumber="475"/>
 <record loggedDateTimeInMS="1300728893368" loggedLevel="INFO"
 loggerName="jakarta.enterprise.system.core.com.sun.enterprise.v3.admin.adapter"
 messageID="" nameValuePairs="_ThreadID=238;_ThreadName=Thread-1;"
 productName="glassfish7" recordNumber="474"/>
 <record loggedDateTimeInMS="1300728893367" loggedLevel="INFO"
 loggerName="jakarta.enterprise.system.core.com.sun.enterprise.v3.server"
 messageid="core10010" nameValuePairs="_ThreadID=238;_ThreadName=Thread-1;"
 productName="glassfish7" recordNumber="473"/>
</records>

Supported Content Types in Requests to REST Resources

The Eclipse GlassFish REST interfaces support the following types in the content-type header of a
client request:

• JSON

• XML

• Form URL encoded

How to specify the type in the content-type header depends on how you are sending the request.
For example, if you are using the cURL utility, specify the type through the -H option as follows:

• For JSON, specify -H "Content-type: application/json".

• For XML, specify -H "Content-type: application/xml".

• For form URL encoded, specify -H "Content-type: application/x-www-form-urlencoded".

82

http://localhost:4848/management/domain/view-log/details
https://www.json.org/
https://www.w3.org/XML/
https://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

3 Administering Domains
This chapter provides procedures for administering domains in the Eclipse GlassFish environment
by using the asadmin command-line utility.

The following topics are addressed here:

• About Administering Domains

• Creating, Logging In To, and Deleting a Domain

• Starting and Stopping a Domain

• Configuring a DAS or a Eclipse GlassFish Instance for Automatic Restart

• Backing Up and Restoring a Domain

• Re-Creating the Domain Administration Server (DAS)

• Additional Domain Tasks

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About Administering Domains
A domain contains a group of Eclipse GlassFish instances that are administered together. Each
domain has a domain administration server (DAS) that hosts administrative applications. These
concepts are explained in more detail in the following sections:

• Eclipse GlassFish Instances

• Domains for Administering Eclipse GlassFish

• Domain Administration Server (DAS)

Eclipse GlassFish Instances

A Eclipse GlassFish instance is a single Virtual Machine for the Java platform (Java Virtual Machine
or JVM machine) on a single node in which Eclipse GlassFish is running. A node defines the host
where the Eclipse GlassFish instance resides. The JVM machine must be compatible with the Java
Platform, Enterprise Edition (Jakarta EE).

Eclipse GlassFish instances form the basis of an application deployment.

Whenever a domain is created, Eclipse GlassFish creates a default instance that is named server. If
a single instance meets your requirements, you can use this instance for deploying applications
without the need to administer Eclipse GlassFish instances explicitly. You administer the default
instance when you administer its domain.

If you require multiple instances, you must administer the instances explicitly. For more
information, see "Administering Eclipse GlassFish Instances" in Eclipse GlassFish High Availability
Administration Guide.

83

https://glassfish.org/docs/latest/ha-administration-guide.pdf#administering-glassfish-server-instances

For an instance, you can also create virtual servers. Virtual servers do not span instances. For many
purposes, you can use virtual servers instead of multiple instances in operational deployments.
Virtual servers enable you to offer, within a single instance, separate domain names, IP addresses,
and some administration capabilities to organizations or individuals. To these users, a virtual
server behaves like a dedicated web server, but without the hardware and basic web server
maintenance.

For more information about virtual servers, see Administering Virtual Servers.

Domains for Administering Eclipse GlassFish

A domain is an administrative boundary that contains a group of Eclipse GlassFish instances that
are administered together. Each instance can belong to only one domain. A domain provides a
preconfigured runtime for user applications. Each domain has its own configuration data, log files,
and application deployment areas that are independent of other domains. If the configuration is
changed for one domain, the configurations of other domains are not affected.

Domains enable different organizations and administrators to share securely a single Eclipse
GlassFish installation. Each organization or administrator can administer the instances in a single
domain without affecting the instances in other domains.

At installation time, Eclipse GlassFish creates a default domain that is named domain1. After
installation, you can create additional domains as necessary.

When a domain is created, you are prompted for the administration user name and password. If
you accept the default, the user admin is created without password. To reset the administration
password, see "To Change an Administration Password" in Eclipse GlassFish Security Guide.

Domain Administration Server (DAS)

The domain administration server (DAS) is a specially designated Eclipse GlassFish instance that
hosts administrative applications. The DAS is similar to any other Eclipse GlassFish instance, except
that the DAS has additional administration capabilities. The DAS authenticates the administrator,
accepts requests from administration tools, and communicates with other instances in the domain
to carry out the requests from administration tools.

Each domain has its own DAS with a unique administration port number. The default
administration port is 4848, but a different port can be specified when a domain is created.

The DAS has the master copy of the configuration data for all instances in a domain. If an instance
is destroyed, for example, because a host failed, the instance can be re-created from the data in the
DAS.

The DAS is the default Eclipse GlassFish instance in a domain and is named server. If a single
instance meets your requirements, you can use the DAS for deploying applications and for
administering the domain.

The graphical Administration Console communicates with a specific DAS to administer the domain
that is associated with the DAS. Each Administration Console session enables you to configure and
manage only one domain. If you create multiple domains, you must start a separate Administration

84

https://glassfish.org/docs/latest/security-guide.pdf#to-change-an-administration-password

Console session to manage each domain.

Creating, Logging In To, and Deleting a Domain
The following topics are addressed here:

• To Create a Domain

• To Create a Domain From a Custom Template

• To List Domains

• To Log In to a Domain

• To Delete a Domain

To Create a Domain

After installing Eclipse GlassFish and creating the default domain (domain1), you can create
additional domains by using the local create-domain subcommand. This subcommand creates the
configuration of a domain. Any user who has access to the asadmin utility on a given system can
create a domain and store the domain configuration in a folder of choice. By default, the domain
configuration is created in the default directory for domains. You can override this location to store
the configuration elsewhere.

You are required to specify an administrative user when you create a domain, or you can accept the
default login identity which is username admin with no password.

1. Select a name for the domain that you are creating. You can verify that a name is not already in
use by using the list-domains subcommand

2. Create a domain by using the create-domain subcommand. Information about the options for
this subcommand is included in this help page.

3. Type an admin user name and password for the domain. To avoid setting up an admin login,
you can accept the default admin, with no password. Pressing Return also selects the default.

Example 3-1 Creating a Domain

This example creates a domain named domain1 . When you type the command, you might be
prompted for login information.

asadmin> create-domain --adminport 4848 domain1
Enter admin user name[Enter to accept default]>
Using port 4848 for Admin.
Default port 8080 for HTTP Instance is in use. Using 1161
Using default port 7676 for JMS.
Using default port 3700 for IIOP.
Using default port 8081 for HTTP_SSL.
Using default port 3820 for IIOP_SSL.
Using default port 3920 for IIOP_MUTUALAUTH.
Default port 8686 for JMX_ADMIN is in use. Using 1162
Distinguished Name of the self-signed X.509 Server Certificate is:

85

https://glassfish.org/docs/latest/reference-manual.pdf#list-domains
https://glassfish.org/docs/latest/reference-manual.pdf#create-domain

[CN=moonbeam.gateway.2wire.net,OU=GlassFish,O=Oracle Corp.,L=Redwood Shores,ST
California,C=US]
Domain domain1 created.
Command create-domain executed successfully.

To start the Administration Console in a browser, enter the URL in the following format:

http://hostname:5000

For this example, the domain’s log files, configuration files, and deployed applications now reside
in the following directory:

domain-root-dir/mydomain

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
domain at the command line.

To Create a Domain From a Custom Template

A custom template enables you to customize the configuration of any domain that you create from
the template.

1. Create a domain to use as the basis for the template. For more information, see To Create a
Domain.

2. Use the asadmin utility or the Administration Console to configure the domain. Your
configuration changes will be included in the template that you create from the domain.

3. Copy the domain’s domain.xml file under a new name to the as-install/lib/templates directory. A
domain’s domain.xml file is located in the domain-dir/config directory.

4. In a plain text editor, edit the file that you copied to replace with tokens values that are to be
substituted when a domain is created. Each token is identified as %%%token-name%%%, where
token-name is

one of the following names

ADMIN_PORT

Represents the port number of the HTTP port or the HTTPS port for administration. This
token is replaced with one of the following values in the command to create a domain
from the template:

◦ The value of the --adminport option

◦ The value of the domain.adminPort property

CONFIG_MODEL_NAME

Represents the name of the configuration that is created for the domain that is being
created. This token is replaced with the string server-config.

86

DOMAIN_NAME

Represents the name of the domain that is being created. This token is replaced with the
operand of create-domain subcommand.

HOST_NAME

Represents the name of the host on which the domain is being created. This token is
replaced with the fully qualified host name of the host where the domain is being created.

HTTP_PORT

Represents the port number of the port that is used to listen for HTTP requests. This token
is replaced with one of the following values in the command to create a domain from the
template:

◦ The value of the --instanceport option

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the domain.instancePort property

HTTP_SSL_PORT

Represents the port number of the port that is used to listen for secure HTTP requests.
This token is replaced with one of the following values in the command to create a
domain from the template:

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the http.ssl.port property

JAVA_DEBUGGER_PORT

Represents the port number of the port that is used for connections to the Java Platform
Debugger Architecture (JPDA) debugger. This token is replaced with one of the following
values in the command to create a domain from the template:

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the java.debugger.port property

JMS_PROVIDER_PORT

Represents the port number for the Java Message Service provider. This token is replaced
with one of the following values in the command to create a domain from the template:

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the jms.port property

JMX_SYSTEM_CONNECTOR_PORT

Represents the port number on which the JMX connector listens. This token is replaced
with one of the following values in the command to create a domain from the template:

87

http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/architecture.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/architecture.html

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the domain.jmxPort property

ORB_LISTENER_PORT

Represents the port number of the port that is used for IIOP connections. This token is
replaced with one of the following values in the command to create a domain from the
template:

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the orb.listener.port property

ORB_MUTUALAUTH_PORT

Represents the port number of the port that is used for secure IIOP connections with
client authentication. This token is replaced with one of the following values in the
command to create a domain from the template:

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the orb.mutualauth.port property

ORB_SSL_PORT

Represents the port number of the port that is used for secure IIOP connections. This
token is replaced with one of the following values in the command to create a domain
from the template:

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the orb.ssl.port property

OSGI_SHELL_TELNET_PORT

Represents the port number of the port that is used for connections to the Apache Felix
Remote Shell. This shell uses the Felix shell service to interact with the OSGi module
management subsystem. This token is replaced with one of the following values in the
command to create a domain from the template:

◦ A value that the create-domain subcommand calculates from the value of the
--portbase option

◦ The value of the osgi.shell.telnet.port property

SERVER_ID

Represents the name of the DAS for the domain that is being created. This token is
replaced with the string server.

For information about how these tokens are used in the default template,
examine the as-install/lib/templates/domain.xml file.

5. Create the domain that you want to be based on a custom template. In the command to create

88

http://felix.apache.org/documentation/subprojects/apache-felix-remote-shell.html
http://felix.apache.org/documentation/subprojects/apache-felix-remote-shell.html

the domain, pass the name of file that you edited in the previous step as the --template option of
the create-domain subcommand.

6. Before starting the domain, verify that the domain’s domain.xml file is valid. Use the verify-
domain-xml subcommand for this purpose. Information about the options for this subcommand
is included in the subcommand’s help page.

See Also

• To Create a Domain

• create-domain(1)

• verify-domain-xml(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line.

• asadmin help create-domain

• asadmin help verify-domain-xml

To List Domains

Use the list-domains subcommand to display a list of domains and their statuses. If the domain
directory is not specified, the contents of the domain-root-dir, the default for which is as-
install/domains, is listed. If there is more than one domain, the domain name must be specified.

To list domains that were created in other directories, specify the --domaindir option.

List domains by using the list-domains subcommand.

Example 3-2 Listing Domains

This example lists the domains in the default domain root directory:

asadmin> list-domains
Name: domain1 Status: Running
Name: domain4 Status: Not Running
Name: domain6 Status: Not Running
Command list-domains executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
domain at the command line.

To Log In to a Domain

All remote subcommands require that credentials be specified in terms of an administration user
name and its password. By default, the domain is created with an identity that allows an asadmin
user to perform administrative operations when no identity is explicitly or implicitly specified.

89

https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#verify-domain-xml
https://glassfish.org/docs/latest/reference-manual.pdf#verify-domain-xml
https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#verify-domain-xml
https://glassfish.org/docs/latest/reference-manual.pdf#verify-domain-xml
https://glassfish.org/docs/latest/reference-manual.pdf#list-domains

The default identity is in the form of a user whose name is admin and has no password. If you
specify no user name on the command line or on prompt, and specify no password in the
--passwordfile option or on prompt, and you have never logged in to a domain using either the
login subcommand or the create-domain subcommand with the --savelogin option, then the asadmin
utility will attempt to perform a given administrative operation without specifying any identity.

A server (domain) allows administrative operations to be run using this default identity if the
following conditions are true:

• The server (domain) uses file realm for authentication of administrative users. If this condition
is not true, you will need to specify the user name and password.

• The file realm has one and only one user (what the user name is does not matter). If this
condition is not true, you will also need to specify the user name.

• That one user has no password. If this condition is not true, you will need to specify the
password.

By default, all of these conditions are true, unless you have created the domain with a specific user
name and password. Thus, by default, the only administrative user is admin with no password.

Use the login subcommand in local mode to authenticate yourself (log in to) a specific domain.
After such login, you do not need to specify the administration user or password for subsequent
operations on the domain. The login subcommand can only be used to specify the administration
password. For other passwords that remote subcommands require, use the --passwordfile option,
or specify the password at the command prompt. You are always prompted for the administration
user name and password.

There is no logout subcommand. If you want to log in to another domain, invoke asadmin login with
new values for --host and --port.

1. Determine the name of the domain that you are logging in to. To list the existing domains:

asadmin list-domains

2. Log in to the domain by using the login command.

Example 3-3 Logging In To a Domain on a Remote Machine

This example logs into a domain located on another machine. Options are specified before the login
subcommand.

asadmin> --host foo --port 8282 login
Please enter the admin user name>admin Please enter the admin password>
Trying to authenticate for administration of server at host [foo] and port [8282] ...
Login information relevant to admin user name [admin]
for host [foo] and admin port [8282] stored at [/.asadminpass] successfully.
Make sure that this file remains protected. Information stored in this
file will be used by asadmin commands to manage associated domain.

90

https://glassfish.org/docs/latest/reference-manual.pdf#login

Example 3-4 Logging In to a Domain on the Default Port of Localhost

This example logs into a domain on myhost on the default port. Options are specified before the
login subcommand.

asadmin> --host myhost login
Please enter the admin user name>admin
Please enter the admin password>
Trying to authenticate for administration of server at host [myhost] and port [4848]
...
An entry for login exists for host [myhost] and port [4848], probably from
an earlier login operation.
Do you want to overwrite this entry (y/n)?y
Login information relevant to admin user name [admin] for host [myhost]
and admin port [4848] stored at [/home/joe/.asadminpass] successfully.
Make sure that this file remains protected. Information stored in this file will be
used by
asadmin commands to manage associated domain.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help login at
the command line. For additional information about passwords, see "Administering Passwords" in
Eclipse GlassFish Security Guide.

To Delete a Domain

Use the delete-domain subcommand to delete an existing domain from a server. Only the root user
or the operating system user who is authorized to administer the domain can run this
subcommand.

Before You Begin

A domain must be stopped before it can be deleted.

1. List domains by using the list-domains subcommand.

2. If necessary, notify domain users that the domain is being deleted.

3. Ensure that the domain you want to delete is stopped. If needed, see To Stop a Domain.

4. Delete the domain by using the delete-domain subcommand.

Example 3-5 Deleting a Domain

This example deletes a domain named domain1 from the location specified.

asadmin> delete-domain --domaindir ..\domains domain1
Domain domain1 deleted.
Command delete-domain executed successfully.

91

https://glassfish.org/docs/latest/security-guide.pdf#administering-passwords
https://glassfish.org/docs/latest/reference-manual.pdf#list-domains
https://glassfish.org/docs/latest/reference-manual.pdf#delete-domain

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
domain at the command line.

Starting and Stopping a Domain
The following topics are addressed here:

• To Start a Domain

• To Stop a Domain

• To Restart a Domain

To Start a Domain

When you start a domain or server, the domain administration server (DAS) is started. After
startup, the DAS runs constantly, listening for and accepting requests.

If the domain directory is not specified, the domain in the default domain root directory is started.
If there are two or more domains, the domain_name operand must be specified. Each domain must be
started separately.

For Microsoft Windows, you can use an alternate method to start a domain. From
the Windows Start menu, select the command for your distribution of Eclipse
GlassFish:

• If you are using the Full Platform, select Programs > Eclipse GlassFish > Start
Admin Server.

• If you are using the Web Profile, select Programs > Eclipse GlassFish Web
Profile > Start Admin Server.

This subcommand is supported in local mode only.

Start a domain by using the start-domain subcommand.

Example 3-6 Starting a Domain

This example starts domain2 in the default domain directory.

asadmin> start-domain domain2

If there is only one domain, you can omit the domain name. If you do not include the password, you
might be prompted to supply it.

Name of the domain started: [domain1] and its location:
[C:\prelude\v3_prelude_release\distributions\web\target\glassfish
domains\domain1].

92

https://glassfish.org/docs/latest/reference-manual.pdf#start-domain

Admin port for the domain: [4848].

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help start-
domain at the command line.

To Stop a Domain

Stopping a domain or server shuts down its domain administration server (DAS). When stopping a
domain, the DAS stops accepting new connections and then waits for all outstanding connections to
complete. This shutdown process takes a few seconds. While the domain is stopped, the
Administration Console and most of the asadmin subcommands cannot be used. This subcommand
is particularly useful in stopping a runaway server. For more controlled situations, you can use the
restart-domain subcommand.

For Microsoft Windows, you can use an alternate method to stop a domain. From
the Start menu, select the command for your distribution of Eclipse GlassFish:

• If you are using the Full Platform, select Programs > Eclipse GlassFish > Stop
Admin Server.

• If you are using the Web Profile, select Programs > Eclipse GlassFish Web
Profile > Stop Admin Server.

1. If necessary, notify users that you are going to stop the domain.

2. Stop the domain by using the stop-domain subcommand.

Example 3-7 Stopping a Domain (or Server)

This example stops domain1 in the default directory, where domain1 is the only domain present in the
directory.

asadmin> stop-domain
Waiting for the domain to stop
Command stop-domain executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help stop-
domain at the command line.

To Restart a Domain

Use the restart-domain subcommand in remote mode to restart the Domain Administration Server
(DAS) of the specified host. When restarting a domain, the DAS stops accepting new connections
and then waits for all outstanding connections to complete. This shutdown process takes a few
seconds. Until the domain has restarted, the Administration Console and most of the asadmin

93

https://glassfish.org/docs/latest/reference-manual.pdf#restart-domain
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain

subcommands cannot be used.

This subcommand is particularly useful for environments where the server machine is secured and
difficult to get to. With the right credentials, you can restart the server from a remote location as
well as from the same machine.

If the server will not restart, use the stop-domain subcommand followed by the start-domain
subcommand.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Restart the domain by using the restart-domain subcommand.

Example 3-8 Restarting a Domain (or Server)

This example restarts mydoimain4 in the default directory.

asadmin> restart-domain mydomain4
Waiting for the domain to restart
Command restart-domain executed successfully.

Example 3-9 Restarting a Domain in a Browser

This example invokes the restart-domain subcommand in a browser.

http://yourhost:4848/__asadmin/restart-domain

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help restart-
domain at the command line.

Configuring a DAS or a Eclipse GlassFish Instance for
Automatic Restart
Use the create-service subcommand in local mode to configure your system to automatically
restart a domain administration server (DAS) or a Eclipse GlassFish instance. Eclipse GlassFish
enables you to configure a DAS or an instance for automatic restart on the following operating
systems:

• Windows

• Linux

• Oracle Solaris

To ensure that automatic restart functions correctly on Windows, you must prevent service
shutdown when a user logs out.

94

https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/reference-manual.pdf#restart-domain

The following topics are addressed here:

• To Configure a DAS or an Instance for Automatic Restart on Windows

• To Configure a DAS or an Instance for Automatic Restart on Linux

• To Configure a DAS or an Instance for Automatic Restart on Oracle Solaris

• To Prevent Service Shutdown When a User Logs Out on Windows

To Configure a DAS or an Instance for Automatic Restart on Windows

On Windows systems, the create-service subcommand creates a Windows service to represent the
DAS or instance. The service is created in the disabled state. After this subcommand creates the
service, you must use the Windows Services Manager or the Windows Services Wrapper to start,
stop, uninstall, or install the service. To administer the service from the Windows command line,
use the sc.exe tool.

This subcommand must be run as the OS-level administrator user.

1. Create the service by using the create-service subcommand.

2. After the service is created, start the service by using the Windows Services Manager or the
Windows Services Wrapper.

For example, to start the service for the default domain by using the sc.exe tool, type:

C:\> sc start domain1

If you are using the sc.exe tool to administer the service, use the tool as follows:

◦ To obtain information about the service, use the sc query command.

◦ To stop the service, use the sc stop command.

◦ To uninstall the service, use the sc delete command.

Example 3-10 Creating a Service to Restart a DAS Automatically on Windows

This example creates a service for the default domain on a system that is running Windows.

asadmin> create-service
Found the Windows Service and successfully uninstalled it.
The Windows Service was created successfully. It is ready to be started. Here are
the details:
ID of the service: domain1
Display Name of the service:domain1 Eclipse GlassFish
Domain Directory: C:\glassfish7\glassfish\domains\domain1
Configuration file for Windows Services Wrapper: C:\glassfish7\glassfish\domains\
domain1\bin\domain1Service.xml
The service can be controlled using the Windows Services Manager or you can use the
Windows Services Wrapper instead:
Start Command: C:\glassfish7\glassfish\domains\domain1\bin\domain1Service.exe start

95

https://glassfish.org/docs/latest/reference-manual.pdf#create-service

Stop Command: C:\glassfish7\glassfish\domains\domain1\bin\domain1Service.exe stop
Uninstall Command: C:\glassfish7\glassfish\domains\domain1\bin\domain1Service.exe
uninstall
Install Command: C:\glassfish7\glassfish\domains\domain1\bin\domain1Service.exe
install

This message is also available in a file named PlatformServices.log in the domain's
root directory
Command create-service executed successfully.

Example 3-11 Querying the Service to Restart a DAS Automatically on Windows

This obtains information about the service for the default domain on a system that is running
Windows.

C:\> sc query domain1

SERVICE_NAME: domain1
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 1 STOPPED
 WIN32_EXIT_CODE : 1077 (0x435)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

To Configure a DAS or an Instance for Automatic Restart on Linux

On Linux systems, the create-service subcommand creates a System-V-style initialization script
/etc/init.d/GlassFish_`domain-or-instance-name and installs a link to this script in any
`/etc/rc`N.d` directory that is present, where N is 0, 1, 2, 3, 4, 5, 6, and S. After this subcommand
creates the script, you must use this script to start, stop, or restart the domain or instance.

The script automatically restarts the domain or instance only during a reboot. If the domain or
instance is stopped, but the host remains running, the domain or instance is not restarted
automatically. To restart the domain or instance, you must run the script manually.

You might no longer require the domain or instance to be automatically restarted during a reboot.
In this situation, use the operating system to delete the initialization script and the link to the script
that the create-service subcommand creates.

The create-service subcommand must be run as the OS-level root user.

Create the service by using the create-service subcommand.

Example 3-12 Creating a Service to Restart a DAS Automatically on Linux

This example creates a service for the default domain on a system that is running Linux.

asadmin> create-service

96

https://glassfish.org/docs/latest/reference-manual.pdf#create-service

Found the Linux Service and successfully uninstalled it.
The Service was created successfully. Here are the details:
Name of the service:domain1
Type of the service:Domain
Configuration location of the service:/etc/init.d/GlassFish_domain1
User account that will run the service: root
You have created the service but you need to start it yourself.
Here are the most typical Linux commands of interest:

* /etc/init.d/GlassFish_domain1 start
* /etc/init.d/GlassFish_domain1 stop
* /etc/init.d/GlassFish_domain1 restart

For your convenience this message has also been saved to this file:
/export/glassfish7/glassfish/domains/domain1/PlatformServices.log
Command create-service executed successfully.

To Configure a DAS or an Instance for Automatic Restart on Oracle Solaris

On Oracle Solaris systems, the create-service subcommand creates an Oracle Solaris Service
Management Facility (SMF) service that restarts a DAS or an instance. The service grants to the
process the privileges of the user that runs the process. When you create an SMF service, the
default user is the superuser. If you require a different user to run the process, specify the user in
method_credential.

If your process is to bind to a privileged port of Oracle Solaris, the process requires the net_privaddr
privilege. The privileged ports of the Oracle Solaris operating system have port numbers less than
1024.

To determine if a user has the net_privaddr privilege, log in as that user and type the command
ppriv -l | grep net_privaddr.

After you create and enable the SMF service, if the domain or instance is stopped, SMF restarts it.

Before You Begin

To run the create-service subcommand, you must have solaris.smf.* authorization. For
information about how to set the authorizations, see the useradd(1M) man page and the usermod(1M)
man page. You must also have write permission in the directory tree:
/var/svc/manifest/application/SUNWappserver. Usually, the superuser has both of these permissions.
Additionally, Oracle Solaris administration commands such as svccfg, svcs, and auths must be
available in the PATH.

If a particular Eclipse GlassFish domain or instance should not have default user privileges, modify
the manifest of the service and reimport the service.

1. Create the service by using the create-service subcommand.

2. After the service is created, enable the service by using the svacdm enable command.

For example, to enable the SMF service for the default domain, type:

97

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Museradd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Museradd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Musermod-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Musermod-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Msvccfg-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1svcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1auths-1
https://glassfish.org/docs/latest/reference-manual.pdf#create-service

svacdm enable /appserver/domains/domain1

Example 3-13 Creating a Service to Restart a Domain Automatically on Oracle Solaris

This example creates a service for the default domain on a system that is running Oracle Solaris.

asadmin> create-service
The Service was created successfully. Here are the details:
Name of the service:application/GlassFish/domain1
Type of the service:Domain
Configuration location of the service:/home/gfuser/glassfish-installations
/glassfish7/glassfish/domains
Manifest file location on the system:/var/svc/manifest/application
/GlassFish/domain1_home_gfuser_glassfish-installations_glassfish7
_glassfish_domains/Domain-service-smf.xml.
You have created the service but you need to start it yourself.
Here are the most typical Solaris commands of interest:
* /usr/bin/svcs -a | grep domain1 // status
* /usr/sbin/svcadm enable domain1 // start
* /usr/sbin/svcadm disable domain1 // stop
* /usr/sbin/svccfg delete domain1 // uninstall
Command create-service executed successfully

See Also

For information about administering the service, see the following Oracle Solaris documentation:

• "Managing Services (Overview)" in System Administration Guide: Basic Administration

• "Managing Services (Tasks)" in System Administration Guide: Basic Administration

• auths(1)

• svcs(1)

• svcadm(1M)

• svccfg(1M)

• useradd(1M)

• usermod(1M)

• rbac(5)

• smf_security(5)

To Prevent Service Shutdown When a User Logs Out on Windows

By default, the Java Virtual Machine (VM) receives signals from Windows that indicate that
Windows is shutting down, or that a user is logging out of Windows, which causes the system to
shut itself down cleanly. This behavior causes the Eclipse GlassFish service to shut down. To
prevent the service from shutting down when a user logs out, you must set the -Xrs Java VM option

98

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SYSADV1hbrunlevels-25516
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SYSADV1faauf
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1auths-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1auths-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1svcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1svcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Msvcadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Msvcadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Msvccfg-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Msvccfg-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Museradd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Museradd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Musermod-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1Musermod-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN5rbac-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN5rbac-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN5smf-security-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN5smf-security-5

(https://github.com/eclipse-ee4j/glassfishdocumentation).

1. Ensure that the DAS is running.

2. Set the -Xrs Java VM option for the DAS. Use the create-jvm-options subcommand for this
purpose.

asadmin> create-jvm-options -Xrs

3. Set the -Xrs Java VM option for the Java VM within which the asadmin utility runs. To set this
option, edit the asadmin.bat file to add the -Xrs option to the line that runs the admin-cli.jar file.

a. In the as-install\bin\asadmin.bat file, edit the line to read as follows:

%JAVA% -Xrs -jar "%~dp0..\modules\admin-cli.jar" %*

b. In the as-install-parent\bin\asadmin.bat file, edit the line to read as follows:

%JAVA% -Xrs -jar "%~dp0..\glassfish\modules\admin-cli.jar" %*

4. If the Eclipse GlassFish service is running, restart the service for your changes to take effect.

Backing Up and Restoring a Domain
The following topics are addressed here:

• To Back Up a Domain

• To Restore a Domain

• To List Domain Backups

To Back Up a Domain

Use the backup-domain subcommand in local mode to make a backup of a specified domain.

When you use the backup-domain subcommand, Eclipse GlassFish creates a ZIP file backup of all the
files and subdirectories in the domain’s directory, domain-root-dir/domain-dir, except for the
backups subdirectory.

The backup-domain subcommand provides several options to meet particular needs, including:

• --backupdir to specify a directory in which to store the backup instead of the default domain-
root-dir/domain-dir/backups.

• --description to provide a description of the backup to be stored in the backup itself.

1. Ensure that the domain is stopped .

The backup-domain subcommand operates only when the domain is stopped.

99

https://github.com/eclipse-ee4j/glassfishdocumentation
https://glassfish.org/docs/latest/reference-manual.pdf#create-jvm-options

2. Back up the domain by using the backup-domain subcommand.

3. Restore the domain to its previous state, if necessary.

Start or resume the domain.

Example 3-14 Backing Up the Default Domain

This example makes a backup of the default domain, domain1, storing the backup file in
/net/backups.example.com/glassfish:

asadmin> backup-domain --backupdir /net/backups.example.com/glassfish domain1
Backed up domain1 at Mon Jan 17 08:16:22 PST 2011.
Command backup-domain executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help backup-
domain at the command line.

To Restore a Domain

Use the restore-domain subcommand in local mode to use a backup file to restore the files and
subdirectories in a specified domain’s directory.

The restore-domain subcommand can use backup files created by the backup-domain subcommand
and by automatic backup configurations, both full backups and configuration-only backups.
Automatic backup configurations are available only in Eclipse GlassFish.

1. If necessary, notify domain users that the domain is being restored from backup.

2. Ensure that the domain is stopped.

The restore-domain subcommand operates only when the domain is stopped.

To determine whether the domain is running, use the list-domains subcommand, as described
in To List Domains.

To stop the domain, use the stop-domain subcommand as described in To Stop a Domain.

3. Restore backup files for a domain by using the restore-domain subcommand.

4. Verify that the restore has succeeded.

5. If necessary, notify users that the domain has been restored and is available.

Example 3-15 Restoring the Default Domain

This example restores files for the default domain, domain1, from the most recent backup stored in a
specified backup directory:

asadmin> restore-domain --backupdir /net/backups.example.com/glassfish domain1

100

https://glassfish.org/docs/latest/reference-manual.pdf#backup-domain
https://glassfish.org/docs/latest/reference-manual.pdf#list-domains
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain
https://glassfish.org/docs/latest/reference-manual.pdf#restore-domain

Restored the domain (domain1) to /home/user1/glassfish7/glassfish/domains/domain1
Command restore-domain executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin restore-domain
--help at the command line.

To List Domain Backups

Use the list-backups subcommand in local mode to display information about backups of a
specified domain stored in a specified backup directory.

The list-backups subcommand provides several options to meet particular needs, including
--backupdir to specify a directory where backups are stored instead of the default domain-
dir/backups.

List backups by using the list-backups subcommand.

Example 3-16 Listing Backups of the Default Domain

This example lists the backups of the default domain, domain1, that are stored in the
/net/backups.example.com/glassfish directory:

asadmin> list-backups --backupdir /net/backups.example.com/glassfish domain1
CONFIG USER BACKUP DATE FILENAME
 user1 Mon Jan 17 08:16:22 PST 2011 domain1_2011_01_17_v00001.zip
monthly-full user1 Wed Dec 01 00:00:00 PST 2010 domain1_2010_12_01_v00001.zip
monthly-full user1 Sat Jan 01 00:00:03 PST 2011 domain1_2011_01_01_v00001.zip
monthly-full user1 Tue Feb 01 00:00:01 PST 2011 domain1_2011_02_01_v00001.zip
Command list-backups executed successfully.

Note that this listing includes backups created automatically by a backup configuration. This
feature is available only in Eclipse GlassFish.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
backups at the command line.

Re-Creating the Domain Administration Server (DAS)
For mirroring purposes, and to provide a working copy of the DAS, you must have:

• One host (olddashost) that contains the original DAS.

• A second host (apphost) that contains a cluster with server instances running applications and
catering to clients. The cluster is configured using the DAS on the first host.

• A third host (newdashost) where the DAS needs to be re-created in a situation where the first

101

host crashes or is being taken out of service.

You must maintain a backup of the DAS from the first host using the backup-domain
subcommand as described in To Back Up a Domain. You can automatically
maintain a backup of the DAS using the automatic backups feature of Eclipse
GlassFish.

Eclipse GlassFish includes asadmin subcommands that simplify this procedure. If
you are using Eclipse GlassFish, see To Migrate the DAS.

To Migrate the DAS

The following steps are required to migrate the DAS from the first host (olddashost) to the third host
(newdashost).

1. Install Eclipse GlassFish on newdashost just as it was installed on olddashost. This is required so
that the DAS can be properly restored on newdashost without causing path conflicts.

2. Use the restore-domain subcommand to restore the latest backup file onto newdashost. For
example:

asadmin> restore-domain --backupdir /net/backups.example.com/glassfish

This example assumes that backups are stored in a network-accessible location. If this is not the
case, manually copy the latest backup file from offline storage to a directory on newdashost.
You can backup any domain. However, while re-creating the domain, the domain name should
be same as the original.

3. Stop the domain on olddashost, if it is running.

4. Start the domain on newdashost by using the start-domain subcommand. For example:

asadmin> start-domain domain1

5. If the domain on olddashost was centrally administered, set up centralized administration on
newdashost. See "Enabling Centralized Administration of Eclipse GlassFish Instances" in Eclipse
GlassFish High Availability Administration Guide for instructions.

6. Verify that instances on other hosts are visible to the new DAS on newdashost:

asadmin> list-instances --long

7. Change the DAS host values for properties under the node on apphost. In the file as-
install/nodes/node-name/agent/config/das.properties file, change the agent.das.host property
value to refer to newdashost instead of olddasnost.

8. Use the new DAS to restart clusters and standalone instances on apphost: Restarting the
clustered and standalone instances on apphost triggers their recognition of the new DAS on

102

https://glassfish.org/docs/latest/reference-manual.pdf#backup-domain
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/ha-administration-guide.pdf#enabling-centralized-administration-of-glassfish-server-instances

newdashost.

a. Use the list-clusters subcommand to list the clusters in the domain.

b. Use the stop-cluster subcommand to stop each cluster.

c. Use the list-instances subcommand to list the instances in the domain.

d. Use the restart-instance subcommand to restart each standalone instance.

e. Use the start-cluster subcommand to start each cluster. If the domain does not use
centralized administration, use the start-local-instance subcommand to start the cluster
instances on apphost.

9. Verify that instances on apphost are running:

asadmin> list-instances --long

10. Decommission and discontinue use of the DAS on olddashost.

Additional Domain Tasks
The following topics are addressed here:

• To Display Domain Uptime

• To Switch a Domain to Another Supported Java Version

• To Change the Administration Port of a Domain

To Display Domain Uptime

Use the uptime subcommand in remote mode to display the length of time that the domain
administration server (DAS) has been running since it was last started.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Display uptime by using the uptime subcommand.

Example 3-17 Displaying the DAS Uptime

This example displays the length of time that the DAS has been running.

asadmin> uptime
Uptime: 1 Weeks, 4 days, 0 hours, 17 minutes, 14 seconds, Total milliseconds:
951434595
Command uptime executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help uptime at
the command line.

103

https://glassfish.org/docs/latest/reference-manual.pdf#uptime

To Switch a Domain to Another Supported Java Version

Eclipse GlassFish 7 requires Java SE 11 as the underlying virtual machine for the Java platform
(Java Virtual Machine or JVM machine).

Do not downgrade to an earlier Java version after a domain has been created with
a newer JVM machine. If you must downgrade your JVM machine, downgrade it
only for individual domains.

1. If you have not already done so, download the desired Java SDK (not the JRE) and install it on
your system. The Java SDK can be downloaded from the Java SE RI Downloads page .

2. Start the domain for which you are changing the JDK. Use the following format:

as-install/bin/asadmin start-domain domain-name

For a valid JVM installation, locations are checked in the following order:

1. domain.xml (java-home inside java-config)

2. asenv.conf (setting AS_JAVA="path to java home") If a legal JDK is not found, a fatal error occurs
and the problem is reported back to you.

3. If necessary, change the JVM machine attributes for the domain. In particular, you might need
to change the JAVA_HOME environment variable. For example, to change the JAVA_HOME variable,
type:

as-install/bin/asadmin set "server.java-config.java-home=path-to-java-home"

To Change the Administration Port of a Domain

Use the set subcommand in remote mode to change the administration port of a domain.

The HTTP port or the HTTPS port for administration of a domain is defined by the --adminport
option of the create-domain subcommand when the domain is created. If this port must be
reallocated for another purpose, change the port on which the DAS listens for administration
requests.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Set the port number to its new value. Use the set subcommand for this purpose.

$ asadmin set
server-config.network-config.network-listeners.network-listener.admin-
listener.port=new-port-number

The new-port-number is the new value that you are setting for the port number.

104

https://jdk.java.net/java-se-ri/11
https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#set

After you set the port number to its new value, running the list-domains
subcommand incorrectly reports that the DAS is not running. The list-domains
subcommand reports the correct state again only after you stop and restart the
domain as explained in the steps that follow.

3. Stop the domain, specifying the host on which the DAS is running and the old administration
port number of the domain. You must specify the old port number because the DAS is still
listening for administration requests on this port. If you omit the port number, the command
fails because the stop-domain subcommand attempts to contact the DAS through the new port
number.

Only the options that are required to complete this task are provided in this
step. For information about all the options for controlling the behavior of the
domain, see the stop-domain(1) help page.

$ asadmin --host host-name --port old-port-number stop-domain

host-name

The name of the host on which the DAS is running. If you run the stop-domain subcommand
on the host where the DAS is running, you must specify the actual host name and not
localhost. If you specify localhost, the stop-domain subcommand fails.

old-port-number

The value of administration port number of the domain before you changed it in the
preceding step.

4. Start the domain.

Only the options that are required to complete this task are provided in this
step. For information about all the options for controlling the behavior of the
domain, see the start-domain(1) help page.

$ start-domain [domain-name]

The domain-name is the name of the domain to start. If only one domain subdirectory is
contained in the domains directory, you may omit this option.

Example 3-18 Changing the Administration Port of a Domain

This example changes the administration port of the domain domain1 from 4848 to 4849. The DAS is
running on the host xk01.example.com.

$ asadmin set
server-config.network-config.network-listeners.network-listener.admin-
listener.port=4849

105

https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain

server-config.network-config.network-listeners.network-listener.admin-
listener.port=4849
Command set executed successfully.
$ asadmin --host xk01.example.com --port 4848 stop-domain
Waiting for the domain to stop
Command stop-domain executed successfully.
$ asadmin start-domain
Waiting for domain1 to start
Successfully started the domain : domain1
domain Location: /export/glassfish7/glassfish/domains/domain1
Log File: /export/glassfish7/glassfish/domains/domain1/logs/server.log
Admin Port: 4849
Command start-domain executed successfully.

See Also

• create-domain(1)

• set(1)

• start-domain(1)

• stop-domain(1)

You can also view the full syntax and options of the subcommands by typing the following
commands at the command line:

• asadmin help create-domain

• asadmin help set

• asadmin help start-domain

• asadmin help stop-domain

106

https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain

4 Administering the Virtual Machine for the
Java Platform
This chapter provides procedures for administering the Virtual Machine for the Java platform (Java
Virtual Machine) or JVM machine) in the Eclipse GlassFish 7 environment by using the asadmin
command-line utility.

The following topics are addressed here:

• Administering JVM Options

• Administering the Profiler

Instructions for accomplishing these tasks by using the Administration Console are contained in the
Administration Console online help.

Administering JVM Options
The Java Virtual Machine is an interpretive computing engine responsible for running the byte
codes in a compiled Java program. The virtual machine translates the Java byte codes into the
native instructions of the host machine. Eclipse GlassFish, being a Java process, requires a virtual
machine to run and support the Java applications running on it. JVM settings are part of an Eclipse
GlassFish configuration.

The following topics are addressed here:

• To Create JVM Options

• To List JVM Options

• To Delete JVM Options

• To Generate a JVM Report

To Create JVM Options

Use the create-jvm-options subcommand in remote mode to create JVM options in the Java
configuration or the profiler elements of the domain.xml file. If JVM options are created for a
profiler, these options are used to record the settings that initiate the profiler.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create JVM options by using the create-jvm-options subcommand.

To create more than one JVM option, use a colon (:) to separate the options. If the JVM option
itself contains a colon (:), use the backslash (\) to offset the colon delimiter.

Information about properties for the subcommand is included in this help page.

3. To apply your changes, restart Eclipse GlassFish. See To Restart a Domain.

107

https://glassfish.org/docs/latest/reference-manual.pdf#create-jvm-options

Example 4-1 Creating JVM Options

This example sets multiple Java system properties.

asadmin> create-jvm-options -Dunixlocation=/root/example:
-Dvariable=\$HOME:
-Dwindowslocation=d\\:\\\sun\\\appserver:
-Doption1=-value1
created 4 option(s)
Command create-jvm-options executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
jvm-options at the command line.

To List JVM Options

Use the list-jvm-options subcommand in remote mode to list the existing JVM options.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List JVM options by using the list-jvm-options subcommand.

Example 4-2 Listing JVM Options

This example lists all JVM options.

asadmin> list-jvm-options
-Djava.security.auth.login.config=${com.sun.aas.instanceRoot}/config/login.conf
-XX: LogVMOutput
-XX: UnlockDiagnosticVMOptions
-Dcom.sun.enterprise.config.config_environment_factory_class=com.sun.enterprise.
config.serverbeans.AppserverConfigEnvironmentFactory
-Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/keystore.jks
-XX:NewRatio=2
-Djava.security.policy=${com.sun.aas.instanceRoot}/config/server.policy
-Djdbc.drivers=org.apache.derby.jdbc.ClientDriver
-Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/cacerts.jks
-client
-Djava.ext.dirs=${com.sun.aas.javaRoot}/lib/ext${path.separator}${com.sun.aas.ja
vaRoot}/jre/lib/ext${path.separator}${com.sun.aas.instanceRoot}/lib/ext${path.se
parator}${com.sun.aas.derbyRoot}/lib
-Xmx512m
-XX:LogFile=${com.sun.aas.instanceRoot}/logs/jvm.log
Command list-jvm-options executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-jvm-

108

https://glassfish.org/docs/latest/reference-manual.pdf#list-jvm-options

options at the command line.

To Delete JVM Options

Use the delete-jvm-options subcommand in remote mode to delete JVM options from the Java
configuration or profiler elements of the domain.xml file.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List JVM options by using the list-jvm-options subcommand.

3. If necessary, notify users that the JVM option is being deleted.

4. Delete JVM options by using the delete-jvm-options subcommand.

To remove more than one JVM option, use a colon (:) to separate the options. If the JVM option
itself contains a colon, use the backslash (\) to offset the colon delimiter.

5. To apply your changes, restart Eclipse GlassFish. See To Restart a Domain.

Example 4-3 Deleting a JVM Option

This example removes a single JVM option.

asadmin> delete-jvm-options -Dopt1=A

deleted 1 option(s)
Command delete-jvm-options executed successfully.

Example 4-4 Deleting Multiple JVM Options

This example removes multiple JVM options.

asadmin> delete-jvm-options -Doption1=-value1:-Dvariable=\$HOME
deleted 2 option(s)
Command delete-jvm-options executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
jvm-options at the command line.

To Generate a JVM Report

Use the generate-jvm-report subcommand in remote mode to generate a JVM report showing the
threads (dump of a stack trace), classes, memory, and loggers for a specified instance, including the
domain administration server (DAS). You can generate the following types of reports: summary
(default), class, thread, log.

1. Ensure that the server is running. Remote subcommands require a running server.

109

https://glassfish.org/docs/latest/reference-manual.pdf#list-jvm-options
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jvm-options

2. Generate the report by using the generate-jvm-report subcommand.

Example 4-5 Generating a JVM Report

This example displays summary information about the threads, classes, and memory.

asadmin> generate-jvm-report --type summary
Operating System Information:
Name of the Operating System: Windows XP
Binary Architecture name of the Operating System: x86, Version: 5.1
Number of processors available on the Operating System: 2
System load on the available processors for the last minute: NOT_AVAILABLE.
(Sum of running and queued runnable entities per minute).
.
,
.
user.home = C:\Documents and Settings\Jennifer
user.language = en
user.name = Jennifer
user.timezone = America/New_York
user.variant =
variable = \$HOME
web.home = C:\Preview\v3_Preview_release\distributions\web\target\
glassfish\modules\web
Command generate-jvm-report executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help generate-
jvm-report at the command line.

Administering the Profiler
A profiler generates information used to analyze server performance.

The following topics are addressed here:

• To Create a Profiler

• To Delete a Profiler

To Create a Profiler

A server instance is tied to a particular profiler by the profiler element in the Java configuration. If
JVM options are created for a profiler, the options are used to record the settings needed to activate
a particular profiler. Use the create-profiler subcommand in remote mode to create the profiler
element in the Java configuration.

Only one profiler can exist. If a profiler already exists, you receive an error message that directs
you to delete the existing profiler before creating a new one.

110

https://glassfish.org/docs/latest/reference-manual.pdf#generate-jvm-report

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a profiler by using the create-profiler subcommand.

Information about properties for the subcommand is included in this help page.

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 4-6 Creating a Profiler

This example creates a profiler named sample_profiler.

asadmin> create-profiler --classpath=/home/appserver/ --nativelibrarypath=/u/home/lib
--enabled=false --property=defaultuser=admin:password=adminadmin sample_profiler
Command create-profiler executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
profiler at the command line.

To Delete a Profiler

Use the delete-profiler subcommand in remote mode to delete the profiler element from the Java
configuration. You can then create a new profiler.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Delete the profiler by using the delete-profiler subcommand.

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 4-7 Deleting a Profiler

This example deletes the profiler named sample_profiler.

asadmin> delete-profiler sample_profiler
Command delete-profiler executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
profiler at the command line.

111

https://glassfish.org/docs/latest/reference-manual.pdf#create-profiler
https://glassfish.org/docs/latest/reference-manual.pdf#delete-profiler

5 Administering Thread Pools
This chapter provides procedures for administering thread pools in the Eclipse GlassFish 7
environment by using the asadmin command-line utility.

The following topics are addressed here:

• About Thread Pools

• Configuring Thread Pools

Instructions for accomplishing these tasks by using the Administration Console are contained in the
Administration Console online help.

About Thread Pools
The Virtual Machine for the Java platform (Java Virtual Machine) or JVM machine) can support
many threads of execution simultaneously. To help performance, Eclipse GlassFish maintains one
or more thread pools. It is possible to assign specific thread pools to connector modules, to network
listeners, or to the Object Request Broker (ORB).

One thread pool can serve multiple connector modules and enterprise beans. Request threads
handle user requests for application components. When Eclipse GlassFish receives a request, it
assigns the request to a free thread from the thread pool. The thread executes the client’s requests
and returns results. For example, if the request needs to use a system resource that is currently
busy, the thread waits until that resource is free before allowing the request to use that resource.

Configuring Thread Pools
You can specify the minimum and maximum number of threads that are reserved for requests
from applications. The thread pool is dynamically adjusted between these two values.

The following topics are addressed here:

• To Create a Thread Pool

• To List Thread Pools

• To Update a Thread Pool

• To Delete a Thread Pool

To Create a Thread Pool

Use the create-threadpool subcommand in remote mode to create a thread pool.

The minimum thread pool size that is specified signals the server to allocate at least that many
threads in reserve for application requests. That number is increased up to the maximum thread
pool size that is specified. Increasing the number of threads available to a process allows the
process to respond to more application requests simultaneously.

112

If one resource adapter or application occupies all the Eclipse GlassFish threads, thread starvation
might occur. You can avoid this by dividing the Eclipse GlassFish threads into different thread
pools.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a new thread pool by using the create-threadpool subcommand.

Information about options for the subcommand is included in this help page.

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

 Restart is not necessary for thread pools used by the web container.

Example 5-1 Creating a Thread Pool

This example creates threadpool-l.

asadmin> create-threadpool --maxthreadpoolsize 100
--minthreadpoolsize 20 --idletimeout 2 --workqueues 100 threadpool-1
Command create-threadpool executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
threadpool at the command line.

To List Thread Pools

Use the list-threadpools subcommand in remote mode to list the existing thread pools.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the existing thread pools by using the list-threadpools subcommand.

Example 5-2 Listing Thread Pools

This example lists the existing thread pools.

asadmin> list-threadpools
threadpool-1
Command list-threadpools executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
threadpools at the command line.

113

https://glassfish.org/docs/latest/reference-manual.pdf#create-threadpool
https://glassfish.org/docs/latest/reference-manual.pdf#list-threadpools

To Update a Thread Pool

Use the set subcommand to update the values for a specified thread pool.

1. List the existing thread pools by using the list-threadpools subcommand.

2. Modify the values for a thread pool by using the set subcommand.

The thread pool is identified by its dotted name.

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

 Restart is not necessary for thread pools used by the web container.

Example 5-3 Updating a Thread Pool

This example sets the max-thread-pool-size from its previous value to 8. [source]

asadmin> set server.thread-pools.thread-pool.http-thread-pool.max-thread-pool-size=8
Command set executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help set at the
command line.

To Delete a Thread Pool

Use the delete-threadpool subcommand in remote mode to delete an existing thread pool. Deleting
a thread pool will fail if that pool is referenced by a network listener.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the existing thread pools by using the list-threadpools subcommand.

3. Delete the specified thread pool by using the delete-threadpool subcommand.

4. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

 Restart is not necessary for thread pools used by the web container.

Example 5-4 Deleting a Thread Pool

This example deletes threadpool-1.

asadmin> delete-threadpool threadpool-1
Command delete-threadpool executed successfully

114

https://glassfish.org/docs/latest/reference-manual.pdf#list-threadpools
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-threadpools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-threadpool

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
threadpool at the command line.

115

6 Administering Web Applications
This chapter explains how to administer web applications in the Eclipse GlassFish 7 environment.

The following topics are addressed here:

• Invoking a Servlet by Alternate Means

• Changing Log Output for a Servlet

• Defining Global Features for Web Applications

• Redirecting a URL

• Administering mod_jk

• Administering mod_proxy_ajp

Instructions for accomplishing some of these tasks by using the Administration Console are
contained in the Administration Console online help.

Invoking a Servlet by Alternate Means
You can call a servlet deployed to Eclipse GlassFish by using a URL in a browser or embedded as a
link in an HTML or JSP file. The format of a servlet invocation URL is as follows:

http://server:port/context-root/servlet-mapping?name=value

The following table describes each URL section.

Table 6-1 URL Fields for Servlets Within an Application

URL element Description

server`:`port The IP address (or host name) and optional port number.

To access the default web module for a virtual server, specify only this URL
section. You do not need to specify the context-root or servlet-name unless
you also wish to specify name-value parameters.

context-root For an application, the context root is defined in the context-root element of
the application.xml, sun-application.xml, or sun-web.xml file. For an
individually deployed web module, the context root is specified during
deployment.

For both applications and individually deployed web modules, the default
context root is the name of the WAR file minus the .war suffix.

servlet-mapping The servlet-mapping as configured in the web.xml file.

?`name=value…` Optional request parameters.

Example 6-1 Invoking a Servlet With a URL

116

In this example, localhost is the host name, MortPages is the context root, and calcMortgage is the
servlet mapping.

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

Example 6-2 Invoking a Servlet From Within a JSP File

To invoke a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/><jsp:include page="TestServlet"/>

Changing Log Output for a Servlet
ServletContext.log messages are sent to the server log. By default, the System.out and System.err
output of servlets are sent to the server log. During startup, server log messages are echoed to the
System.err output. Also by default, there is no Windows-only console for the System.err output.

You can change these defaults using the Administration Console Write to System Log box. If this box
is checked, System.out output is sent to the server log. If it is unchecked, System.out output is sent to
the system default location only.

Defining Global Features for Web Applications
You can use the default-web.xml file to define features such as filters and security constraints that
apply to all web applications.

For example, directory listings are disabled by default for added security. To enable directory
listings in your domain’s default-web.xml file, search for the definition of the servlet whose servlet-
name is equal to default, and set the value of the init-param named listings to true. Then restart the
server.

<init-param>
 <param-name>listings</param-name>
 <param-value>true</param-value>
</init-param>

If listings is set to true, you can also determine how directory listings are sorted. Set the value of
the init-param named sortedBy to NAME, SIZE, or LAST_MODIFIED. Then restart the server.

<init-param>
 <param-name>sortedBy</param-name>
 <param-value>LAST_MODIFIED</param-value>
</init-param>

117

The mime-mapping elements in default-web.xml are global and inherited by all web applications. You
can override these mappings or define your own using mime-mapping elements in your web
application’s web.xml file. For more information about mime-mapping elements, see the Servlet
specification.

You can use the Administration Console to edit the default-web.xml file, or edit the file directly using
the following steps.

To Use the default-web.xml File

1. Place the JAR file for the filter, security constraint, or other feature in the domain-dir/lib
directory.

2. Edit the domain-dir/config/default-web.xml file to refer to the JAR file.

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Redirecting a URL
You can specify that a request for an old URL be treated as a request for a new URL. This is called
redirecting a URL.

To specify a redirected URL for a virtual server, use the redirect_n property, where n is a positive
integer that allows specification of more than one. Each of these redirect_n properties is inherited
by all web applications deployed on the virtual server.

The value of each redirect_n property has two components which can be specified in any order:

• The first component, from, specifies the prefix of the requested URI to match.

• The second component, url-prefix, specifies the new URL prefix to return to the client. The
from prefix is replaced by this URL prefix.

Example 6-3 Redirecting a URL

This example redirects from dummy to etude:

<property name="redirect_1" value="from=/dummy url-prefix=http://etude"/>

Administering mod_jk
The Apache Tomcat Connector mod_jk can be used to connect the web container with web servers
such as Apache HTTP Server. By using mod_jk, which comes with Eclipse GlassFish, you can front
Eclipse GlassFish with Apache HTTP Server.

You can also use mod_jk directly at the JSP/servlet engine for load balancing. For more information
about configuring mod_jk and Apache HTTP Server for load balancing with Eclipse GlassFish 7 refer
to "Configuring HTTP Load Balancing" in Eclipse GlassFish High Availability Administration Guide.

118

https://glassfish.org/docs/latest/ha-administration-guide.pdf#configuring-http-load-balancing

The following topics are addressed here:

• To Enable mod_jk

• To Load Balance Using mod_jk and Eclipse GlassFish

• To Enable SSL Between the mod_jk Load Balancer and the Browser

• To Enable SSL Between the mod_jk Load Balancer and Eclipse GlassFish

To Enable mod_jk

You can front Eclipse GlassFish with Apache HTTP Server by enabling the mod_jk protocol for one of
Eclipse GlassFish’s network listeners, as described in this procedure. A typical use for mod_jk would
be to have Apache HTTP Server handle requests for static resources, while having requests for
dynamic resources, such as servlets and JavaServer Pages (JSPs), forwarded to, and handled by the
Eclipse GlassFish back-end instance.

When you use the jk-enabled attribute of the network listener, you do not need to copy any
additional JAR files into the /lib directory. You can also create JK connectors under different virtual
servers by using the network listener attribute jk-enabled.

1. Install Apache HTTP Server and mod_jk.

◦ For information on installing Apache HTTP Server, see http://httpd.apache.org/docs/2.2/
install.html.

◦ For information on installing mod_jk, see http://tomcat.apache.org/connectors-doc/
webserver_howto/apache.html.

2. Configure the following files:

◦ apache2/conf/httpd.conf, the main Apache configuration file

◦ apache2/conf/workers.properties

Example 6-4 and Example 6-5 provide examples of configuring these two files.

3. Start Apache HTTP Server (httpd).

4. Start Eclipse GlassFish with at least one web application deployed.

In order for the mod_jk-enabled network listener to start listening for requests, the web
container must be started. Normally, this is achieved by deploying a web application.

5. Create a jk-enabled network listener by using the create-network-listener subcommand.

asadmin> create-network-listener --protocol http-listener-1 \
--listenerport 8009 --jkenabled true jk-connector

6. If you are using the glassfish-jk.properties file to use non-default values of attributes
described at http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html), set the jk-
configuration-file property of the network listener to the fully-qualified file name of the
glassfish-jk.properties file.

119

http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/install.html
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html
https://glassfish.org/docs/latest/reference-manual.pdf#create-network-listener
http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html

asadmin> set server-config.network-config.network-listeners.network-listener.\
jk-connector.jk-configuration-file=domain-dir/config/glassfish-jk.properties

7. If you expect to need more than five threads for the listener, increase the maximum threads in
the http-thread-pool pool:

asadmin> set configs.config.server-config.thread-pools.thread-pool.\
http-thread-pool.max-thread-pool-size=value

8. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 6-4 httpd.conf File for mod_jk

This example shows an httpd.conf file that is set for mod_jk. In this example, mod_jk used as a simple
pass-through.

LoadModule jk_module /usr/lib/httpd/modules/mod_jk.so
JkWorkersFile /etc/httpd/conf/worker.properties
Where to put jk logs
JkLogFile /var/log/httpd/mod_jk.log
Set the jk log level [debug/error/info]
JkLogLevel debug
Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JkOptions indicate to send SSL KEY SIZE,
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
JkRequestLogFormat set the request format
JkRequestLogFormat "%w %V %T"
Send all jsp requests to GlassFish
JkMount /*.jsp worker1
Send all glassfish-test requests to GlassFish
JkMount /glassfish-test/* worker1

Example 6-5 workers.properties File for mod_jk

This example shows a workers.properties that is set for mod_jk. This workers.properties file is
referenced in the second line of Example 6-4

Define 1 real worker using ajp13
worker.list=worker1
Set properties for worker1 (ajp13)
worker.worker1.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009

120

See Also

For more information on Apache, see http://httpd.apache.org/.

For more information on Apache Tomcat Connector, see http://tomcat.apache.org/connectors-doc/
index.html.

To Load Balance Using mod_jk and Eclipse GlassFish

Load balancing is the process of dividing the amount of work that a computer has to do between
two or more computers so that more work gets done in the same amount of time. Load balancing
can be configured with or without security.

In order to support stickiness, the Apache mod_jk load balancer relies on a jvmRoute system property
that is included in any JSESSIONID received by the load balancer. This means that every Eclipse
GlassFish instance that is front-ended by the Apache load balancer must be configured with a
unique jvmRoute system property.

1. On each of the instances, perform the steps in To Enable mod_jk.

If your instances run on the same machine, you must choose different JK ports. The ports must
match worker.worker*.port in your workers.properties file. See the properties file in Example 6-
5.

2. On each of the instances, create the jvmRoute system property of Eclipse GlassFish by using the
create-jvm-options subcommand.

Use the following format:

asadmin> create-jvm-options "-DjvmRoute=/instance-worker-name"/

where instance-worker-name is the name of the worker that you defined to represent the
instance in the workers.properties file.

3. To apply your changes, restart Apache HTTP Server and Eclipse GlassFish.

Example 6-6 httpd.conf File for Load Balancing

This example shows an httpd.conf file that is set for load balancing.

LoadModule jk_module /usr/lib/httpd/modules/mod_jk.so
JkWorkersFile /etc/httpd/conf/worker.properties
Where to put jk logs
JkLogFile /var/log/httpd/mod_jk.log
Set the jk log level [debug/error/info]
JkLogLevel debug
Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JkOptions indicate to send SSL KEY SIZE,

121

http://httpd.apache.org/
http://tomcat.apache.org/connectors-doc/index.html
http://tomcat.apache.org/connectors-doc/index.html
https://glassfish.org/docs/latest/reference-manual.pdf#create-jvm-options

JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
JkRequestLogFormat set the request format
JkRequestLogFormat "%w %V %T"
Send all jsp requests to GlassFish
JkMount /*.jsp worker1
Send all glassfish-test requests to GlassFish
JkMount /glassfish-test/* loadbalancer

Example 6-7 workers.properties File for Load Balancing

This example shows a workers.properties or glassfish-jk.properties file that is set for load
balancing. The worker.worker*.port should match with JK ports you created.

worker.list=worker1,worker2,loadbalancer
worker.worker1.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009
worker.worker1.lbfactor=1
worker.worker1.socket_keepalive=1
worker.worker1.socket_timeout=300
worker.worker2.type=ajp13
worker.worker2.host=localhost
worker.worker2.port=8010
worker.worker2.lbfactor=1
worker.worker2.socket_keepalive=1
worker.worker2.socket_timeout=300
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=worker1,worker2

To Enable SSL Between the mod_jk Load Balancer and the Browser

To activate security for mod_jk on Eclipse GlassFish, you must first generate a Secure Socket Layer
(SSL) self-signed certificate on the Apache HTTP Server with the mod_ssl module. The tasks include
generating a private key, a Certificate Signing Request (CSR), a self-signed certificate, and
configuring SSL-enabled virtual hosts.

Before You Begin

The mod_jk connector must be enabled.

1. Generate the private key as follows:

openssl genrsa -des3 -rand file1:file2:file3:file4:file5 -out server.key 1024

where file1:file2: and so on represents the random compressed files.

2. Remove the pass-phrase from the key as follows:

122

openssl rsa -in server.key -out server.pem

3. Generate the CSR is as follows:

openssl req -new -key server.pem -out server.csr

Enter the information you are prompted for.

4. Generate a temporary certificate as follows:

openssl x509 -req -days 60 -in server.csr -signkey server.pem -out server.crt

This temporary certificate is good for 60 days.

5. Create the http-ssl.conf file under the /etc/apache2/conf.d directory.

6. In the http-ssl.conf file, add one of the following redirects:

◦ Redirect a web application, for example, JkMount /hello/* worker1.

◦ Redirect all requests, for example, JkMount /* worker1.

Send all jsp requests to GlassFish
JkMount /*.jsp worker1
Send all glassfish-test requests to GlassFish
JkMount /glassfish-test/* loadbalancer

Example 6-8 http-ssl.conf File for mod_jk Security

A basic SSL-enabled virtual host will appear in the http-ssl.conf file. In this example, all requests
are redirected.

Listen 443
<VirtualHost _default_:443>
SSLEngine on
SSLCipherSuite ALL:!ADH:!EXP56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL
SSLCertificateFile "/etc/apache2/2.2/server.crt"
SSLCertificateKeyFile "/etc/apache2/2.2/server.pem"
JkMount /* worker1
</VirtualHost>

To Enable SSL Between the mod_jk Load Balancer and Eclipse GlassFish

This procedure does not enable SSL transfer between mod_jk and Eclipse GlassFish. It enables mod_jk
to forward SSL-encrypted information from the browser to Eclipse GlassFish.

123

Before You Begin

The self-signed certificate must be configured.

1. Perform the steps in To Enable mod_jk.

2. Start another Eclipse GlassFish with at least one web application deployed.

In order for the mod_jk-enabled network listener to start listening for requests, the web
container must be started. Normally, this is achieved by deploying a web application.

3. Follow instructions from To Configure an HTTP Listener for SSL on the mod_jk connector.

Use the following format:

asadmin> create-ssl --type http-listener --certname sampleCert new-listener

4. Add the following directives in the httpd.conf file under the /etc/apache2/conf.d directory:

Should mod_jk send SSL information (default is On)
JkExtractSSL On
What is the indicator for SSL (default is HTTPS)
JkHTTPSIndicator HTTPS
What is the indicator for SSL session (default is SSL_SESSION_ID)
JkSESSIONIndicator SSL_SESSION_ID
What is the indicator for client SSL cipher suit (default is SSL_CIPHER)
JkCIPHERIndicator SSL_CIPHER
What is the indicator for the client SSL certificated? (default is
SSL_CLIENT_CERT)
JkCERTSIndicator SSL_CLIENT_CERT

5. To apply your changes, restart Apache HTTP Server and Eclipse GlassFish.

Administering mod_proxy_ajp
The Apache Connector mod_proxy_ajp can be used to connect the web container with Apache HTTP
Server. By using mod_proxy_ajp, you can front Eclipse GlassFish with Apache HTTP Server.

To Enable mod_proxy_ajp

You can front Eclipse GlassFish with Apache HTTP Server and its mod_proxy_ajp connector by
enabling the AJP protocol for one of Eclipse GlassFish’s network listeners, as described in this
procedure. A typical use for mod_proxy_ajp would be to have Apache HTTP Server handle requests
for static resources, while having requests for dynamic resources, such as servlets and JavaServer
Pages (JSPs), forwarded to, and handled by the Eclipse GlassFish back-end instance.

1. Install Apache HTTP Server.

For information on installing Apache HTTP Server, see http://httpd.apache.org/docs/2.2/

124

http://httpd.apache.org/docs/2.2/install.html

install.html.

2. Configure apache2/conf/httpd.conf, the main Apache configuration file.

For example:

LoadModule proxy_module /usr/lib/httpd/modules/mod_proxy.so
LoadModule proxy_ajp_module /usr/lib/httpd/modules/mod_proxy_ajp.so

Listen 1979
NameVirtualHost *:1979
<VirtualHost *:1979>
 ServerName localhost
 ErrorLog /var/log/apache2/ajp.error.log
 CustomLog /var/log/apache2/ajp.log combined

 <Proxy *>
 AddDefaultCharset Off
 Order deny,allow
 Allow from all
 </Proxy>

 ProxyPass / ajp://localhost:8009/
 ProxyPassReverse / ajp://localhost:8009/
</VirtualHost>

3. Start Apache HTTP Server (httpd).

4. Create a jk-enabled network listener by using the create-network-listener subcommand.

asadmin> create-network-listener --protocol http-listener-1 \
--listenerport 8009 --jkenabled true jk-connector

5. If you expect to need more than five threads for the listener, increase the maximum threads in
the http-thread-pool pool:

asadmin> set configs.config.server-config.thread-pools.thread-pool.\
http-thread-pool.max-thread-pool-size=value

6. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

See Also

For more information on Apache, see http://httpd.apache.org/.

For more information on the Apache mod_proxy_ajp Connector, see http://httpd.apache.org/docs/

125

http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/
http://httpd.apache.org/docs/2.1/mod/mod_proxy.html

2.1/mod/mod_proxy.html and http://httpd.apache.org/docs/2.1/mod/mod_proxy_ajp.html.

For more information on the AJP protocol, see http://tomcat.apache.org/connectors-doc/ajp/
ajpv13a.html.

To Load Balance Using mod_proxy_ajp and Eclipse GlassFish

Load balancing is the process of dividing the amount of work that a computer has to do between
two or more computers so that more work gets done in the same amount of time. In the Eclipse
GlassFish context, load balancing is most frequently used to distribute work among the instances in
a Eclipse GlassFish cluster.

To configure load balancing using mod_proxy_ajp, you must use the mod_proxy_balancer Apache
module in addition to mod_proxy_ajp.

In order to support stickiness, the mod_proxy_balancer load balancer relies on a jvmRoute system
property that is included in any JSESSIONID received by the load balancer. Consequently, every
Eclipse GlassFish instance that is front-ended by the Apache load balancer must be configured with
a unique jvmRoute system property.

1. Install Apache HTTP Server.

For information on installing Apache HTTP Server, see http://httpd.apache.org/docs/2.2/
install.html.

2.

Configure apache2/conf/httpd.conf, the main Apache configuration file.

For example:

LoadModule proxy_module /usr/lib/httpd/modules/mod_proxy.so
LoadModule proxy_ajp_module /usr/lib/httpd/modules/mod_proxy_ajp.so
LoadModule proxy_balancer_module /usr/lib/httpd/modules/mod_proxy_balancer.so

Forward proxy needs to be turned off
ProxyRequests Off
Keep the original Host Header
ProxyPreserveHost On

 <Proxy *>
 Order deny,allow
 Deny from all
 Allow from localhost
 </Proxy>

Each BalancerMember corresponds to an instance in the Eclipse GlassFish
cluster. The port specified for each instance must match the ajp port
specified for that instance.
<Proxy balancer://localhost>
 BalancerMember ajp://localhost:8009

126

http://httpd.apache.org/docs/2.1/mod/mod_proxy.html
http://httpd.apache.org/docs/2.1/mod/mod_proxy_ajp.html
http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html
http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html
http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/install.html

 BalancerMember ajp://localhost:8010
 BalancerMember ajp://localhost:8011
</Proxy>

3. Start Apache HTTP Server (httpd).

4. In Eclipse GlassFish, use the create-network-listener subcommand to create a jk-enabled
network listener targeted to the cluster.

For example:

asadmin> create-network-listener --jkenabled true --target cluster1 \
--protocol http-listener-1 --listenerport ${AJP_PORT} jk-listener

In this example, cluster1 is the name of the cluster and jk-listener is the name of the new
listener.

5. If you expect to need more than five threads for the listener, increase the maximum threads in
the http-thread-pool pool:

asadmin> set configs.config.cluster1-config.thread-pools.thread-pool.\
http-thread-pool.max-thread-pool-size=value

6. Use the create-jvm-options subcommand to create the jvmRoute property targeted to the cluster.

For example:

asadmin> create-jvm-options --target cluster1 \
"-DjvmRoute=\${AJP_INSTANCE_NAME}"

7. Use the create-system-properties subcommand to define the AJP_PORT and AJP_INSTANCE_NAME
properties for each of the instances in the cluster, making sure to match the port values you
used in Step 2 when specifying the load balancer members.

For example:

asadmin> create-system-properties --target instance1 AJP_PORT=8009
asadmin> create-system-properties --target instance1 \
AJP_INSTANCE_NAME=instance1
asadmin> create-system-properties --target instance2 AJP_PORT=8010
asadmin> create-system-properties --target instance2 \
AJP_INSTANCE_NAME=instance2
asadmin> create-system-properties --target instance3 AJP_PORT=8011
asadmin> create-system-properties --target instance3 \
AJP_INSTANCE_NAME=instance3

127

In this example, instance1, instance2 and instance3 are the names of the Eclipse GlassFish
instances in the cluster.

8. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

128

7 Administering the Logging Service
This chapter provides instructions on how to configure logging and how to view log information in
the Eclipse GlassFish 7 environment.

The following topics are addressed here:

• About Logging

• Default Configuration

• Configuring the Logging Service

• Using Asadmin

About Logging
Logging is the process by which Java Virtual Machine captures information about events that occur,
such as important method calls, reaching states, or even configuration errors, security failures, or
server malfunction.

This data is recorded in log files and is usually the first source of information when problems occur.
Analyzing the log files can help you to follow events that occur in the server runtime and determine
the overall health of the server.

Although application components can use other logging frameworks as SLF4J or LOG4J2, we
recommend to use the Java Util Logging Framework or even better it’s latest facade System.Logger.

Log Manager

Log Manager is a service responsible for the logging system. The service is initialized on JVM
startup. After it’s first usage it cannot be changed until the JVM is restarted, but it can be
reconfigured. Eclipse GlassFish now comes with customized log manager.

Level

Level is the key feature of the logging system. Every JUL Logger has an internal integer value
representing severity. Levels are set to

• Log Record as the severity level of the record.

• Logger as the minimal severity level processed by the logger. Log record with lower severity is
ignored.

• Handler as the minimal severity level processed by the handler. Log record with lower severity
is ignored.

There are following predefined levels; however the real usage depends on developers:

• ALL - Special level used by loggers and handlers to declare that they accept all levels.

• SEVERE - Used for serious errors.

129

https://www.slf4j.org/
https://logging.apache.org/log4j/2.x/
https://docs.oracle.com/en/java/javase/17/docs/api/java.logging/java/util/logging/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.Logger.html

• WARNING - Used for log records providing an information about some hazards which can be
handled by the application or they can even lead to a severe state.

• INFO - Used to log some important information useful even for the user.

• CONFIG - Used for providing an information related to a configuration.

• FINE - Level for tracing. Used for providing an information about internal behavior of the java
application, but still not so detailed.

• FINER - Level for tracing. More detailed information, for example usages of Logger.entering and
Logger.exiting methods.

• FINEST - Level for tracing. Usually very verbose messages slowing down the system but
providing a complete information what is going on.

• OFF - Special level used by loggers and handlers to declare that they ignore all levels.

Some projects define custom levels, but at this time it is rather rare.

Log Record

Log Record is an object created by a Logger or it’s caller and sent to the hierarchy of loggers and
handlers which will process it. Every time you use the Logger object to log a message with a level
passing configured level filters, one LogRecord instance is created and processed.

Logger

Logger is a facade of the logging system. It is transparent so it can be initialized as a constant.
Logger name is usually same as the full name of the class which created it, but specialized loggers
can be used too.

Loggers are organized in a tree, so the log record is usually processed by the logger which accepted
or created it, then passed to the parent logger (parent package), it’s parent, etc. unless it is
configured to not to do so.

The logger log level specifies a severity level to filter what is important for the user. There are
several special loggers:

• root logger - uses an empty string as a name.

• system root logger - uses an empty string as a name too, but is not accessible outside JDK, which
uses it internally.

• global logger - uses global as it’s name. It is not recommended to use it.

Handler

Handler is responsible for handling the record so it can print the record to the standard output, file,
e-mail, network, etc. Handler have also it’s own level set. This level serves as a filter of incomming
log records - usually it is not desired to send detailed messages to an e-mail, for example.

130

Formatter

Formatter is responsible for formatting of the log record to a String object. It is a usual attribute of
the handler, but not all handlers use formatters, for example some handlers may just serialize the
log record, call the logging system of the operating system or call a web service.

Configuration

JUL is usually configured by the logging.properties file unless you would use different log manager
or you use the JVM option java.util.logging.config.file to override it.

Default Configuration

The Configuration File

The DAS as well as each configuration, instance, and cluster has its own logging properties file. By
default in an Eclipse GlassFish domain, logging properties files are created in the following
locations:

Target Default Location of Logging Properties File

DAS domain-dir/config/logging.properties

A configuration domain-dir/config/config-name/logging.properties, where config-name
represents the name of a configuration that is shared by one or more instances
or clusters.

An instance domain-dir/config/instance-name-config/logging.properties, where instance-
name represents the name of the instance.

A cluster domain-dir/config/cluster-name-config/logging.properties, where cluster-
name represents the name of the cluster.

For information about configuring logging properties, see Configuring the Logging Service.

The Server Log File

By default Eclipse GlassFish log records are captured in the server.log file which can be found in
the logs directory under the instance’s directory. Each instance, managed server instance (that is,
each cluster member), and the domain administration server (DAS) has an individual server log
file.

This file will contain also logs of deployed applications if they use Java Util Logging, System.Logger
or any other facade mapped to this logging system in the backend.

Instance Default Location

DAS domain-dir/logs/server.log

Each server instance instance-dir/logs/server.log

Cluster instance instance-dir/logs/server.log

131

For example, in a domain hosted on a given machine that includes a cluster with two managed
servers (ClusterServer1 and ClusterServer1) and a standalone instance (StandaloneServer), the log
files might be arranged in the following directory structure. In this directory structure, the
server.log file for the DAS is located in domain-dir/logs.

as-install-parent directory
 glassfish/
 domains/
 domain-dir/
 logs/
 server.log
 nodes/
 hostname/
 ClusterServer1/
 logs/
 server.log
 ClusterServer2/
 logs/
 server.log
 StandaloneServer/
 logs/
 server.log

The server.log file uses the ODLLogFormatter log format by default and is rolled to a new file after
it’s size exceeds 100 Megabytes. If something in server’s JVM prints to the standard output stream
or standard error stream, it is redirected to the server.log file.

You can change the default name, location, formatting or management of a log file by modifying the
logging properties file for the corresponding instance, however we don’t recommend to change the
location of the file as it may affect availability of some services.

The Access Log File

The access.log file serves to log all requests made to the HTTP service or virtual server. This feature
is disabled by default, but you can enable it by using the asadmin set command, using
Admininistration Console or the Admin REST API.

This logging feature is not persisted in logging.properties but in domain.xml, because it doesn’t use
Java Util Logging framework but an internal implementation instead.

asadmin> get 'server.http-service.*'
server.http-service.virtual-server.__asadmin.access-
log=${com.sun.aas.instanceRoot}/logs/access
server.http-service.virtual-server.__asadmin.access-logging-enabled=inherit
...
server.http-service.virtual-server.server.access-
log=${com.sun.aas.instanceRoot}/logs/access
server.http-service.virtual-server.server.access-logging-enabled=inherit
server.http-service.access-log.buffer-size-bytes=32768

132

server.http-service.access-log.format=%client.name% %auth-user-name% %datetime%
%request% %status% %response.length%
server.http-service.access-log.max-history-files=-1
server.http-service.access-log.rotation-enabled=true
server.http-service.access-log.rotation-interval-in-minutes=1440
server.http-service.access-log.rotation-policy=time
server.http-service.access-log.rotation-suffix=yyyy-MM-dd
server.http-service.access-log.write-interval-seconds=300
server.http-service.access-logging-enabled=false

Standard Output Stream

When you start the server with the --verbose argument, the server prints log records to the
standard output too. The output is limited to just INFO levels and higher and uses the standard
error stream, but this can be switched to standard output stream too. Log records are formatted to
the Uniform Log Format] by default.

Logger Levels

The logging.properties contains many loggers used by the Eclipse GlassFish to make changes
easier. Most of loggers use the INFO level by default.

Configuring the Logging Service
You can either directly edit the logging.properties file or use the asadmin command,
Administration Console or REST API. On DAS, changes in the file have immediate effect with some
small latency before they get applied. For instances managed by nodes it is a bit more complicated
and it depends on the synchronization of the configuration with DAS.

If you edit logging.properties manually on an instance managed by the node, it
will be overwritten on the next synchronization with DAS.

Loggers

Changing the logger level is quite easy and it is a preferred way how to filter log records by their
importance.

So for example if you want to get all records handled by the logging system, you comment out all
logger level settings except the root logger and set it’s level to FINEST.

.level=FINEST

Handlers

You can use all JUL features, but some of Eclipse GlassFish features depend on some settings like the
existence of the configured GlassFishLogHandler and it’s server.log file. Also be careful when
changing it’s configuration as it may affect the performance.

133

GlassFishLogHandler

The org.glassfish.main.jul.handler.GlassFishLogHandler is used to handle persist log records into
the server.log file. It is optimized for the best performance so logging would not reduce the
performance of the server instance and applications deployed to it.

Example:

org.glassfish.main.jul.handler.GlassFishLogHandler.buffer.capacity=10000
org.glassfish.main.jul.handler.GlassFishLogHandler.buffer.timeoutInSeconds=0
org.glassfish.main.jul.handler.GlassFishLogHandler.enabled=true
org.glassfish.main.jul.handler.GlassFishLogHandler.encoding=UTF-8
org.glassfish.main.jul.handler.GlassFishLogHandler.file=${com.sun.aas.instanceRoot}/lo
gs/server.log
org.glassfish.main.jul.handler.GlassFishLogHandler.flushFrequency=1
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter=org.glassfish.main.jul.fo
rmatter.ODLLogFormatter
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.excludedFields=
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.multiline=true
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.printSource=false
org.glassfish.main.jul.handler.GlassFishLogHandler.level=ALL
org.glassfish.main.jul.handler.GlassFishLogHandler.redirectStandardStreams=true
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.compress=false
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.maxArchiveFiles=0
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.megabytes=100
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.minutes=0
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.rollOnDateChange=false

Basic Settings

• enabled - false means that the handler will stay configured in the logging system, but it will
ignore incoming records. Default is true.

• encoding - file’s character encoding. Default is UTF-8.

• file - the output file; you can use also system options - default is
${com.sun.aas.instanceRoot}/logs/server.log

• flushFrequency - count of records to be handled in a single batch. Default is 1.

• formatter - a formatter class to be used for formatting log records as strings. Default value is
org.glassfish.main.jul.formatter.ODLLogFormatter

• formatter.* - can be used for custom settings of the formatter. This works only for
ODLLogFormatter, UniformLogFormatter and OneLineFormatter.

• level - Level used to filter log records. Less important log records will be ignored. Default is ALL.

• redirectStandardStreams - if true, which is default, everything printed to the standard output
stream and standard error stream is processed by the handler as an INFO resp. ERROR log
record. While using these streams is not recommended in Jakarta EE applications, it should be
rather rare.

134

Receive Buffer

The GlassFishLogHandler has a receive buffer for incomming log records to optimize throughput. If
the buffer is full and a logger tries to add another record, logger’s thread is blocked. Then if the
timeout is set to 0, the thread is blocked until there’s free capacity available - if the handler cannot
process records, it may be blocked forever. But if you set the timeout to a positive value, and the
thread is blocked for longer time, the whole buffer is reset and added is just an error record
describing what happened.

Despite this situation should not occur in standard situation, it may happen ie. when the file system
stops working or is extremely slow.

• buffer.capacity - count of records in the receive buffer, default is 10000 log records.

• buffer.timeoutInSeconds - maximal time for waiting. Default is 0 which means forever. The
buffer is reset after timeout, which means that all unprocessible log records are lost.

Log File Rotation

The GlassFishLogHandler can roll the output log file under following conditions:

• if user forced him to do so, see To Rotate Log Files Manually for more

• if the size of the file exceeded given limit

• if the date changed

• if the specified number of minutes have passed since the file was opened

The last two conditions are exclusive, the date change has higher priority.

The <<`flushFrequency`>> parameter affects how many log records will be formatted into the log
file before the file is rolled out even after the file size exceeded it’s configured limit.

The rotation means that the log file is renamed, so the new file name gets a current timestamp as a
suffix. If there already is a file with the same name, the implementation tries to add another suffix
with a counter until it finds a name which doesn’t exist yet.

drwxrwxr-x 14 admin admin 4096 jul 29 21:21 ../
-rw-rw-r-- 1 admin admin 2521 aug 3 18:18 server.log
-rw-rw-r-- 1 admin admin 191391 jul 29 21:21 server.log_2022-07-29T21-21-54
-rw-rw-r-- 1 admin admin 24920 aug 3 18:18 server.log_2022-08-03T18-18-38

You can configure the logging service to change the default settings for log file rotation, as
explained in Setting Log File Rotation.

This is a list of related configuration properties:

• rotation.compress - compress the rotated file using GZIP algorithm provided by JDK. Default is
false.

• rotation.maxArchiveFiles - maximal count of archived log files (excludes the active one). Default
is 0, which means unlimited.

135

• rotation.limit.megabytes - size of the file initiating rotation of the file. Default is 100 Megabytes.
The final file will be slightly larger.

• rotation.limit.minutes - number of minutes since the last rotation. Default is 0 (unlimited,
disabled).

• rotation.rollOnDateChange - if set to true rolls the file at midnight. Default is false.

SimpleLogHandler

The org.glassfish.main.jul.handler.SimpleLogHandler has similar targets as the `ConsoleHandler`,
with few differences:

• can be configured to use STDOUT instead of STDERR

• uses OneLineFormatter by default

The handler configuration properties:

• encoding - output character encoding. Default is null which means it will use the system default.

• formatter - a formatter class to be used for formatting log records as strings. Default value is
<<`org.glassfish.main.jul.formatter.OneLineFormatter`>>

• formatter.* - can be used for custom settings of the formatter. This works only for
ODLLogFormatter, UniformLogFormatter and OneLineFormatter.

• level - Level used to filter log records. Less important log records will be ignored. Uses INFO as a
default.

• useErrorStream - if false, uses STDOUT instead of STDERR. Default is true.

Configuration example:

org.glassfish.main.jul.handler.SimpleLogHandler.formatter=org.glassfish.main.jul.forma
tter.OneLineFormatter
org.glassfish.main.jul.handler.SimpleLogHandler.formatter.printSource=false
org.glassfish.main.jul.handler.SimpleLogHandler.level=INFO
org.glassfish.main.jul.handler.SimpleLogHandler.useErrorStream=true

SyslogHandler

The org.glassfish.main.jul.handler.SyslogHandler is a special handler which is able to send log
records to the Unix Syslog facility. The prerequisity is that the Syslog service must listen on the
configured network endpoint. See Syslog on Wikipedia.org for more.

The handler configuration properties:

• buffer.capacity - count of records in the receive buffer. Default is 5000 log records.

• buffer.timeoutInSeconds - maximal time for waiting. Default is 300. The buffer is reset after
timeout, which means that all unprocessible log records are lost.

• enabled - false means that the handler will stay configured in the logging system, but it will

136

https://docs.oracle.com/en/java/javase/17/docs/api/java.logging/java/util/logging/ConsoleHandler.html
https://en.wikipedia.org/wiki/Syslog

ignore incoming records. Default is true.

• encoding - output character encoding used to send data to the Syslog service. Default is UTF-8.

• formatter - a formatter class to be used for formatting log records as strings. Default value is
<<`java.util.logging.SimpleFormatter`>>

• host - a host name or IP address used of the UDP endpoint. Default is an autodetected name of
the local host.

• level - Level used to filter log records. Less important log records will be ignored. The default
level is WARNING.

• port - a port of the Syslog UDP listener. Default is 514.

Configuration example:

org.glassfish.main.jul.handler.SyslogHandler.enabled=true
org.glassfish.main.jul.handler.SyslogHandler.encoding=UTF-8
org.glassfish.main.jul.handler.SyslogHandler.formatter=java.util.logging.SimpleFormatt
er
org.glassfish.main.jul.handler.SyslogHandler.host=
org.glassfish.main.jul.handler.SyslogHandler.level=SEVERE
org.glassfish.main.jul.handler.SyslogHandler.port=514

Formatters

Excluded Fields

Some of formatters support exclusion of some of fields. Currently is possible to exclude following
fields:

• tid - Thread id and name

• levelValue - Integer value of the log level.

ODLLogFormatter

The org.glassfish.main.jul.formatter.ODLLogFormatter logs records in the Oracle Diagnostic
Loggging Format (ODL).

[2022-08-01T19:43:29.952291+02:00] [GlassFish 7.0] [INFO] []
[com.sun.enterprise.server.logging.LogManagerService] [tid: _ThreadID=1
_ThreadName=main] [levelValue: 800] [[
Using property file:
/app/appservers/glassfish7/glassfish/domains/domain1/config/logging.properties]]

[2022-08-01T19:43:29.986871+02:00] [GlassFish 7.0] [INFO] [NCLS-LOGGING-00009]
[com.sun.enterprise.server.logging.LogManagerService] [tid: _ThreadID=1
_ThreadName=main] [levelValue: 800] [[
Running GlassFish Version: Eclipse GlassFish 7.0.0 (build master-b827-g71a6150 2022-

137

08-01T11:18:51+0200)]]

The formatter has following properties:

• excludedFields - comma separated list of fields which should not be printed. None by default.
See Excluded Fields

• fieldSeparator - String separating fields. Space by default.

• multiline - if set to true (default), the end of line character is inserted before the log message.

• printSequenceNumber - if set to true, logs the sequence number of each log record. Default is
false.

• printSource - if set to true, logs the class and method which created the log record. Default is
false.

• timestampFormat - see the DateTimeFormatter documentation. Default is ISO-8601 timestamp with
microseconds and time zone.

UniformLogFormatter

The org.glassfish.main.jul.formatter.UniformLogFormatter logs records in the Uniform Loggging
Format.

[#|2022-08-02T18:16:29.677628+02:00|INFO|GlassFish
7.0|com.sun.enterprise.server.logging.LogManagerService|_ThreadID=1;_ThreadName=main;_
LevelValue=800;|
Using property file:
/app/appservers/glassfish7/glassfish/domains/domain1/config/logging.properties|#]

[#|2022-08-02T18:16:29.755356+02:00|INFO|GlassFish
7.0|com.sun.enterprise.server.logging.LogManagerService|_ThreadID=1;_ThreadName=main;_
LevelValue=800;_MessageID=NCLS-LOGGING-00009;|
Running GlassFish Version: Eclipse GlassFish 7.0.0 (build master-b827-g71a6150 2022-
08-01T11:18:51+0200)|#]

The formatter has following properties:

• excludedFields - comma separated list of fields which should not be printed. None by default.
See Excluded Fields

• fieldSeparator - String separating fields. Space by default.

• multiline - if set to true (default), the end of line character is inserted before the log message.

• printSequenceNumber - if set to true, logs the sequence number of each log record. Default is
false.

• printSource - if set to true, logs the class and method which created the log record. Default is
false.

• recordMarker.begin - the prefix of the log record, default is [#|.

• recordMarker.end - the suffix of the log record, default is |#].

138

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://en.wikipedia.org/wiki/ISO_8601

• timestampFormat - see the DateTimeFormatter documentation. Default is ISO-8601 timestamp with
microseconds and time zone.

OneLineFormatter

The org.glassfish.main.jul.formatter.OneLineFormatter logs records in the following simple
format:

22:50:43.174228 INFO main
com.sun.enterprise.server.logging.LogManagerService Using property file:
/app/appservers/glassfish7/glassfish/domains/domain1/config/logging.properties
22:50:43.266648 INFO main
com.sun.enterprise.server.logging.LogManagerService Running GlassFish Version: Eclipse
GlassFish 7.0.0 (build master-b827-g71a6150 2022-08-01T11:18:51+0200)

• printSource - if set to true (default), logs the class and method which created the log record
while when set to false it prefers the logger name.

• size.level - number of characters taken by the level column. Default is 7.

• size.thread - number of characters taken by the thread column. Default is 20.

• size.class - number of characters taken by the class name column. Default is 60.

• timestampFormat - see the DateTimeFormatter documentation. Default is ISO-8601 time with
microseconds (not date, no timezone).

SimpleFormatter

The full name is java.util.logging.SimpleFormatter. It is a default formatter provided by the JDK,
simple but very flexible. It’s most important property is format. Read the documentation of the
SimpleFormatter class for more.

Using Asadmin
Each instance in an Eclipse GlassFish domain has a dedicated server.log file, and each instance and
cluster has its own logging.properties file. To configure logging for an instance or a cluster, Eclipse
GlassFish allows you target specific log files or logging properties files when you do the following:

• Set log levels

• Rotate server.log files or compress them into a ZIP archive

• Change logging property attributes

• List log levels or log attributes

The following subcommands optionally accept a target specification. A target can be a
configuration name, server name, cluster name, or instance name, and is specified as either an
operand or as a value passed using the --target option. If no target is specified when using any of
these subcommands, the default target is the DAS.

139

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://en.wikipedia.org/wiki/ISO_8601
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://en.wikipedia.org/wiki/ISO_8601
https://docs.oracle.com/en/java/javase/17/docs/api/java.logging/java/util/logging/SimpleFormatter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.logging/java/util/logging/SimpleFormatter.html

Subcommand Description Target Specification

collect-log-files Collects all available log files into a ZIP
archive.

--target=target-name

list-log-attributes Lists logging attributes in the logging
properties file.

target-name operand

list-log-levels Lists the loggers in the logging properties file
and their log levels.

target-name operand

rotate-log Rotates the log file by renaming it and
creating a new log file to store new messages.

--target=target-name

set-log-attributes Sets the specified logging attributes in the
logging properties file.

--target=target-name

set-log-file-format Sets the log file formatter. --target=target-name

set-log-levels Sets the log level for one or more loggers
listed in the logging properties file.

--target=target-name

This section contains the following examples:

• To Change the Location of the logging.properties File

• Setting Log Levels

• Setting the Log File Format

• Setting Log File Rotation

To Change the Location of the logging.properties File

You can set the name and location of the logging properties file by setting the
java.util.logging.config.file system property.

You have to ensure that the output log file is always used by a single instance. In
the default logging.properties it is ensured by using the
${com.sun.aas.instanceRoot} which always resolves to the instance’s root
directory. Example:

org.glassfish.main.jul.handler.GlassFishLogHandler.file=${com.sun.aas.i
nstanceRoot}/logs/server.log

1. Set the java.util.logging.config.file system property.

asadmin create-jvm-options --target=server-config
-Djava.util.logging.config.file=/logging.properties

Alternatively, you can use the Administration Console to set this system property.

140

https://glassfish.org/docs/latest/reference-manual.pdf#collect-log-files
https://glassfish.org/docs/latest/reference-manual.pdf#list-log-attributes
https://glassfish.org/docs/latest/reference-manual.pdf#list-log-levels
https://glassfish.org/docs/latest/reference-manual.pdf#rotate-log
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-file-format
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-levels

2. To apply your change, restart all instances using this configuration. In our case it would be the
DAS:

asadmin restart-domain

To Change the Location of the Log File

Even in complex domain you can always find the right logging.properties file and update it
manually. But probably safer is to use an asadmin command to do that.

To change the name and location of the log file, first use the list-log-attributes command to
obtain the current log attribute setting for the log file name and location. Then use the set-log-
attributes command to specify the new name or location. The default target for these two
commands is the DAS. However, you can optionally specify one of the following targets:

• Configuration name — to target all instances or clusters that share a specific configuration
name.

• Server name — to target only a specific server.

• Instance name — to target only a specific instance.

• Cluster name — to target only a specific cluster.

1. Ensure that the DAS is running. Remote commands require a running server.

2. Use the list-log-attributes command in remote mode to obtain the current log attribute
settings. The name and location of the log file is set with the
org.glassfish.main.jul.handler.GlassFishLogHandler.file attribute of the logging properties
file. Optionally you can target a configuration, server, instance, or cluster. If you do not specify a
target, the log attribute settings for the DAS are displayed.

3. Use the set-log-attributes command in remote mode to define a custom name or location of
the log file. If you do not specify a target, the log file for the DAS is targeted by default. If you
target a cluster, the name of the cluster log file for each member instance can be changed (the
server log file name cannot).

Example 7-1 Changing the Name and Location of a Cluster’s Log File

This example changes the name of the cluster log file for Cluster1 to cluster1.log. Cluster1 has two
server instances: ClusterServer1 and ClusterServer2.

asadmin list-log-attributes Cluster1
handlers
<org.glassfish.main.jul.handler.GlassFishLogHandler,org.glassfish.main.jul.handler.Sim
pleLogHandler,org.glassfish.main.jul.handler.SyslogHandler>
org.glassfish.main.jul.handler.GlassFishLogHandler.buffer.capacity <10000>
org.glassfish.main.jul.handler.GlassFishLogHandler.buffer.timeoutInSeconds <0>
org.glassfish.main.jul.handler.GlassFishLogHandler.enabled <true>
org.glassfish.main.jul.handler.GlassFishLogHandler.encoding <UTF-8>
org.glassfish.main.jul.handler.GlassFishLogHandler.file

141

https://glassfish.org/docs/latest/reference-manual.pdf#list-log-attributes
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes

<${com.sun.aas.instanceRoot}/logs/server.log>
org.glassfish.main.jul.handler.GlassFishLogHandler.flushFrequency <1>
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter
<org.glassfish.main.jul.formatter.ODLLogFormatter>
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.excludedFields <>
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.multiline <true>
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.printSource
<false>
org.glassfish.main.jul.handler.GlassFishLogHandler.redirectStandardStreams <true>
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.compress <false>
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.megabytes <100>
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.minutes <0>
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.maxArchiveFiles <0>
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.rollOnDateChange
<false>
org.glassfish.main.jul.handler.SimpleLogHandler.formatter
<org.glassfish.main.jul.formatter.UniformLogFormatter>
org.glassfish.main.jul.handler.SimpleLogHandler.formatter.excludedFields <>
org.glassfish.main.jul.handler.SimpleLogHandler.formatter.printSource <false>
org.glassfish.main.jul.handler.SimpleLogHandler.useErrorStream <true>
org.glassfish.main.jul.handler.SyslogHandler.buffer.capacity <5000>
org.glassfish.main.jul.handler.SyslogHandler.buffer.timeoutInSeconds <300>
org.glassfish.main.jul.handler.SyslogHandler.enabled <false>
org.glassfish.main.jul.handler.SyslogHandler.encoding <UTF-8>
org.glassfish.main.jul.handler.SyslogHandler.formatter
<java.util.logging.SimpleFormatter>
org.glassfish.main.jul.handler.SyslogHandler.host <>
org.glassfish.main.jul.handler.SyslogHandler.port <514>
Command list-log-attributes executed successfully.

asadmin set-log-attributes --target Cluster1
org.glassfish.main.jul.handler.GlassFishLogHandler.file=\${com.sun.aas.instanceRoot}/l
ogs/cluster1.log

org.glassfish.main.jul.handler.GlassFishLogHandler.file logging attribute value set to
${com.sun.aas.instanceRoot}/logs/cluster1.log.
The logging attributes are saved successfully for cluster-config.

Command set-log-attributes executed successfully.

asadmin list-log-attributes ClusterServer1
...
org.glassfish.main.jul.handler.GlassFishLogHandler.file
<${com.sun.aas.instanceRoot}/logs/cluster1.log>
...

asadmin list-log-attributes ClusterServer2
...
org.glassfish.main.jul.handler.GlassFishLogHandler.file
<${com.sun.aas.instanceRoot}/logs/cluster1.log>

142

...

See Also

You can view the full syntax and options of these subcommands by typing asadmin help list-log-
attributes and asadmin help set-log-attributes at the command line.

Setting Log Levels

The log level determines the granularity of the message as it is described in the chapter Level.

When setting log levels, you can target a configuration, server, instance, or cluster.

Setting log levels is done by using the set-log-levels subcommand. Listing log levels is done by
using the list-log-levels subcommand.

The following topics are addressed here:

• To List Logger Levels

• To Set the Logger Log Level

• To Set the Handler Log Level

To List Logger Levels

Eclipse GlassFish provides the means to list all loggers and their log levels. Listing the loggers
provides a convenient means to view current loggers and log levels either prior to or after making
log level changes.

Use the list-log-levels subcommand in remote mode to list the modules and their current log
levels. The default target for this subcommand is the DAS. However, you can optionally specify one
of the following targets:

• Configuration name — to target all instances or clusters that share a specific configuration
name.

• Server name — to target a specific server.

• Instance name — to target a specific instance.

• Cluster name — to target a specific cluster.

1. Ensure that the DAS is running. Remote subcommands require a running server.

2. List the existing module loggers and log levels by using the list-log-levels subcommand.

Example 7-2 Listing Logger Levels for DAS

This example shows a partial list of the existing loggers and their log levels in the DAS.

asadmin list-log-levels
MBeans <INFO>
com.sun.enterprise.glassfish.bootstrap <INFO>

143

https://glassfish.org/docs/latest/reference-manual.pdf#list-log-levels

com.sun.enterprise.glassfish <INFO>
com.sun.enterprise.security <INFO>
com.sun.webui <INFO>
jakarta.enterprise.admin.rest.client <INFO>
jakarta.enterprise.admin.rest.connector <INFO>
jakarta.enterprise.admin.rest <INFO>
jakarta.enterprise.bootstrap <INFO>
jakarta.enterprise.cluster.gms.admin <INFO>
jakarta.enterprise.cluster.gms.bootstrap <INFO>
jakarta.enterprise.cluster.gms <INFO>
jakarta.enterprise.concurrent <INFO>
jakarta.enterprise.config.api <INFO>
...
Command list-log-levels executed successfully.

Example 7-3 Listing Logger Levels for an Instance

This example shows a partial list of the loggers and log levels for the instance MyServer2.

asadmin list-log-levels MyServer2
MBeans <INFO>
com.sun.enterprise.glassfish.bootstrap <INFO>
com.sun.enterprise.glassfish <INFO>
com.sun.enterprise.security <INFO>
com.sun.webui <INFO>
cz.acme.level <ALL>
jakarta.enterprise.admin.rest.client <INFO>
jakarta.enterprise.admin.rest.connector <INFO>
jakarta.enterprise.admin.rest <INFO>
jakarta.enterprise.bootstrap <INFO>
jakarta.enterprise.cluster.gms.admin <INFO>
jakarta.enterprise.cluster.gms.bootstrap <INFO>
jakarta.enterprise.cluster.gms <INFO>
jakarta.enterprise.concurrent <INFO>
jakarta.enterprise.config.api <INFO>
...
Command list-log-levels executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help list-log-
levels at the command line.

To Set the Logger Log Level

You will probably need to set logger levels most often. Let’s imagine that you would need to set the
most verbose logging of an application using the org.acme package (and logger names).

Then you can edit the logging.properties file directly, what can be quite more complicated it you

144

use more than one instance, see the warning.

Safer is to use the set-log-levels subcommand:

Example 7-5 Changing the Logger Log Level for a Cluster

asadmin set-log-levels --target Cluster1 org.acme=ALL
org.acme package set with log level ALL.These logging levels are set for Cluster1.
Command set-log-levels executed successfully.

Example 7-5 Setting Log Levels for Multiple Loggers

The following example sets the log level for security and web container loggers in the DAS.

asadmin set-log-levels jakarta.enterprise.system.core.security=FINE\
:jakarta.enterprise.system.container.web=WARNING
jakarta.enterprise.system.core.security package set with log level
FINE.jakarta.enterprise.system.container.web package set with log level WARNING.These
logging levels are set for server.
Command set-log-levels executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help set-log-levels
at the command line.

To Set the Handler Log Level

The handler log level specifies a severity level filter to prevent overloading of the handler. Default
value is usually given by handler’s implementation and reflect targets and expected throughput of
the handler. For example, you would not want to send all FINEST LogRecords by e-mail, but you
would like to see them in a local log file.

Because JUL uses the same property syntax for Logger levels as for Handler levels you can use both
set-log-levels and set-log-attributes subcommands to get the same result (with a bit different
syntax).

Both commands in remote mode. The default target for this subcommand is the DAS. However, you
can optionally specify one of the following targets using the --target option:

• Configuration name — to target all instances or clusters that share a specific configuration
name.

• Server name — to target a specific server.

• Instance name — to target a specific instance.

• Cluster name — to target a specific cluster.

1. Ensure that the DAS is running.

145

2. Set the log level by using the set-log-attributes subcommand, specifying the log level of the
org.glassfish.main.jul.handler.GlassFishLogHandler handler. For example:

org.glassfish.main.jul.handler.GlassFishLogHandler <ALL>

Example 7-6 Changing the Handler Log Level

This example sets the log level for GlassFishLogHandler in the DAS to INFO:

asadmin set-log-attributes
org.glassfish.main.jul.handler.GlassFishLogHandler.level=INFO

org.glassfish.main.jul.handler.GlassFishLogHandler.level logging attribute value set
to INFO.
The logging attributes are saved successfully for server.

Command set-log-attributes executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help set-log-
attributes at the command line.

Setting the Log File Format

You can set the format for log records in log files. The following topics are addressed here:

• To Set the Log File Format

• To Exclude Fields in Logs

• To Disable Multiline Mode

To Set the Log File Format

Use the set-log-file-format subcommand in remote mode to set the formatter used by Eclipse
GlassFish to format log records in log files. This command is limited to the GlassFishLogHandler
settings. You can also use the set-log-attributes subcommand which is more flexible. Log formats
for all server instances in a cluster will be the same. For information about log formats, see
Formatters.

 Changing the log format forces log rotation to avoid mixed format in the same file.

1. Ensure that the DAS is running. Remote commands require a running server.

2. Set the formatter by using the set-log-file-format subcommand.

3. To apply your change, restart affected instances or clusters with the synchronization enabled.

Example 7-7 Setting the Log File Format using set-log-file-format

146

https://glassfish.org/docs/latest/reference-manual.pdf#set-log-levels
https://glassfish.org/docs/latest/reference-manual.pdf#redeploy

This example sets the log file format to OneLineFormatter for standalone instance ManagedServer1
using the set-log-file-format subcommand.

asadmin set-log-file-format --target ManagedServer1
org.glassfish.main.jul.formatter.OneLineFormatter
The log file formatter is set to org.glassfish.main.jul.formatter.OneLineFormatter for
instance server.
Command set-log-file-format executed successfully.

Example 7-8 Setting the Log File Format using set-log-attributes

This example sets the log file format to ULF for standalone instance ManagedServer1 using the set-
log-attributes subcommand.

asadmin set-log-attributes --target ManagedServer1 \
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter=org.glassfish.main.jul.fo
rmatter.OneLineFormatter

org.glassfish.main.jul.handler.GlassFishLogHandler.formatter logging attribute value
set to org.glassfish.main.jul.formatter.OneLineFormatter.
The logging attributes are saved successfully for ManagedServer1-config.

Command set-log-attributes executed successfully.

See Also

You can view the full syntax and options of the set-log-file-format subcommand by typing asadmin
help set-log-file-format at the command line. You can view the full syntax and options of the set-
log-attributes subcommand by typing asadmin help set-log-attributes at the command line.

To Exclude Fields in Logs

Use the set-log-attributes subcommand in remote mode to exclude specific name-value fields
from log records. If the excludeFields attribute is not specified, all name-value fields are included.
The following fields can be excluded:

• tid

• levelVal

1. Ensure that the DAS is running. Remote commands require a running server.

2. Exclude fields by using the set-log-attributes subcommand, specifying the attribute and the
fields to exclude.

3. To apply your change, restart Eclipse GlassFish.

Example 7-9 Excluding Fields in the ODLLogFormatter

This example excludes the tid (thread ID and name) and levelValue (numerical value of the Level)

147

https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes

name-value fields in log records for standalone instance ManagedServer1:

asadmin set-log-attributes --target ManagedServer1 \
org.glassfish.main.jul.formatter.ODLLogFormatter.excludedFields=tid,levelValue

org.glassfish.main.jul.formatter.ODLLogFormatter.excludedFields logging attribute
value set to tid,levelValue.
The logging attributes are saved successfully for ManagedServer1-config.

Command set-log-attributes executed successfully.

If there’s the same attribute of the handler’s formatter property, it has higher
priority.

Example 7-10 Excluding Fields in the GlassFishLogHandler

This example excludes the tid (thread ID and name) and levelValue (numerical value of the Level)
name-value fields in log records for standalone instance ManagedServer1:

asadmin set-log-attributes --target ManagedServer1 \
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.excludedFields=tid,levelV
alue

org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.excludedFields logging
attribute value set to tid,levelValue.
The logging attributes are saved successfully for ManagedServer1-config.

Command set-log-attributes executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help set-log-
attributes at the command line.

To Disable Multiline Mode

Use the set-log-attributes command in remote mode to disable the multiline mode. When
multiline mode is enabled (the default), the body of a log message starts on a new line after the
message header and is indented.

1. Ensure that the DAS is running. Remote commands require a running server.

2. Set multiline mode by using the set-log-attributes subcommand, specifying the formatter
attribute and its value (true or false):

3. To apply your change, restart the instance.

Example 7-11 Disabling the Multiline Mode in the log file

148

https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes

Multiline mode is enabled by default. The following example disables multiline mode in log files for
standalone instance ManagedServer1:

asadmin set-log-attributes --target ManagedServer1 \
org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.multiline=false

org.glassfish.main.jul.handler.GlassFishLogHandler.formatter.multiline logging
attribute value set to false.
The logging attributes are saved successfully for ManagedServer1-config.

Command set-log-attributes executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help set-log-
attributes at the command line.

Setting Log File Rotation

As explained in The Server Log File, Eclipse GlassFish by default rotates the server.log file when it’s
size exceeds 100 MB. However, you can change the default rotation settings. For example, you can
change the file size limit at which the server rotates the log file or you can configure a server to
rotate log files based on a time interval. In addition to changing when rotation occurs, you can also:

• Specify the maximum number of rotated files that can accumulate. By default, Eclipse GlassFish
does not limit the number of rotated log files that are retained. However, you can set a limit.
After the number of log files reaches this limit, subsequent file rotations delete the oldest
rotated log file.

• Rotate the log file manually. A manual rotation forces the immediate rotation of the target log
file.

Changing the default log rotation settings is done using the set-log-attributes subcommand, and
rotating log files manually is done using the rotate-log subcommand, as explained in the following
sections:

• To Change the Rotation File Size

• To Change the File Rotation Interval

• To Change the Limit Number of Archive Log Files

• To Rotate Log Files Manually

To Change the Rotation File Size

Use the set-log-attributes subcommand in remote mode to change the log rotation file size. The
default target of this subcommand is the DAS. Optionally, you can target a configuration, server,
instance, or cluster.

1. Ensure that the DAS is running.

149

2. Change the rotation file size limit by using the set-log-attributes subcommand, specifying the
attribute and the desired limit in megabytes:

org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.megabytes=1000

3. Changes will be applied automatically after saving the change to the instance’s
logging.properties file.

Example 7-12 Changing the Rotation Size

The following example sets the log file rotation size to 1 MB for the standalone instance
ManagedServer1:

asadmin set-log-attributes --target ManagedServer1 \
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.megabytes=1000

org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.megabytes logging
attribute value set to 1000.
The logging attributes are saved successfully for ManagedServer1-config.

Command set-log-attributes executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help set-log-
attributes at the command line.

To Change the File Rotation Interval

Use the set-log-attributes subcommand in remote mode to change the log file rotation time limit
interval. The default target of this subcommand is the DAS. Optionally, you can target a
configuration, server, instance, or cluster. The default value is 0.

1. Ensure that the DAS is running.

2. Change the rotation time limit by using the set-log-attributes subcommand, specifying the
following attribute and the desired limit in minutes:

org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.minutes=minutes

3. Changes will be applied automatically after saving the change to the instance’s
logging.properties file.

Example 7-13 Changing the Rotation Interval

The following example sets the log file rotation time limit for the cluster Cluster1, and all it’s
instances.

150

https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes

asadmin set-log-attributes --target Cluster1 \
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.minutes=60

org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.limit.minutes logging
attribute value set to 60.
The logging attributes are saved successfully for cluster-config.

Command set-log-attributes executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help set-log-
attributes at the command line.

To Change the Limit Number of Archive Log Files

Use the set-log-attributes subcommand in remote mode to change the limit on the number of log
files that the server creates to store old log messages. The default target of this subcommand is the
DAS. Optionally, you can target a configuration, server, instance, or cluster. The default limit value
is 0, which results in no limit placed on the number of rotated log files that are retained.

1. Ensure that the DAS is running.

2. Change the limit number of retained log files by using the set-log-attributes subcommand,
specifying the following attribute and the desired file limit number:

org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.maxArchiveFiles=number

3. Changes will be applied automatically after saving the change to the instance’s effective
logging.properties file.

Example 7-14 Changing the Limit Number of Archived Log Files

The following example sets the log limit number of retained log files for the DAS to 10.

asadmin set-log-attributes \
org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.maxArchiveFiles=10

org.glassfish.main.jul.handler.GlassFishLogHandler.rotation.maxArchiveFiles logging
attribute value set to 10.
The logging attributes are saved successfully for server.

Command set-log-attributes executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help set-log-
attributes at the command line.

151

https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes

To Rotate Log Files Manually

You can rotate log files manually by using the rotate-log subcommand in remote mode. The default
target of this subcommand is the DAS. Optionally, you can target a configuration, server, instance,
or cluster. When you use this subcommand, the target log file is immediately moved to a new time-
stamped file and a new log file is created.

Because log rotation is a dynamic operation, you do not need to restart Eclipse GlassFish for
changes to take effect.

1. Ensure that the target server or cluster is running.

2. Rotate log files by using the rotate-log subcommand.

Example 7-15 Rotating Log Files Manually

The following example rotates the server.log file for ManagedServer2 to server.log_yyyy-mm-dd`T`hh-
mm-ss, where yyyy-mm-dd`T`hh-mm-ss represents the time when the file is rotated, and creates a new
server.log file.

asadmin rotate-log --target ManagedServer2
Rotated log on instance named 'ManagedServer2'.
Command rotate-log executed successfully.

See Also

You can view the full syntax and options of the subcommand by typing asadmin help rotate-log at
the command line.

Viewing Log Records
The recommended means for general viewing of logging information is to use the Log Viewer in the
Administration Console. The Log Viewer simplifies reading, searching, and filtering log file
contents. For instructions, see the Administration Console online help.

Eclipse GlassFish also allows you to collect log files into a ZIP archive, which provides the means to
obtain and view log files for an instance or cluster even when it is not currently running. The
following section explains how to collect all available log files for an instance or cluster and
compile them into a single ZIP archive, which is done by using the collect-log-files subcommand.

To Collect Log Files into a ZIP Archive

Use the collect-log-files subcommand in remote mode to collect log files into a ZIP archive. The
default target of this subcommand is the DAS. Optionally you can target a configuration, server,
instance, or cluster.

1. Ensure that the target server or cluster is running. Remote subcommands require a running
server.

2. Use the collect-log-files subcommand to create the ZIP archive.

152

https://glassfish.org/docs/latest/reference-manual.pdf#rotate-log
https://glassfish.org/docs/latest/reference-manual.pdf#collect-log-files

The default location in which the ZIP archive is created is the domain-dir/collected-logs
directory. The collect-log-files subcommand allows you to specify a nondefault directory in
which the ZIP archive is to be created by using the --retrieve option set to true, followed by the
directory name.

The name of the ZIP file contains the timestamp, as follows:

log_yyyy-mm-dd_hh-min-sec.zip

Example 7-16 Collecting and Downloading Log Files as a ZIP File

This example shows collecting the log files for the cluster Cluster1 and compiling them into a ZIP
archive in the /tmp/space/output directory.

asadmin collect-log-files --target Cluster1 --retrieve true /tmp/space/output
Log files are downloaded for ClusterServer1.
Log files are downloaded for ClusterServer2.
Created Zip file under /tmp/space/output/log_2022-08-06_14-57-53.zip.
Command collect-log-files executed successfully.

When the ZIP file created by the preceding command is uncompressed, the following directory
structure is created:

as-install-parent/
 glassfish/
 domains/
 domain-dir/
 collected_logs/
 logs/
 ClusterServer1/
 server.log
 ClusterServer2/
 server.log

See Also

You can view the full syntax and options of the subcommand by typing asadmin help collect-log-
files at the command line.

Listing Loggers
You can list and view information about all public loggers in your distribution of Eclipse GlassFish.

To List Loggers

Use the list-loggers subcommand in remote mode to list the logger name, subsystem, and
description of subsystem loggers in your distribution of Eclipse GlassFish. Class name based loggers
are not listed.

153

1. Ensure that the DAS is running. Remote commands require a running server.

2. List loggers by using the list-loggers subcommand.

Example 7-17 Listing Loggers

This example lists the logger name, subsystem, and description for each logger. Some lines of
output are omitted from this example for readability.

asadmin list-loggers
Logger Name Subsystem Logger
Description
...
jakarta.enterprise.system.core CORE Core Kernel
jakarta.enterprise.system.core.ee AS-CORE Jakarta EE Core
Kernel
jakarta.enterprise.system.core.security SECURITY Core Security
jakarta.enterprise.system.core.security.web SECURITY Core-ee Security
Logger
jakarta.enterprise.system.jmx JMX JMX System Logger
jakarta.enterprise.system.security.ssl SECURITY - SSL Security - SSL
...
Command list-loggers executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
loggers at the command line.

As an alternative you can take a look into the default-logging.properties file which should contain
all useful basic loggers set to a default level. The same cofiguration is distributed in the new
domain1’s logging.properties file, so you can print all actual logger names and levels as we
described in To List Logger Levels.

154

https://glassfish.org/docs/latest/reference-manual.pdf#list-loggers

8 Administering the Monitoring Service
This chapter explains how to monitor the Eclipse GlassFish 7 components and services by using the
asadmin command-line utility. Instructions for configuring JConsole to monitor Eclipse GlassFish
resources are also provided.

The following topics are addressed here:

• About Monitoring

• Configuring Monitoring

• Viewing Common Monitoring Data

• Viewing Comprehensive Monitoring Data

• Configuring JConsole to View Eclipse GlassFish Monitoring Data

Instructions for monitoring by using the Administration Console are contained in the
Administration Console online help.

For information on using REST interfaces for monitoring, see Using REST Interfaces to Administer
Eclipse GlassFish.

About Monitoring
Monitoring is the process of reviewing the statistics of a system to improve performance or solve
problems. The monitoring service can track and display operational statistics, such as the number
of requests per second, the average response time, and the throughput. By monitoring the state of
various components and services deployed in Eclipse GlassFish, you can identify performance
bottlenecks, predict failures, perform root cause analysis, and ensure that everything is functioning
as expected. Data gathered by monitoring can also be useful in performance tuning and capacity
planning.

For this release of Eclipse GlassFish, monitoring is exposed in a modular way so that many client
modules can access and display the monitoring statistics. These clients include the Administration
Console, the asadmin utility, AMX, and REST interfaces.

The following topics are addressed here:

• How the Monitoring Tree Structure Works

• About Monitoring for Add-on Components

• Tools for Monitoring Eclipse GlassFish

How the Monitoring Tree Structure Works

A monitorable object is a component, subcomponent, or service that can be monitored. Eclipse
GlassFish uses a tree structure to track monitorable objects. Because the tree is dynamic, the tree
changes as Eclipse GlassFish components are added or removed.

155

In the tree, a monitorable object can have child objects (nodes) that represent exactly what can be
monitored for that object. All child objects are addressed using the dot (.) character as a separator.
These constructed names are referred to as dotted names. Detailed information on dotted names is
available in the dotted-names(5ASC) help page.

The following command lists the monitorable child objects of the instance server:

asadmin> list --monitor "server.*"

server.applications
server.connector-service
server.http-service
server.jms-service
server.jvm
server.network
server.orb
server.resources
server.security
server.thread-pool
server.transaction-service
server.web

Each object is represented by a dotted name. Dotted names can also address specific attributes in
monitorable objects. For example, the jvm object has a memory attribute with a statistic called
maxheapsize. The following dotted name addresses the attribute:

server.jvm.memory.maxheapsize

Although an object is monitorable, it is not necessarily being actively monitored. For instructions
on activating monitoring, see Configuring Monitoring.

Tree Structure of Monitorable Objects

Each monitorable object has a hierarchical tree structure. In the tree, a replaceable such as
*statistics represents the name of the attribute that you can show statistics for.

The following node tree hierarchies are addressed here:

• Applications Tree Hierarchy

• Connector Service Tree Hierarchy

• HTTP Service Tree Hierarchy

• JMS/Container Service Tree Hierarchy

• JVM Tree Hierarchy

• Network Tree Hierarchy

• ORB Tree Hierarchy

156

https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names
https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names

• Resources Tree Hierarchy

• Security Tree Hierarchy

• Thread Pool Tree Hierarchy

• Transactions Service Tree Hierarchy

• Web Tree Hierarchy

Applications Tree Hierarchy

The applications tree contains the following nodes:

server.applications
 |--- application1
 | |--- ejb-module-1
 | | |--- ejb1 *
 | | |--- bean-cache (for entity/sfsb) *
 | | |--- bean-pool (for slsb/mdb/entity) *
 | | |--- bean-methods
 | | |---method1 *
 | | |---method2 *
 | | |--- timers (for s1sb/entity/mdb) *
 | |--- web-module-1
 | | |--- virtual-server-1 *
 | | |---servlet1 *
 | | |---servlet2 *
 |--- standalone-web-module-1
 | | |----- virtual-server-2 *
 | | |---servlet3 *
 | | |---servlet4 *
 | | |----- virtual-server-3 *
 | | |---servlet3 *(same servlet on different vs)
 | | |---servlet5 *
 |--- standalone-ejb-module-1
 | | |--- ejb2 *
 | | |--- bean-cache (for entity/sfsb) *
 | | |--- bean-pool (for slsb/mdb/entity) *
 | | |--- bean-methods
 | | |--- method1 *
 | | |--- method2 *
 | | |--- timers (for s1sb/entity/mdb) *
 |--- jersey-application-1
 | |--- jersey
 | | |--- resources
 resource-0
 hitcount
 *statistic
 |--- application2

An example dotted name might be:

157

server.applications.hello.server.request.maxtime

An example dotted name under the EJB method node might be:

server.applications.ejbsfapp1.ejbsfapp1ejbmod1\.jar.SFApp1EJB1

An example Jersey dotted name might be:

server.applications.helloworld-webapp.jersey.resources.resource-
0.hitcount.resourcehitcount-count

For available statistics, see EJB Statistics, Jersey Statistics, and Web Statistics.

Connector Service Tree Hierarchy

The connector-service tree holds monitorable attributes for pools such as the connector connection
pool. The connector-service tree contains the following nodes:

server.connector-service
 resource-adapter-1
 connection-pools
 pool-1
 work-management

An example dotted name might be server.connector-service.resource-adapter-1.connection-
pools.pool-1. For available statistics, see JMS/Connector Service Statistics.

HTTP Service Tree Hierarchy

The http-service tree contains the following nodes:

server.http-service
 virtual-server
 request
 *statistic
 _asadmin
 request
 *statistic

An example dotted name under the virutal-server node might be server.http-service.virtual-
server1.request.requestcount. For available statistics, see HTTP Service Statistics.

JMS/Container Service Tree Hierarchy

The jms-service tree holds monitorable attributes for connection factories (connection pools for

158

resource adapters) and work management (for Message Queue resource adapters). The jms-service
tree contains the following nodes:

server.jms-service
 connection-factories
 connection-factory-1
 work-management

An example dotted name under the connection-factories node might be server.jms-
service.connection-factories.connection-factory-1 which shows all the statistics for this
connection factory. For available statistics, see JMS/Connector Service Statistics.

JVM Tree Hierarchy

The jvm tree contains the following nodes:

server.jvm
 class-loading-system
 compilation-system
 garbage-collectors
 memory
 operating-system
 runtime

An example dotted name under the memory node might be server.jvm.memory.maxheapsize. For
available statistics, see JVM Statistics.

Network Tree Hierarchy

The network statistics apply to the network listener, such as admin-listener, http-listener-1, ttp-
listener-2. The network tree contains the following nodes:

server.network
 type-of-listener
 keep-alive
 *statistic
 file-cache
 *statistic
 thread-pool
 *statistic
 connection-queue
 *statistic

An example dotted name under the network node might be server.network.admin-listener.keep-
alive.maxrequests-count. For available statistics, see Network Statistics.

159

ORB Tree Hierarchy

The orb tree holds monitorable attributes for connection managers. The orb tree contains the
following nodes:

server.orb
 transport
 connectioncache
 inbound
 *statistic
 outbound
 *statistic

An example dotted name might be server.orb.transport.connectioncache.inbound.connectionsidle-
count. For available statistics, see ORB Statistics (Connection Manager).

Resources Tree Hierarchy

The resources tree holds monitorable attributes for pools such as the JDBC connection pool and
connector connection pool. The resources tree contains the following nodes:

server.resources
 connection-pool
 request
 *statistic

An example dotted name might be server.resources.jdbc-connection-pool1.numconnfree.count. For
available statistics, see Resource Statistics (Connection Pool).

Security Tree Hierarchy

The security tree contains the following nodes:

server.security
 ejb
 *statistic
 web
 *statistic
 realm
 *statistic

An example dotted name might be server.security.realm.realmcount-starttime. For available
statistics, see Security Statistics.

Thread Pool Tree Hierarchy

The thread-pool tree holds monitorable attributes for connection managers, and contains the
following nodes:

160

server.thread-pool
 orb
 threadpool
 thread-pool-1
 *statistic

An example dotted name might be server.thread-pool.orb.threadpool.thread-pool-
1.averagetimeinqueue-current. For available statistics, see Thread Pool Statistics.

Transactions Service Tree Hierarchy

The transaction-service tree holds monitorable attributes for the transaction subsystem for the
purpose of rolling back transactions. The transaction-service tree contains the following nodes:

server.transaction-service
 statistic

An example dotted name might be server.tranaction-service.activeids. For available statistics, see
Transaction Service Statistics.

Web Tree Hierarchy

The web tree contains the following nodes:

server.web
 jsp
 *statistic
 servlet
 *statistic
 session
 *statistic
 request
 *statistic

An example dotted name for the servlet node might be
server.web.servlet.activeservletsloadedcount. For available statistics, see Web Module Common
Statistics.

About Monitoring for Add-on Components

An add-on component typically generates statistics that Eclipse GlassFish can gather at runtime.
Adding monitoring capabilities enables an add-on component to provide statistics to Eclipse
GlassFish in the same way as components that are supplied in the Eclipse GlassFish distributions.
As a result, you can use the same administrative interfaces to monitor statistics from any installed
Eclipse GlassFish component, regardless of the origin of the component.

161

Tools for Monitoring Eclipse GlassFish

The following asadmin subcommands are provided for monitoring the services and components of
Eclipse GlassFish:

• The enable-monitoring, disable-monitoring, or the get and set subcommands are used to turn
monitoring on or off. For instructions, see Configuring Monitoring.

• The monitor type subcommand is used to display basic data for a particular type of monitorable
object. For instructions, see Viewing Common Monitoring Data.

• The list --monitor subcommand is used to display the objects that can be monitored with the
monitor subcommand. For guidelines and instructions, see Guidelines for Using the list and get
Subcommands for Monitoring.

• The get subcommand is used to display comprehensive data, such as the attributes and values
for a dotted name. The get subcommand used with a wildcard parameter displays all available
attributes for any monitorable object. For additional information, see Guidelines for Using the
list and get Subcommands for Monitoring.

Configuring Monitoring
By default, the monitoring service is enabled for Eclipse GlassFish, but monitoring for the
individual modules is not. To enable monitoring for a module, you change the monitoring level for
that module to LOW or HIGH, You can choose to leave monitoring OFF for objects that do not need
to be monitored.

• LOW. Simple statistics, such as create count, byte count, and so on

• HIGH. Simple statistics plus method statistics, such as method count, duration, and so on

• OFF. No monitoring, no impact on performance

The following tasks are addressed here:

• To Enable Monitoring

• To Disable Monitoring

To Enable Monitoring

Use the enable-monitoring subcommand to enable the monitoring service itself, or to enable
monitoring for individual modules. Monitoring is immediately activated, without restarting Eclipse
GlassFish.

You can also use the set subcommand to enable monitoring for a module. Using the set command is
not a dynamic procedure, so you need to restart Eclipse GlassFish for your changes to take effect.

1. Determine which services and components are currently enabled for monitoring.

asadmin> get server.monitoring-service.module-monitoring-levels.*

162

https://glassfish.org/docs/latest/reference-manual.pdf#set

This example output shows that the HTTP service is not enabled (OFF for monitoring), but other
objects are enabled:

configs.config.server-config.monitoring-service.module-monitoring-levels.web-
container=HIGH
 configs.config.server-config.monitoring-service.module-monitoring-
levels.http-service=OFF
 configs.config.server-config.monitoring-service.module-monitoring-
levels.jvm=HIGH

2. Enable monitoring by using the enable-monitoring subcommand.

Server restart is not required.

Example 8-1 Enabling the Monitoring Service Dynamically

This example enables the monitoring service without affecting monitoring for individual modules.

asadmin> enable-monitoring
Command enable-monitoring executed successfully

Example 8-2 Enabling Monitoring for Modules Dynamically

This example enables monitoring for the ejb-container module.

asadmin> enable-monitoring --level ejb-container=HIGH
Command enable-monitoring executed successfully

Example 8-3 Enabling Monitoring for Modules by Using the set Subcommand

This example enables monitoring for the HTTP service by setting the monitoring level to HIGH (you
must restart the server for changes to take effect).

asadmin> set server.monitoring-service.module-monitoring-levels.http-service=HIGH
Command set executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help enable-
monitoring at the command line.

To Disable Monitoring

Use the disable-monitoring subcommand to disable the monitoring service itself, or to disable
monitoring for individual modules. Monitoring is immediately stopped, without restarting Eclipse
GlassFish.

163

https://glassfish.org/docs/latest/reference-manual.pdf#enable-monitoring

You can also use the set subcommand to disable monitoring for a module. Using the set command
is not a dynamic procedure, so you need to restart Eclipse GlassFish for your changes to take effect.

1. Determine which services and components currently are enabled for monitoring.

asadmin get server.monitoring-service.module-monitoring-levels.*

This example output shows that monitoring is enabled for web-container, http-service, and jvm:

configs.config.server-config.monitoring-service.module-monitoring-levels.web-
container=HIGH
 configs.config.server-config.monitoring-service.module-monitoring-
levels.http-service=HIGH
 configs.config.server-config.monitoring-service.module-monitoring-
levels.jvm=HIGH

2. Disable monitoring for a service or module by using the disable-monitoring subcommand.

Server restart is not required.

Example 8-4 Disabling the Monitoring Service Dynamically

This example disables the monitoring service without changing the monitoring levels for individual
modules.

asadmin> disable-monitoring
Command disable-monitoring executed successfully

Example 8-5 Disabling Monitoring for Modules Dynamically

This example disables monitoring for specific modules. Their monitoring levels are set to OFF.

asadmin> disable-monitoring --modules web-container,ejb-container
Command disable-monitoring executed successfully

Example 8-6 Disabling Monitoring by Using the set Subcommand

This example disables monitoring for the HTTP service (you must restart the server for changes to
take effect).

asadmin> set server.monitoring-service.module-monitoring-levels.http-service=OFF
Command set executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help disable-

164

https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#disable-monitoring

monitoring at the command line.

Viewing Common Monitoring Data
Use the monitor subcommand to display basic data on commonly-monitored objects.

• To View Common Monitoring Data

• Common Monitoring Statistics

To View Common Monitoring Data

Use the --type option of the monitor subcommand to specify the object for which you want to
display data, such as httplistener, jvm, webmodule. If you use the monitor subcommand without
specifying a type, an error message is displayed.

Output from the subcommand is displayed continuously in a tabular format. The --interval option
can be used to display output at a particular interval (the default is 30 seconds).

Before You Begin

A monitorable object must be configured for monitoring before you can display data on the object.
See To Enable Monitoring.

1. Determine which type of monitorable object you want to monitor.

Your choices for 5.0 are jvm, httplistener, and webmodule.

2. Request the monitoring data by using the monitor subcommand.

Example 8-7 Viewing Common Monitoring Data

This example requests common data for type jvm on instance server.

asadmin> monitor --type jvm server

UpTime(ms) Heap and NonHeap Memory(bytes)
current min max low high count

9437266 8585216 619642880 0 0 93093888
9467250 8585216 619642880 0 0 93093888

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help monitor at
the command line.

Common Monitoring Statistics

Common monitoring statistics are described in the following sections:

165

https://glassfish.org/docs/latest/reference-manual.pdf#monitor

• HTTP Listener Common Statistics

• JVM Common Statistics

• Web Module Common Statistics

HTTP Listener Common Statistics

The statistics available for the httplistener type are shown in the following table.

Table 8-1 HTTP Listener Common Monitoring Statistics

Statistic Description

ec Error count. Cumulative value of the error count

mt Maximum time. Longest response time for a request; not a cumulative value, but
the largest response time from among the response times

pt Processing time. Cumulative value of the times taken to process each request,
with processing time being the average of request processing times over request

rc Request count. Cumulative number of requests processed so far

JVM Common Statistics

The statistics available for the jvm type are shown in the following table.

Table 8-2 JVM Common Monitoring Statistics

Statistic Description

count Amount of memory (in bytes) that is guaranteed to be available for use by the
JVM machine

high Retained for compatibility with other releases

low Retained for compatibility with other releases

max The maximum amount of memory that can be used for memory management.

min Initial amount of memory (in bytes) that the JVM machine requests from the
operating system for memory management during startup

UpTime Number of milliseconds that the JVM machine has been running since it was
last started

Web Module Common Statistics

The statistics available for the webmodule type are shown in the following table.

Table 8-3 Web Module Common Monitoring Statistics

Statistic Description

ajlc Number of active JavaServer Pages (JSP) technology pages that are loaded

asc Current active sessions

166

Statistic Description

aslc Number of active servlets that are loaded

ast Total active sessions

mjlc Maximum number of JSP pages that are loaded

mslc Maximum number of servlets that are loaded

rst Total rejected sessions

st Total sessions

tjlc Total number of JSP pages that are loaded

tslc Total number of servlets that are loaded

Viewing Comprehensive Monitoring Data
By applying the list and get subcommands against the tree structure using dotted names, you can
display more comprehensive monitoring data, such as a description of each of the statistics and its
unit of measurement.

The following topics are addressed here:

• Guidelines for Using the list and get Subcommands for Monitoring

• To View Comprehensive Monitoring Data

• Comprehensive Monitoring Statistics

Guidelines for Using the list and get Subcommands for Monitoring

The underlying assumptions for using the list and get subcommands with dotted names are:

• A list subcommand that specifies a dotted name that is not followed by a wildcard (*) lists the
current node’s immediate children. For example, the following subcommand lists all immediate
children belonging to the server node:

list --monitor server

• A list subcommand that specifies a dotted name followed by a wildcard of the form .* lists a
hierarchical tree of child nodes from the specified node. For example, the following
subcommand lists all children of the applications node, their subsequent child nodes, and so
on:

list --monitor server.applications.*

• A list subcommand that specifies a dotted name preceded or followed by a wildcard of the
form *dottedname or dotted * name or dottedname * lists all nodes and their children that
match the regular expression created by the specified matching pattern.

167

• A get subcommand followed by a . or a gets the set of attributes and their values that belong to
the node specified.

For example, the following table explains the output of the list and get subcommands used with
the dotted name for the resources node.

Table 8-4 Example Resources Level Dotted Names

Subcommand Dotted Name Output

list --monitor server.resources List of pool names.

list --monitor server.resources.``connection-pool1 No attributes, but a message
saying "Use get subcommand with
the --monitor option to view this
node’s attributes and values."

get --monitor server.resources.``connection-pool1.* List of attributes and values
corresponding to connection pool
attributes.

For detailed information on dotted names, see the dotted-names(5ASC) help page.

To View Comprehensive Monitoring Data

Although the monitor subcommand is useful in many situations, it does not offer the complete list of
all monitorable objects. To work with comprehensive data for an object type, use the list monitor
and the get monitor subcommands followed by the dotted name of a monitorable object.

Before You Begin

A monitorable object must be configured for monitoring before you can display information about
the object. See To Enable Monitoring if needed.

1. List the objects that are enabled for monitoring by using the list subcommand.

For example, the following subcommand lists all components and services that have monitoring
enabled for instance server.

asadmin> list --monitor "*"
server.web
server.connector-service
server.orb
server.jms-serviceserver.jvm
server.applications
server.http-service
server.thread-pools

2. Get data for a monitored component or service by using the get subcommand.

Example 8-8 Viewing Attributes for a Specific Type

168

https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names
https://glassfish.org/docs/latest/reference-manual.pdf#dotted-names
https://glassfish.org/docs/latest/reference-manual.pdf#list
https://glassfish.org/docs/latest/reference-manual.pdf#get

This example gets information about all the attributes for object type jvm on instance server.

asadmin> get --monitor server.jvm.*
server.jvm.class-loading-system.loadedclasscount = 3715
server.jvm.class-loading-system.totalloadedclasscount = 3731
server.jvm.class-loading-system.unloadedclasscount = 16
server.jvm.compilation-system.name-current = HotSpot Client Compiler
server.jvm.compilation-system.totalcompilationtime = 769
server.jvm.garbage-collectors.Copy.collectioncount = 285
server.jvm.garbage-collectors.Copy.collectiontime = 980
server.jvm.garbage-collectors.MarkSweepCompact.collectioncount = 2
server.jvm.garbage-collectors.MarkSweepCompact.collectiontime = 383
server.jvm.memory.committedheapsize = 23498752
server.jvm.memory.committednonheapsize = 13598720
server.jvm.memory.initheapsize = 0
server.jvm.memory.initnonheapsize = 8585216
server.jvm.memory.maxheapsize = 66650112
server.jvm.memory.maxnonheapsize = 100663296
server.jvm.memory.objectpendingfinalizationcount = 0
server.jvm.memory.usedheapsize = 19741184
server.jvm.memory.usednonheapsize = 13398352
server.jvm.operating-system.arch-current = x86
server.jvm.operating-system.availableprocessors = 2
server.jvm.operating-system.name-current = Windows XP
server.jvm.operating-system.version-current = 5.1
server.jvm.runtime.classpath-current = glassfish.jar
server.jvm.runtime.inputarguments-current = []
server.jvm.runtime.managementspecversion-current = 1.0
server.jvm.runtime.name-current = 4372@ABBAGANI_WORK
server.jvm.runtime.specname-current = Java Virtual Machine Specification
server.jvm.runtime.specvendor-current = Sun Microsystems Inc.
server.jvm.runtime.specversion-current = 1.0
server.jvm.runtime.uptime = 84813
server.jvm.runtime.vmname-current = Java HotSpot(TM) Client VM
server.jvm.runtime.vmvendor-current = Sun Microsystems Inc.
server.jvm.runtime.vmversion-current = 1.5.0_11-b03

Example 8-9 Viewing Monitorable Applications

This example lists all the monitorable applications for instance server.

asadmin> list --monitor server.applications.*
server.applications.app1
server.applications.app2
server.applications.app1.virtual-server1
server.applications.app2.virtual-server1

Example 8-10 Viewing Attributes for an Application

169

This example gets information about all the attributes for application hello.

asadmin> get --monitor server.applications.hello.*
server.applications.hello.server.activatedsessionstotal = 0
server.applications.hello.server.activejspsloadedcount = 1
server.applications.hello.server.activeservletsloadedcount = 1
server.applications.hello.server.activesessionscurrent = 1
server.applications.hello.server.activesessionshigh = 1
server.applications.hello.server.errorcount = 0
server.applications.hello.server.expiredsessionstotal = 0
server.applications.hello.server.maxjspsloadedcount = 1
server.applications.hello.server.maxservletsloadedcount = 0
server.applications.hello.server.maxtime = 0
server.applications.hello.server.passivatedsessionstotal = 0
server.applications.hello.server.persistedsessionstotal = 0
server.applications.hello.server.processingtime = 0.0
server.applications.hello.server.rejectedsessionstotal = 0
server.applications.hello.server.requestcount = 0
server.applications.hello.server.sessionstotal =
server.applications.hello.server.totaljspsloadedcount = 0
server.applications.hello.server.totalservletsloadedcount = 0

Example 8-11 Viewing a Specific Attribute

This example gets information about the jvm attribute runtime.vmversion-current on instance
server.

asadmin> get --monitor server.jvm.runtime.vmversion-current
server.jvm.runtime.vmversion-current = 10.0-b23

Comprehensive Monitoring Statistics

You can get comprehensive monitoring statistics by forming a dotted name that specifies the
statistic you are looking for. For example, the following dotted name will display the cumulative
number of requests for the HTTP service on virtual-server1:

server.http-service.virtual-server1.request.requestcount

The tables in the following sections list the statistics that are available for each monitorable object:

• EJB Statistics

• HTTP Service Statistics

• Jersey Statistics

• JMS/Connector Service Statistics

• JVM Statistics

• Network Statistics

170

• ORB Statistics (Connection Manager)

• Resource Statistics (Connection Pool)

• Security Statistics

• Thread Pool Statistics

• Transaction Service Statistics

• Web Statistics

EJB Statistics

EJBs fit into the tree of objects as shown in Applications Tree Hierarchy. Use the following dotted
name pattern to get EJB statistics for an application:

server.applications.appname.ejbmodulename.ejbname.bean-cache.statistic

EJB statistics for an application are available after the application is executed. If
the application is deployed but has not yet been executed, all counts will show
default values. When the application is undeployed, all its monitoring data is lost.

Statistics available for applications are shown in the following sections:

• EJB Cache Statistics

• EJB Container Statistics

• EJB Method Statistics

• EJB Pool Statistics

• Timer Statistics

EJB Cache Statistics

Use the following dotted name pattern for EJB cache statistics:

server.applications.appname.ejbmodulename.bean-cache.ejbname.statistic

The statistics available for EJB caches are listed in the following table.

Table 8-5 EJB Cache Monitoring Statistics

Statistic Data Type Description

cachemisses RangeStatistic The number of times a user request does not
find a bean in the cache.

cachehits RangeStatistic The number of times a user request found an
entry in the cache.

171

Statistic Data Type Description

numbeansincache RangeStatistic The number of beans in the cache. This is the
current size of the cache.

numpassivations CountStatistic Number of passivated beans. Applies only to
stateful session beans.

numpassivationerrors CountStatistic Number of errors during passivation. Applies
only to stateful session beans.

numexpiredsessionsremoved CountStatistic Number of expired sessions removed by the
cleanup thread. Applies only to stateful
session beans.

numpassivationsuccess CountStatistic Number of times passivation completed
successfully. Applies only to stateful session
beans.

EJB Container Statistics

Use the following dotted name pattern for EJB container statistics:

server.applications.appname.ejbmodulename.container.ejbname

The statistics available for EJB containers are listed in the following table.

Table 8-6 EJB Container Monitoring Statistics

Statistic Data Type Description

createcount CountStatistic Number of times an EJB’s create method is called.

messagecount CountStatistic Number of messages received for a message-driven bean.

methodreadycount RangeStatistic Number of stateful or stateless session beans that are in
the MethodReady state.

passivecount RangeStatistic Number of stateful session beans that are in Passive state.

pooledcount RangeStatistic Number of entity beans in pooled state.

readycount RangeStatistic Number of entity beans in ready state.

removecount CountStatistic Number of times an EJB’s remove method is called.

EJB Method Statistics

Use the following dotted name pattern for EJB method statistics:

server.applications.appname.ejbmodulename.bean-methods.ejbname.statistic

The statistics available for EJB method invocations are listed in the following table.

172

Table 8-7 EJB Method Monitoring Statistics

Statistic Data Type Description

executiontime CountStatistic Time, in milliseconds, spent executing the method for the
last successful/unsuccessful attempt to run the operation.
This is collected for stateless and stateful session beans and
entity beans if monitoring is enabled on the EJB container.

methodstatistic TimeStatistic Number of times an operation is called; the total time that
is spent during the invocation, and so on.

totalnumerrors CountStatistic Number of times the method execution resulted in an
exception. This is collected for stateless and stateful session
beans and entity beans if monitoring is enabled for the EJB
container.

totalnumsuccess CountStatistic Number of times the method successfully executed. This is
collected for stateless and stateful session beans and entity
beans if monitoring enabled is true for EJB container.

EJB Pool Statistics

Use the following dotted name pattern for EJB pool statistics:

server.applications.appname.ejbmodulename.bean-pool.ejbname.statistic

The statistics available for EJB pools are listed in the following table.

Table 8-8 EJB Pool Monitoring Statistics

Statistic Data Type Description

jmsmaxmessagesload CountStatistic The maximum number of messages to load into a JMS
session at one time for a message-driven bean to
serve. Default is 1. Applies only to pools for message
driven beans.

numbeansinpool RangeStatistic Number of EJBs in the associated pool, providing
information about how the pool is changing.

numthreadswaiting RangeStatistic Number of threads waiting for free beans, giving an
indication of possible congestion of requests.

totalbeanscreated CountStatistic Number of beans created in associated pool since the
gathering of data started.

totalbeansdestroyed CountStatistic Number of beans destroyed from associated pool since
the gathering of data started.

Timer Statistics

Use the following dotted name pattern for timer statistics:

173

server.applications.appname.ejbmodulename.timers.ejbname.statistic

The statistics available for timers are listed in the following table.

Table 8-9 Timer Monitoring Statistics

Statistic Data Type Description

numtimerscreated CountStatistic Number of timers created in the system.

numtimersdelivered CountStatistic Number of timers delivered by the system.

numtimersremoved CountStatistic Number of timers removed from the system.

HTTP Service Statistics

The HTTP service fits into the tree of objects as shown in HTTP Service Tree Hierarchy.

HTTP Service Virtual Server Statistics

Use the following dotted name pattern for HTTP service virtual server statistics:

server.http-service.virtual-server.request.statistic

The HTTP service statistics for virtual servers are shown in the following table.

Table 8-10 HTTP Service Virtual Server Monitoring Statistics

Statistic Data Type Description

count200 CountStatistic Number of responses with a status code equal to 200

count2xx CountStatistic Number of responses with a status code in the 2xx range

count302 CountStatistic Number of responses with a status code equal to 302

count304 CountStatistic Number of responses with a status code equal to 304

count3xx CountStatistic Number of responses with a status code equal in the 3xx
range

count400 CountStatistic Number of responses with a status code equal to 400

count401 CountStatistic Number of responses with a status code equal to 401

count403 CountStatistic Number of responses with a status code equal to 403

count404 CountStatistic Number of responses with a status code equal to 404

count4xx CountStatistic Number of responses with a status code equal in the 4xx
range

count503 CountStatistic Number of responses with a status code equal to 503

count5xx CountStatistic Number of responses with a status code equal in the 5xx
range

174

Statistic Data Type Description

countother CountStatistic Number of responses with a status code outside the 2xx, 3xx,
4xx, and 5xx range

errorcount CountStatistic Cumulative value of the error count, with error count
representing the number of cases where the response code
was greater than or equal to 400

hosts StringStatistic The host (alias) names of the virtual server

maxtime CountStatistic Longest response time for a request; not a cumulative value,
but the largest response time from among the response times

processingtime CountStatistic Cumulative value of the times taken to process each request,
with processing time being the average of request processing
times over the request count

requestcount CountStatistic Cumulative number of requests processed so far

state StringStatistic The state of the virtual server

Jersey Statistics

Jersey fits into the tree of objects as shown in Applications Tree Hierarchy.

Use the following dotted name pattern for Jersey statistics:

server.applications.jersey-application.jersey.resources.resource-0.hitcount.statistic

The statistics available for Jersey are shown in the following table.

Table 8-11 Jersey Statistics

Statistic Data Type Description

resourcehitcount CountStatistic Number of hits on this resource class

rootresourcehitcount CountStatistic Number of hits on this root resource class

JMS/Connector Service Statistics

The JMS/Connector Service fits into the tree of objects as shown in JMS/Container Service Tree
Hierarchy.

JMS/Connector Service statistics are shown in the following sections:

• Connector Connection Pool Statistics (JMS)

• Connector Work Management Statistics (JMS)

Connector Connection Pool Statistics (JMS)

Use the following dotted name pattern for JMS/Connector Service connection pool statistics:

175

server.connector-service.resource-adapter-1.connection-pool.statistic

JMS/Connector Service statistics available for the connector connection pools are shown in the
following table.

In order to improve system performance, connection pools are initialized lazily;
that is, a pool is not initialized until an application first uses the pool or the pool is
explicitly pinged. Monitoring statistics for a connection pool are not available until
the pool is initialized.

Table 8-12 Connector Connection Pool Monitoring Statistics (JMS)

Statistic Data Type Description

averageconnwaittime CountStatistic Average wait time of connections before they
are serviced by the connection pool.

connectionrequestwaittime RangeStatistic The longest and shortest wait times of
connection requests. The current value
indicates the wait time of the last request that
was serviced by the pool.

numconnfailedvalidation CountStatistic Total number of connections in the
connection pool that failed validation from
the start time until the last sample time.

numconnused RangeStatistic Total number of connections that are
currently being used, as well as information
about the maximum number of connections
that were used (the high water mark).

numconnfree RangeStatistic Total number of free connections in the pool
as of the last sampling.

numconntimedout CountStatistic Total number of connections in the pool that
timed out between the start time and the last
sample time.

numconncreated CountStatistic Number of physical connections, in
milliseconds, that were created since the last
reset.

numconndestroyed CountStatistic Number of physical connections that were
destroyed since the last reset.

numconnacquired CountStatistic Number of logical connections acquired from
the pool.

numconnreleased CountStatistic Number of logical connections released to the
pool.

waitqueuelenght CountStatistic Number of connection requests in the queue
waiting to be serviced.

176

Connector Work Management Statistics (JMS)

Use the following dotted name pattern for JMS/Connector Service work management statistics:

server.connector-service.resource-adapter-1.work-management.statistic

JMS/Connector Service statistics available for connector work management are listed in the
following table.

Table 8-13 Connector Work Management Monitoring Statistics (JMS)

Statistic Data Type Description

activeworkcount RangeStatistic Number of work objects executed by the connector.

completedworkcount CountStatistic Number of work objects that were completed.

rejectedworkcount CountStatistic Number of work objects rejected by the Eclipse
GlassFish.

submittedworkcount CountStatistic Number of work objects submitted by a connector
module.

waitqueuelength RangeStatistic Number of work objects waiting in the queue before
executing.

workrequestwaittime RangeStatistic Longest and shortest wait of a work object before it
gets executed.

JVM Statistics

The JVM fits into the tree of objects as show in JVM Tree Hierarchy.

The statistics that are available for the Virtual Machine for Java platform (Java Virtual Machine) or
JVM machine are shown in the following sections:

• JVM Class Loading System Statistics

• JVM Compilation System Statistics

• JVM Garbage Collectors Statistics

• JVM Memory Statistics

• JVM Operating System Statistics

• JVM Runtime Statistics

JVM Class Loading System Statistics

Use the following dotted name pattern for JVM class loading system statistics:

server.jvm.class-loading-system.statistic

With Java SE, additional monitoring information can be obtained from the JVM. Set the monitoring

177

level to LOW to enable the display of this additional information. Set the monitoring level to HIGH
to also view information pertaining to each live thread in the system. More information about the
additional monitoring features for Java SE is available in Monitoring and Management for the Java
Platform .

The Java SE monitoring tools are discussed at http://docs.oracle.com/javase/8/docs/technotes/
tools/.

The statistics that are available for class loading in the JVM for Java SE are shown in the following
table.

Table 8-14 JVM Monitoring Statistics for Java SE Class Loading

Statistic Data Type Description

loadedclasscount CountStatistic Number of classes that are currently loaded in the
JVM

totalloadedclasscount CountStatistic Total number of classes that have been loaded since
the JVM began execution

unloadedclasscount CountStatistic Number of classes that have been unloaded from
the JVM since the JVM began execution

The statistics available for threads in the JVM in Java SE are shown in the following table.

Table 8-15 JVM Monitoring Statistics for Java SE - Threads

Statistic Data Type Description

allthreadids StringStatistic List of all live thread ids.

currentthreadcputime CountStatistic CPU time for the current thread (in
nanoseconds) if CPU time measurement is
enabled. If CPU time measurement is disabled,
returns -1.

daemonthreadcount CountStatistic Current number of live daemon threads.

monitordeadlockedthreads StringStatistic List of thread ids that are monitor deadlocked.

peakthreadcount CountStatistic Peak live thread count since the JVM started or
the peak was reset.

threadcount CountStatistic Current number of live daemon and non-
daemon threads.

totalstartedthreadcount CountStatistic Total number of threads created and/or started
since the JVM started.

JVM Compilation System Statistics

Use the following dotted name pattern for JVM compilation system statistics:

178

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/management/
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/management/
http://docs.oracle.com/javase/8/docs/technotes/tools/
http://docs.oracle.com/javase/8/docs/technotes/tools/

server.jvm.compilation-system.statistic

The statistics that are available for compilation in the JVM for Java SE are shown in the following
table.

Table 8-16 JVM Monitoring Statistics for Java SE Compilation

Statistic Data Type Description

name-current StringStatistic Name of the current compiler

totalcompilationtime CountStatistic Accumulated time (in milliseconds) spent in
compilation

JVM Garbage Collectors Statistics

Use the following dotted name pattern for JVM garbage collectors statistics:

server.jvm.garbage-collectors.statistic

The statistics that are available for garbage collection in the JVM for Java SE are shown in the
following table.

Table 8-17 JVM Monitoring Statistics for Java SE Garbage Collectors

Statistic Data Type Description

collectioncount CountStatistic Total number of collections that have occurred

collectiontime CountStatistic Accumulated time (in milliseconds) spent in collection

JVM Memory Statistics

Use the following dotted name pattern for JVM memory statistics:

server.jvm.memory.statistic

The statistics that are available for memory in the JVM for Java SE are shown in the following table.

Table 8-18 JVM Monitoring Statistics for Java SE Memory

Statistic Data Type Description

committedheapsize CountStatistic Amount of heap memory (in bytes)
that is committed for the JVM to use

committednonheapsize CountStatistic Amount of non-heap memory (in
bytes) that is committed for the JVM to
use

179

Statistic Data Type Description

initheapsize CountStatistic Size of the heap initially requested by
the JVM

initnonheapsize CountStatistic Size of the non-heap area initially
requested by the JVM

maxheapsize CountStatistic Maximum amount of heap memory
(in bytes) that can be used for memory
management

maxnonheapsize CountStatistic Maximum amount of non-heap
memory (in bytes) that can be used for
memory management

objectpendingfinalizationcount CountStatistic Approximate number of objects that
are pending finalization

usedheapsize CountStatistic Size of the heap currently in use

usednonheapsize CountStatistic Size of the non-heap area currently in
use

JVM Operating System Statistics

Use the following dotted name pattern for JVM operating system statistics:

server.jvm.operating-system.statistic

The statistics that are available for the operating system for the JVM machine in Java SE are shown
in the following table.

Table 8-19 JVM Statistics for the Java SE Operating System

Statistic Data Type Description

arch-current StringStatistic Operating system architecture

availableprocessors CountStatistic Number of processors available to the JVM

name-current StringStatistic Operating system name

version-current StringStatistic Operating system version

JVM Runtime Statistics

Use the following dotted name pattern for JVM runtime statistics:

server.jvm.runtime.statistic

The statistics that are available for the runtime in the JVM runtime for Java SE are shown in the
following table.

180

Table 8-20 JVM Monitoring Statistics for Java SE Runtime

Statistic Data Type Description

classpath-current StringStatistic Classpath that is used by the system
class loader to search for class files

inputarguments-current StringStatistic Input arguments passed to the JVM; not
including arguments to the main method

managementspecversion-current StringStatistic Management specification version
implemented by the JVM

name-current StringStatistic Name representing the running JVM

specname-current StringStatistic JVM specification name

specvendor-current StringStatistic JVM specification vendor

specversion-current StringStatistic JVM specification version

uptime CountStatistic Uptime of the JVM (in milliseconds)

vmname-current StringStatistic JVM implementation name

vmvendor-current StringStatistic JVM implementation vendor

vmversion-current StringStatistic JVM implementation version

Network Statistics

Network fits into the tree of objects as shown in Network Tree Hierarchy.

Network statistics are described in the following sections:

• Network Keep Alive Statistics

• Network Connection Queue Statistics

• Network File Cache Statistics

• Network Thread Pool Statistics

Network Keep Alive Statistics

Use the following dotted name pattern for network keep alive statistics:

server.network.type-of-listener.keep-alive.statistic

Statistics available for network keep alive are shown in the following table.

Table 8-21 Network Keep Alive Statistics

Statistic Data Type Description

countconnections CountStatistic Number of connections in keep-alive mode.

counttimeouts CountStatistic Number of keep-alive connections that timed out.

181

Statistic Data Type Description

secondstimeouts CountStatistic Keep-alive timeout value in seconds.

maxrequests CountStatistic Maximum number of requests allowed on a single keep-
alive connection.

countflushes CountStatistic Number of keep-alive connections that were closed.

counthits CountStatistic Number of requests received by connections in keep-
alive mode.

countrefusals CountStatistic Number of keep-alive connections that were rejected.

Network Connection Queue Statistics

Use the following dotted name pattern for network connection queue statistics:

server.network.type-of-listener.connection-queue.statistic

Statistics available for network connection queue are shown in the following table.

Table 8-22 Network Connection Queue Statistics

Statistic Data Type Description

countopenconnections CountStatistic The number of open/active connections

countoverflows CountStatistic Number of times the queue has been too
full to accommodate a connection

countqueued CountStatistic Number of connections currently in the
queue

countqueued15minutesaverage CountStatistic Average number of connections queued in
the last 15 minutes

countqueued1minuteaverage CountStatistic Average number of connections queued in
the last 1 minute

countqueued5minutesaverage CountStatistic Average number of connections queued in
the last 5 minutes

counttotalconnections CountStatistic Total number of connections that have
been accepted

counttotalqueued CountStatistic Total number of connections that have
been queued

maxqueued CountStatistic Maximum size of the connection queue

peakqueued CountStatistic Largest number of connections that were
in the queue simultaneously

tickstotalqueued CountStatistic (Unsupported) Total number of ticks that
connections have spent in the queue

182

Network File Cache Statistics

Use the following dotted name pattern for network file cache statistics:

server.network.type-of-listener.file-cache.statistic

Statistics available for network file cache are shown in the following table.

Table 8-23 Network File Cache Statistics

Statistic Data Type Description

contenthits CountStatistic Number of hits on cached file content

contentmisses CountStatistic Number of misses on cached file content

heapsize CountStatistic Current cache size in bytes

hits CountStatistic Number of cache lookup hits

infohits CountStatistic Number of hits on cached file info

infomisses CountStatistic Number of misses on cached file info

mappedmemorysize CountStatistic Size of mapped memory used for caching in bytes

maxheapsize CountStatistic Maximum heap space used for cache in bytes

maxmappedmemorysize CountStatistic Maximum memory map size used for caching in bytes

misses CountStatistic Number of cache lookup misses data type

opencacheentries CountStatistic Number of current open cache entries

Network Thread Pool Statistics

Use the following dotted name pattern for network thread pool statistics:

server.network.type-of-listener.thread-pool.statistic

Statistics available for network thread pool are shown in the following table.

Table 8-24 Network Thread Pool Statistics

Statistic Data Type Description

corethreads CountStatistic Core number of threads in the thread pool

currentthreadcount CountStatistic Provides the number of request processing threads
currently in the listener thread pool

currentthreadsbusy CountStatistic Provides the number of request processing threads
currently in use in the listener thread pool serving
requests

183

Statistic Data Type Description

maxthreads CountStatistic Maximum number of threads allowed in the thread
pool

totalexecutedtasks CountStatistic Provides the total number of tasks, which were
executed by the thread pool

ORB Statistics (Connection Manager)

The ORB fits into the tree of objects as shown in ORB Tree Hierarchy.

Use the following dotted name patterns for ORB statistics:

server.orb.transport.connectioncache.inbound.statistic
server.orb.transport.connectioncache.outbound.statistic

The statistics available for the connection manager in an ORB are listed in the following table.

Table 8-25 ORB Monitoring Statistics (Connection Manager)

Statistic Data Type Description

connectionsidle CountStatistic Total number of connections that are idle to the
ORB

connectionsinuse CountStatistic Total number of connections in use to the ORB

totalconnections BoundedRangeStatistic Total number of connections to the ORB

Resource Statistics (Connection Pool)

By monitoring connection pool resources you can measure performance and capture resource
usage at runtime. Connections are expensive and frequently cause performance bottlenecks in
applications. It is important to monitor how a connection pool is releasing and creating new
connections and how many threads are waiting to retrieve a connection from a particular pool.

The connection pool resources fit into the tree of objects as shown in Resources Tree Hierarchy.

Use the following dotted name pattern for general connection pool statistics:

server.resources.pool-name.statistic

Use the following dotted name pattern for application-scoped connection pool statistics:

server.applications.application-name.resources.pool-name.statistic

Use the following dotted name pattern for module-scoped connection pool statistics:

184

server.applications.application-name.module-name.resources.pool-name.statistic

The connection pool statistics are shown in the following tables.

In order to improve system performance, connection pools are initialized lazily;
that is, a pool is not initialized until an application first uses the pool or the pool is
explicitly pinged. Monitoring statistics for a connection pool are not available until
the pool is initialized.

Table 8-26 General Resource Monitoring Statistics (Connection Pool)

Statistic Data Type Description

averageconnwaittime CountStatistic Average wait-time-duration per
successful connection request

connrequestwaittime RangeStatistic Longest and shortest wait times, in
milliseconds, of connection requests
since the last sampling. current value
indicates the wait time of the last
request that was serviced by the pool

numconnacquired CountStatistic Number of logical connections
acquired from the pool since the last
sampling

numconncreated CountStatistic Number of physical connections that
were created by the pool since the last
reset

numconndestroyed CountStatistic Number of physical connections that
were destroyed since the last reset

numconnfailedvalidation CountStatistic Number of connections in the
connection pool that failed validation
from the start time until the last
sampling time

numconnfree RangeStatistic Number of free connections in the pool
as of the last sampling

numconnnotsuccessfullymatched CountStatistic Number of connections rejected during
matching

numconnreleased CountStatistic Number of connections released back
to the pool since the last sampling

numconnsuccessfullymatched CountStatistic Number of connections successfully
matched

numconntimedout CountStatistic Number of connections in the pool that
timed out between the start time and
the last sampling time

185

Statistic Data Type Description

numconnused RangeStatistic Number of connections that are
currently being used, as well as
information about the maximum
number of connections that were used
(high water mark)

frequsedsqlqueries StringStatistic List of the most frequently used SQL
queries (Available only when SQL
Tracing is enabled)

numpotentialconnleak CountStatistic Number of potential connection leaks

numpotentialstatementleak CountStatistic Number of potential statement leaks
(Available only when Statement Leak
Dectection is enabled)

numstatementcachehit CountStatistic Number of statements that were found
in the statement cache (Available only
when the Statement Cache is enabled)

numstatementcachemiss CountStatistic Number of statements that were not
found in the statement cache (Available
only when the Statement Cache is
enabled)

waitqueuelength CountStatistic Number of connection requests in the
queue waiting to be serviced

Table 8-27 Application Specific Resource Monitoring Statistics (Connection Pool)

Statistic Data Type Description

numconnacquired CountStatistic Number of logical connections acquired from the pool since
the last sampling

numconnreleased CountStatistic Number of connections released back to the pool since the
last sampling

numconnused RangeStatistic Number of connections that are currently being used, as
well as information about the maximum number of
connections that were used (high water mark)

Security Statistics

Security fits into the tree of objects as shown in Security Tree Hierarchy.

Statistics available for security are shown in the following sections:

• EJB Security Statistics

• Web Security Statistics

• Realm Security Statistics

186

EJB Security Statistics

Use the following dotted name pattern for EJB security statistics:

server.security.ejb.statistic

The statistics available for EJB security are listed in the following table.

Table 8-28 EJB Security Monitoring Statistics

Statistic Data Type Description

policyconfigurationcount CountStatistic Number of policy configuration

securitymanagercount CountStatistic Number of EJB security managers

Web Security Statistics

Use the following dotted name pattern for web security statistics:

server.security.web.statistic

The statistics available for web security are listed in the following table.

Table 8-29 Web Security Monitoring Statistics

Statistic Data Type Description

websecuritymanagercount CountStatistic Number of security managers

webpolicyconfigurationcount CountStatistic Number of policy configuration objects

Realm Security Statistics

Use the following dotted name pattern for realm security statistics:

server.security.realm.statistic

The statistics available for realm security are listed in the following table.

Table 8-30 Realm Security Monitoring Statistics

Statistic Data Type Description

realmcount CountStatistic Number of realms

Thread Pool Statistics

The thread pool fits into the tree of objects as shown in Thread Pool Tree Hierarchy.

187

The statistics available for thread pools are shown in the following sections:

• Thread Pool Monitoring Statistics

• JVM Statistics for Java SE - Thread Information

Thread Pool Monitoring Statistics

Use the following dotted name pattern for thread pool statistics:

server.thread-pool.thread-pool.statistic

The statistics available for the thread pool are shown in the following table.

Table 8-31 Thread Pool Monitoring Statistics

Statistic Data Type Description

averagetimeinqueue BoundedRangeStatistic Average amount of time (in
milliseconds) a request waited in
the queue before being processed

averageworkcompletiontime BoundedRangeStatistic Average amount of time (in
milliseconds) taken to complete an
assignment

currentbusythreads CountStatistic Number of busy threads

currentnumberofthreads BoundedRangeStatistic Current number of request
processing threads

numberofavailablethreads CountStatistic Number of available threads

numberofworkitemsinqueue BoundedRangeStatistic Current number of work items
waiting in queue

totalworkitemsadded CountStatistic Total number of work items added
to the work queue as of last
sampling

JVM Statistics for Java SE - Thread Information

The statistics available for ThreadInfo in the JVM in Java SE are shown in the following table.

Table 8-32 JVM Monitoring Statistics for Java SE - Thread Info

Statistic Data Type Description

blockedcount CountStatistic Total number of times that the thread entered the BLOCKED
state.

blockedtime CountStatistic Time elapsed (in milliseconds) since the thread entered the
BLOCKED state. Returns -1 if thread contention monitoring is
disabled.

188

Statistic Data Type Description

lockname StringStatistic String representation of the monitor lock that the thread is
blocked to enter or waiting to be notified through the
Object.wait method.

lockownerid CountStatistic ID of the thread that holds the monitor lock of an object on
which this thread is blocking.

lockownername StringStatistic Name of the thread that holds the monitor lock of the object
this thread is blocking on.

stacktrace StringStatistic Stack trace associated with this thread.

threadid CountStatistic ID of the thread.

threadname StringStatistic Name of the thread.

threadstate StringStatistic State of the thread.

waitedtime CountStatistic Elapsed time (in milliseconds) that the thread has been in a
WAITING state. Returns -1 if thread contention monitoring is
disabled.

waitedcount CountStatistic Total number of times the thread was in WAITING or
TIMED_WAITING states.

Transaction Service Statistics

The transaction service allows the client to freeze the transaction subsystem in order to roll back
transactions and determine which transactions are in process at the time of the freeze. The
transaction service fits into the tree of objects as shown in Transactions Service Tree Hierarchy.

Use the following dotted name pattern for transaction service statistics:

server.transaction-service.statistic

The statistics available for the transaction service are shown in the following table.

Table 8-33 Transaction Service Monitoring Statistics

Statistic Data Type Description

activecount CountStatistic Number of transactions currently active.

activeids StringStatistic The ID’s of the transactions that are currently active. Every
such transaction can be rolled back after freezing the
transaction service.

committedcount CountStatistic Number of transactions that have been committed.

rolledbackcount CountStatistic Number of transactions that have been rolled back.

state StringStatistic Indicates whether or not the transaction has been frozen.

189

Web Statistics

The web module fits into the tree of objects as shown in Web Tree Hierarchy.

The available web statistics shown in the following sections:

• Web Module Servlet Statistics

• Web JSP Statistics

• Web Request Statistics

• Web Servlet Statistics

• Web Session Statistics

Web Module Servlet Statistics

Use the following dotted name pattern for web module servlet statistics:

server.applications.web-module.virtual-server.servlet.statistic
server.applications.application.web-module.virtual-server.servlet.statistic

The available web module servlet statistics are shown in the following table.

Table 8-34 Web Module Servlet Statistics

Statistic Data Type Description

errorcount CountStatistic Cumulative number of cases where the response code is
greater than or equal to 400.

maxtime CountStatistic Maximum amount of time the web container waits for
requests.

processingtime CountStatistic Cumulative value of the amount of time required to process
each request. The processing time is the average of request
processing times divided by the request count.

requestcount CountStatistic The total number of requests processed so far.

servicetime CountStatistic Aggregate response time in milliseconds.

Web JSP Statistics

Use the following dotted name pattern for web JSP statistics:

server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic

The available web JSP statistics are shown in the following table.

Table 8-35 Web JSP Monitoring Statistics

190

Statistic Data Type Description

jspcount-current RangeStatistic Number of active JSP pages

jsperrorcount CountStatistic Total number of errors triggered by JSP page invocations

jspreloadedcount CountStatistic Total number of JSP pages that were reloaded

totaljspcount CountStatistic Total number of JSP pages ever loaded

Web Request Statistics

Use the following dotted name pattern for web request statistics:

server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic

The available web request statistics are shown in the following table.

Table 8-36 Web Request Monitoring Statistics

Statistic Data Type Description

errorcount CountStatistic Cumulative value of the error count, with error count
representing the number of cases where the response code
was greater than or equal to 400

maxtime CountStatistic Longest response time for a request; not a cumulative value,
but the largest response time from among the response times

processingtime CountStatistic Average request processing time, in milliseconds

requestcount CountStatistic Cumulative number of the requests processed so far

Web Servlet Statistics

Use the following dotted name pattern for web servlet statistics:

server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic

The available web servlet statistics are shown in the following table.

Table 8-37 Web Servlet Monitoring Statistics

Statistic Data Type Description

activeservletsloadedcount RangeStatistic Number of currently loaded servlets

servletprocessingtimes CountStatistic Cumulative servlet processing times , in
milliseconds

totalservletsloadedcount CountStatistic Cumulative number of servlets that have
been loaded into the web module

191

Web Session Statistics

Use the following dotted name pattern for web session statistics:

server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic

The available web session statistics are shown in the following table.

Table 8-38 Web Session Monitoring Statistics

Statistic Data Type Description

activatedsessionstotal CountStatistic Total number of activated sessions

activesessionscurrent RangeStatistic Number of currently active sessions

activesessionshigh CountStatistic Maximum number of concurrently active
sessions

expiredsessionstotal CountStatistic Total number of expired sessions

passivatedsessionstotal CountStatistic Total number of passivated sessions

persistedsessionstotal CountStatistic Total number of persisted sessions

rejectedsessionstotal CountStatistic Total number of rejected sessions

sessionstotal CountStatistic Total number of sessions created

Configuring JConsole to View Eclipse GlassFish
Monitoring Data
Java SE provides tools to connect to an MBean Server and view the MBeans registered with the
server. JConsole is one such popular JMX Connector Client and is available as part of the standard
Java SE distribution. When you configure JConsole for use with Eclipse GlassFish, Eclipse GlassFish
becomes the JMX Connector’s server end and JConsole becomes the JMX connector’s client end.

To Connect JConsole to Eclipse GlassFish

Java SE 6 enhanced management and monitoring of the virtual machine by including a Platform
MBean Server and by including managed beans (MBeans) to configure the virtual machine.

To view all MBeans, Eclipse GlassFish provides a configuration of the standard JMX connector
server called System JMX Connector Server. As part of Eclipse GlassFish startup, an instance of this
JMX Connector Server is started. Any compliant JMX connector client can connect to the server
using the JMX Connector Server.

By default, Eclipse GlassFish is configured with a non-secure System JMX Connector Server. If this is
an issue, the JMX connector can be removed. However, access can be restricted to a specific IP
address (for example, the loopback address) by setting address to locahost.

192

1. Start the domain.

For instructions, see To Start a Domain.

2. Start JConsole using this format: JDK_HOME/bin/jconsole

For example:

/usr/java/bin/jconsole

The JConsole Connect to Agent window is displayed.

3. Click the Remote tab and type the host name and port.

Always connect remotely with JConsole, otherwise MBeans will not load automatically.

4. Click Connect.

5. In the Remote Process text box, specify the JMX Service URL.

For example:

service:jmx:rmi:///jndi/rmi://localhost:8686/jmxrmi

The JMX Service URL is emitted by the server at startup, looking something like this:

[#|2009-12-03T10:25:17.737-0800|INFO|glassfish7.0|
x..system.tools.admin.org.glassfish.server|_ThreadID=20;
_ThreadName=Thread-26;|JMXStartupService: Started JMXConnector, JMXService
URL = service:jmx:rmi://localhost:8686/jndi/rmi://localhost:8686/jmxrmi|#]

However, in most cases, simply entering host:port is fine, such as, 192.168.1.150:8686. The long
Service URL is not needed.

Another host name can be substituted for localhost. The default port number
(8686) could change if the jmx-connector configuration has been modified.

6. Click Connect.

In the JConsole window you will see all your MBeans, JVM information, and so on, in various
tabs. Most of the useful MBeans are to be found in the amx and java.lang domains.

See Also

For more information about JConsole, see http://docs.oracle.com/javase/8/docs/technotes/guides/
management/jconsole.html.

193

http://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html

9 Administering Life Cycle Modules
This chapter provides procedures for administering life cycle modules in the Eclipse GlassFish 7
environment.

The following topics are addressed here:

• About Life Cycle Modules

• Configuring Life Cycle Modules

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About Life Cycle Modules
Life cycle modules, also known as initialization services, provide a means of running short or long
duration Java-based tasks within the Eclipse GlassFish environment. These modules are
automatically initiated at server startup and are notified at various phases of the server life cycle.
Configured properties for a life cycle module are passed as properties during server initialization.

All life cycle module classes and interfaces are in the as-install/modules/glassfish-api.jar file.

A life cycle module listens for and performs its tasks in response to the following Eclipse GlassFish
sequence of events:

1. Initialization. The server reads the configuration, initializes built-in subsystems (such as
security and logging services), and creates the containers.

2. Startup. The server loads and initializes deployed applications.

3. Ready. The server begins servicing requests.

4. Shutdown. The server shuts down the applications and stops.

5. Termination. The server closes the containers, the built-in subsystems, and the server runtime
environment.

These events are defined in the LifecycleEvent class. For information on creating life cycle modules,
see "Developing Lifecycle Listeners" in Eclipse GlassFish Application Development Guide.

If the is-failure-fatal setting is set to true (the default is false), life cycle module
failure prevents server initialization or startup, but not shutdown or termination.

Configuring Life Cycle Modules
The following topics are addressed here:

• To Create a Life Cycle Module

• To List Life Cycle Modules

194

https://glassfish.org/docs/latest/application-development-guide.pdf#developing-lifecycle-listeners

• To Update a Life Cycle Module

• To Delete a Life Cycle Module

To Create a Life Cycle Module

Use the create-lifecycle-module subcommand in remote mode to create a life cycle module.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a new life cycle modules by using the create-lifecycle-module subcommand.

Information about options and properties for the subcommand are included in this help page.

3. Restart the server for your changes to take effect.

See To Restart a Domain.

Example 9-1 Creating a Life Cycle Module

This example creates the customSetup life cycle module :

asadmin> create-lifecycle-module --classname "com.acme.CustomSetup"
--classpath "/export/customSetup" --loadorder 1 --failurefatal=true
--description "this is a sample customSetup"
--property rmi="Server\=acme1\:7070":timeout=30 customSetup
Command create-lifecycle-module executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
lifecycle-module at the command line.

To List Life Cycle Modules

Use the list-lifecycle-modules subcommand in remote mode to list the existing life cycle modules.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List life cycle modules by using the list-lifecycle-modules subcommand.

Example 9-2 Listing Life Cycle Modules

This example lists the existing life cycle modules.

asadmin> list-lifecycle-modules
WSTCPConnectorLCModule
Command list-lifecycle-modules executed successfully

See Also

195

https://glassfish.org/docs/latest/reference-manual.pdf#create-lifecycle-module
https://glassfish.org/docs/latest/reference-manual.pdf#list-lifecycle-modules

You can also view the full syntax and options of the subcommand by typing asadmin help list-
lifecycle-modules at the command line.

To Update a Life Cycle Module

Use the set subcommand to update an existing life cycle module.

1. List the properties that can be updated for a life cycle module by using the get subcommand.

For example (single mode):

asadmin get "*" | grep sampleLCM
applications.application.sampleLCMmodule.availability-enabled=false
applications.application.sampleLCMmodule.directory-deployed=false
applications.application.sampleLCMmodule.enabled=true
applications.application.sampleLCMmodule.name=sampleLCMmodule
applications.application.sampleLCMmodule.object-type=user
applications.application.sampleLCMmodule.property.class-
name=example.lc.SampleModule
applications.application.sampleLCMmodule.property.classpath=/build/lcm.jar
applications.application.sampleLCMmodule.property.is-failure-fatal=false
applications.application.sampleLCMmodule.property.isLifecycle=true

2. Update a life cycle module by using the set subcommand.

3. Restart the server for your changes to take effect.

See To Restart a Domain.

Example 9-3 Updating a Life Cycle Module

This example updates the classpath property.

sadmin> set applications.application.sampleLCMmodule.
property.classpath=/build/lcm_new.jarapplications.application.
sampleLCMmodule.property.classpath=/build/lcm_new.jar
Command set executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help set at the
command line.

To Delete a Life Cycle Module

Use the delete-lifecycle-module subcommand in remote mode to delete a life cycle module.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the current life cycle modules by using the list-lifecycle-modules subcommand.

196

https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-lifecycle-modules

3. Delete a life cycle module by using the delete-lifecycle-module subcommand.

Example 9-4 Deleting a Life Cycle Module

This example deletes the customSetup life cycle module.

asadmin> delete-lifecycle-module customSetup
Command delete-lifecycle-module executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
lifecycle-module at the command line.

197

https://glassfish.org/docs/latest/reference-manual.pdf#delete-lifecycle-module

10 Administering Batch Jobs
This chapter provides procedures for administering batch jobs in the Eclipse GlassFish
environment by using the asadmin command-line utility.

The following topics are addressed here:

• About Batch Jobs

• Viewing Batch Jobs

• Configuring the Batch Runtime

Instructions for accomplishing these tasks by using the Administration Console are contained in the
Administration Console online help.

About Batch Jobs
Eclipse GlassFish provides a batch runtime for the scheduling and execution of batch jobs. Batch
jobs are typically long-running, bulk-oriented tasks that contain a series of steps and can be
executed without user interaction. Examples include billing, report generation, data format
conversion, and image processing.

Batch applications submit jobs to the batch runtime and provide instructions about how and when
to execute the steps. The batch runtime processes the steps as directed by job XML documents
packaged with the applications and stores information about jobs in a job repository. In Eclipse
GlassFish, the job repository is a database

For detailed information about batch jobs, batch processing, and the batch processing framework,
see Batch Processing in The Jakarta EE Tutorial. Also see Java Specification Request 352: Batch
Applications for the Java Platform (http://jcp.org/en/jsr/detail?id=352). The specification defines
the programming model for batch applications and the runtime for scheduling and executing batch
jobs.

Viewing Batch Jobs
You can view detailed information about batch jobs, executions, and steps. Users who log in to the
asadmin utility or to the Administration Console as administrator are the only users who can view
details for all batch jobs submitted by all applications in the Eclipse GlassFish environment.

The following tasks are used to view information about batch jobs:

• To List Batch Jobs

• To List Batch Job Executions

• To List Batch Job Steps

198

https://eclipse-ee4j.github.io/jakartaee-tutorial/#batch-processing
http://jcp.org/en/jsr/detail?id=352
http://jcp.org/en/jsr/detail?id=352
http://jcp.org/en/jsr/detail?id=352

To List Batch Jobs

Use the list-batch-jobs subcommand in remote mode to list batch jobs and job details.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List batch jobs by using the list-batch-jobs subcommand.

Example 10-1 Listing Batch Jobs

This example lists batch jobs for the default server instance, server. Use list-batch-jobs -l to list
additional details.

asadmin> list-batch-jobs
JOBNAME INSTANCECOUNT
payroll 9
bonus 6
Command list-batch-jobs executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
batch-jobs at the command line.

To List Batch Job Executions

When the batch runtime executes a job, the execution is given a unique execution ID. An execution
ID is similar to a process ID. A new execution is created the first time a job is started and every time
the existing execution is restarted.

Use the list-batch-job-executions subcommand in remote mode to list batch job executions and
execution details.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List batch job executions by using the list-batch-job-executions subcommand.

Example 10-2 Listing Batch Job Executions

This example lists batch job executions for the default server instance, server, and displays specific
details. Use list-batch-job-executions -l to list additional details.

asadmin> list-batch-job-executions -o=jobname,executionid,batchstatus,exitstatus
JOBNAME EXECUTIONID BATCHSTATUS EXITSTATUS
payroll 9 COMPLETED COMPLETED
bonus 6 FAILED FAILED
Command list-batch-job-executions executed successfully.

See Also

199

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources

You can also view the full syntax and options of the subcommand by typing asadmin help list-
batch-job-executions at the command line.

To List Batch Job Steps

A batch job consists of one or more steps. A step is an independent and sequential phase of a batch
job.

Use the list-batch-job-steps subcommand in remote mode to list steps and step details for a
specific batch job execution.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the execution ID of an execution by using the list-batch-job-executions subcommand.

3. List steps for a specific batch job execution by using the list-batch-job-steps subcommand.

Example 10-3 Listing Batch Job Steps

This example lists batch job steps and specific step details for a job execution with the execution ID
of 7. The target is the default server instance, server. Use list-batch-job-steps -l to list additional
details.

Some lines of output are omitted from this example for readability.

asadmin> list-batch-job-steps o=stepname,stepid,batchstatus,stepmetrics 7
STEPNAME STEPID BATCHSTATUS STEPMETRICS
prepare 7 COMPLETED METRICNAME VALUE
 READ_COUNT 8
 WRITE_COUNT 8
 PROCESS_SKIP_COUNT 0
process 8 COMPLETED METRICNAME VALUE
 READ_COUNT 8
 WRITE_COUNT 8
 PROCESS_SKIP_COUNT 0
...
Command list-batch-job-steps executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
batch-job-steps at the command line.

Configuring the Batch Runtime
The batch runtime uses a data source and a managed executor service to execute batch jobs. The
data source stores information about current and past jobs, and the managed executor service
provides threads to jobs. Batch runtime configuration data is stored in the config element in
domain.xml.

200

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources

Eclipse GlassFish provides a default data source and managed executor service for the execution of
batch jobs. For the domain administration server (DAS), the default data source is jdbc/TimerPool
and the default managed executor service is concurrent/defaultManagedExecutorService. If you
create a standalone server instance or a standalone cluster, the default data source is
jdbc/__default. You can configure the batch runtime to use different resources.

For more information about data sources, see Administering Database Connectivity. For more
information about managed executor services, see Configuring Managed Executor Services.

The following tasks are used to view and configure the batch runtime:

• To List the Batch Runtime Configuration

• To Configure the Batch Runtime

To List the Batch Runtime Configuration

Use the list-batch-runtime-configuration subcommand in remote mode to display the
configuration of the batch runtime.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Display the configuration of the batch runtime by using the list-batch-runtime-configuration
subcommand.

3. If desired, use the get subcommand to view the attributes of the data source and managed
executor service resources.

For example (output omitted):

asdmin> get resources.jdbc-resource.jdbc/__TimerPool.*
...
asdmin> get resources.managed-executor-
service.concurrent/__defaultManagedExecutorService.*
...

Example 10-4 Listing the Batch Runtime Configuration

This example lists the configuration of the batch runtime for the default server instance, server.

asadmin> list-batch-runtime-configuration
DATASOURCELOOKUPNAME EXECUTORSERVICELOOKUPNAME
jdbc/__TimerPool concurrent/__defaultManagedExecutorService
Command list-batch-runtime-configuration executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
batch-runtime-configuration at the command line.

201

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources

To Configure the Batch Runtime

Use the set-batch-runtime-configuration subcommand in remote mode to configure the batch
runtime.

Do not change the data source after the first batch job has been submitted to the
batch runtime for execution. If the data source must be changed, stop and restart
the domain and then make the change before any jobs are started or restarted.
However, once the data source has been changed, information stored in the
previous data source becomes inaccessible.

The managed executor service can be changed after a batch job has been
submitted to the batch runtime without affecting execution of the job.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Configure the batch runtime by using the set-batch-runtime-configuration subcommand.

Example 10-5 Configuring the Batch Runtime

This example configures the batch runtime for the default server instance, server, to use an existing
managed executor service named concurrent/Executor1.

asadmin> set-batch-runtime-configuration --executorservicelookupname
concurrent/Executor1
Command set-batch-runtime-configuration executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help set-
batch-runtime-configuration at the command line.

202

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources

Part II

203

Resources and Services Administration

204

11 Administering Database Connectivity
This chapter provides procedures for performing database connectivity tasks in the Eclipse
GlassFish 7 environment by using the asadmin command-line utility.

The following topics are addressed here:

• About Database Connectivity

• Setting Up the Database

• Configuring Access to the Database

• Configuration Specifics for JDBC Drivers

Instructions for accomplishing these tasks by using the Administration Console are contained in the
Administration Console online help.

About Database Connectivity
A database management system (DBMS) provides facilities for storing, organizing, and retrieving
data. The information in databases is often described as persistent data because it is saved on disk
and exists after the application process ends. Most business applications store data in relational
databases. Applications can access database information by using the Java Database Connectivity
(JDBC) API.

The key elements of database connectivity are the following:

• Database. The repository where data is stored for an enterprise. Java EE applications access
relational databases through the JDBC API. For administration procedures, see Setting Up the
Database.

• JDBC Connection Pool. A JDBC connection pool is a group of reusable connections for a
particular database. For administration procedures, see Administering JDBC Connection Pools.

• JDBC Resource. A JDBC resource (data source) provides applications with a means of connecting
to a database. To create a JDBC resource, specify the connection pool with which it is associated.
Multiple JDBC resources can specify a single connection pool. A JDBC resource is identified by its
Java Naming and Directory Interface (JNDI) name. For administration procedures, see
Administering JDBC Resources.

• JDBC Driver. A database driver is a software component that enables a Java application to
interact with a database connectivity API . Each database requires its own driver. For
administration procedures, see Integrating the JDBC Driver.

At runtime, the following sequence occurs when an application connects to a database:

1. The application gets the JDBC resource associated with the database by making a call through
the JNDI API.

Using the JNDI name of the resource, the naming and directory service locates the JDBC
resource. Each JDBC resource specifies a connection pool.

205

2. Using the JDBC resource, the application gets a database connection.

Eclipse GlassFish retrieves a physical connection from the connection pool that corresponds to
the database. The pool defines connection attributes such as the database name (URL), user
name, and password.

3. After the database connection is established, the application can read, modify, and add data to
the database.

The application accesses the database by making calls to the JDBC API. The JDBC driver
translates the application’s JDBC calls into the protocol of the database server.

4. When the application is finished accessing the database, the application closes the connection
and returns the connection to the connection pool.

Setting Up the Database
Most applications use relational databases to store, organize, and retrieve data. Applications access
relational databases through the Java Database Connectivity (JDBC) API.

The following topics are addressed here:

• To Install the Database and Database Driver

• To Start the Database

• To Stop the Database

• Apache Derby Database Utility Scripts

To Install the Database and Database Driver

1. Install a supported database product.

To see the current list of database products supported by Eclipse GlassFish, refer to the Eclipse
GlassFish Release Notes.

2. Install a supported JDBC driver for the database product.

For a list of drivers supported by Eclipse GlassFish, see Configuration Specifics for JDBC Drivers.

3. Make the JDBC driver JAR file accessible to the domain administration server (DAS).

See Integrating the JDBC Driver.

4. Create the database.

The application provider usually delivers scripts for creating and populating the database.

Next Steps

You are now ready to create a connection pool for the database, and a JDBC resource that points to
the connection pool. See To Create a JDBC Connection Pool and To Create a JDBC Resource. The final

206

https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN

step is to integrate the JDBC driver into an administrative domain as described in Integrating the
JDBC Driver.

To Start the Database

Eclipse GlassFish includes an implementation of the Apache Derby database, however, you can use
any JDBC-compliant database. The database is not started automatically when you start Eclipse
GlassFish, so if you have applications that require a database, you need to start Apache Derby
database manually by using the local start-database subcommand.

Start the database by using the start-database subcommand.

When the database server starts, or a client connects to it successfully, the following files are
created at the location that is specified by the --dbhome option:

• The derby.log file contains the database server process log along with its standard output and
standard error information.

• The database files contain your schema (for example, database tables).

Example 11-1 Starting a Database

This example starts the Apache Derby database on the host host1 and port 5001. [source]

asadmin> start-database --dbhost host1 --dbport 5001 --terse=true
Starting database in the background.
Log redirected to /opt/SUNWappserver/databases/javadb.log.
Command start-database executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help start-
database at the command line.

To Stop the Database

Use the local stop-database subcommand to stop the Apache Derby database on a specified port. A
single host can have multiple database server processes running on different ports.

1. If necessary, notify users that the database is being stopped.

2. Stop the database by using the stop-database subcommand.

Example 11-2 Stopping a Database

This example stops the Apache Derby database on port 5001 of localhost.

asadmin> stop-database --dbhost=localhost --dbport=5001
onnection obtained for host: localhost, port number 5001.
Apache Derby Network Server - 10.2.2.1 - (538595) shutdown

207

https://glassfish.org/docs/latest/reference-manual.pdf#start-database
https://glassfish.org/docs/latest/reference-manual.pdf#stop-database

at 2008-10-17 23:34:2 7.218 GMT
Command stop-database executed successfully.

Troubleshooting

For a laptop that roams between networks, you might have trouble shutting down the database. If
you start the Apache Derby database and then change your IP address, you will not be able to stop
the Apache Derby database unless you add a specific --dbhost argument. For example, if you run
asadmin start-database dbhost = 0.0.0.0, and then disconnect Ethernet and switch to wifi, you
should run a command similar to the following to stop the database:

asadmin stop-database dbhost localhost

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help stop-
database at the command line.

Apache Derby Database Utility Scripts

The Apache Derby database configuration that is available for use with Eclipse GlassFish includes
scripts that can help you use the Apache Derby database. The following scripts are available in the
as-install/javadb/bin directory:

startNetworkServer,startNetworkServer.bat

Script to start the network server

stopNetworkServer,stopNetworkServer.bat

Script to stop the network server

ij,ij.bat

Interactive JDBC scripting tool

dblook,dblook.bat

Script to view all or part of the DDL for a database

sysinfo, sysinfo.bat

Script to display versioning information about the Apache Derby database environment

NetworkServerControl,NetworkServerControl.bat

Script to execute commands on the NetworkServerControl API

To Configure Your Environment to Run the Apache Derby Database Utility Scripts

1. Ensure that the JAVA_HOME environment variable specifies the directory where the JDK is
installed.

2. Set the JAVADB_HOME environment variable to point to the as-install/javadb directory.

See Also

208

For more information about these utilities, see the following documentation:

• Apache Derby Tools and Utilities Guide

• Derby Server and Administration Guide

Configuring Access to the Database
After establishing the database, you are ready to set up access for Eclipse GlassFish applications.
The high-level steps include creating a JDBC connection pool, creating a JDBC resource for the
connection pool, and integrating a JDBC driver into an administrative domain.

Instructions for performing these steps are contained in the following sections:

• Administering JDBC Connection Pools

• Administering JDBC Resources

• Enabling the jdbc/__default Resource in a Clustered Environment

• Integrating the JDBC Driver

Administering JDBC Connection Pools

A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, Eclipse GlassFish maintains a pool of
available connections. When an application requests a connection, it obtains one from the pool.
When an application closes a connection, the connection is returned to the pool. JDBC connection
pools can be globally accessible or be scoped to an enterprise application, web module, EJB module,
connector module or application client module, as described in "Application-Scoped Resources" in
Eclipse GlassFish Application Deployment Guide.

A JDBC resource is created by specifying the connection pool with which the resource is associated.
Multiple JDBC resources can specify a single connection pool. The properties of connection pools
can vary with different database vendors. Some common properties are the database name (URL),
the user name, and the password.

The following tasks and information are used to administer JDBC connection pools:

• To Create a JDBC Connection Pool

• To List JDBC Connection Pools

• To Contact (Ping) a Connection Pool

• To Reset (Flush) a Connection Pool

• To Update a JDBC Connection Pool

• To Delete a JDBC Connection Pool

• Configuring Specific JDBC Connection Pool Features

209

http://db.apache.org/derby/docs/10.13/tools/
http://db.apache.org/derby/docs/10.13/adminguide/
https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources

To Create a JDBC Connection Pool

Use the create-jdbc-connection-pool subcommand in remote mode to register a new JDBC
connection pool with the specified JDBC connection pool name. A JDBC connection pool or a
connector connection pool can be created with authentication. You can either use a subcommand
option to specify user, password, or other connection information using the asadmin utility, or
specify the connection information in the XML descriptor file.

One connection pool is needed for each database, possibly more depending on the application.
When you are building the connection pool, certain data specific to the JDBC driver and the
database vendor is required. You can find some of the following specifics in Configuration Specifics
for JDBC Drivers:

• Database vendor name

• Resource type, such as javax.sql.DataSource (local transactions only) javax.sql.XADataSource
(global transactions)

• Data source class name

• Required properties, such as the database name (URL), user name, and password

Creating a JDBC connection pool is a dynamic event and does not require server restart. However,
there are some parameters that do require server restart. See Configuration Changes That Require
Restart.

Before You Begin

Before creating the connection pool, you must first install and integrate the database and its
associated JDBC driver. For instructions, see Setting Up the Database.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create the JDBC connection pool by using the create-jdbc-connection-pool subcommand.

3. If needed, restart the server.

Some parameters require server restart. See Configuration Changes That Require Restart.

Example 11-3 Creating a JDBC Connection Pool

This example creates a JDBC connection pool named sample_derby_pool on localhost.

asadmin> create-jdbc-connection-pool
--datasourceclassname org.apache.derby.jdbc.ClientDataSource
--restype javax.sql.XADataSource
--property portNumber=1527:password=APP:user=APP:serverName=
localhost:databaseName=sun-appserv-samples:connectionAttribut
es=\;create\\=true sample_derby_pool
Command create-jdbc-connection-pool executed successfully.

See Also

210

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool

You can also view the full syntax and options of the subcommand by typing asadmin help create-
jdbc-connection-pool at the command line.

To List JDBC Connection Pools

Use the list-jdbc-connection-pools subcommand in remote mode to list all existing JDBC
connection pools.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the JDBC connection pools by using the list-jdbc-connection-pools subcommand.

Example 11-4 Listing JDBC Connection Pools

This example lists the JDBC connection pools that are on localhost.

asadmin> list-jdbc-connection-pools
sample_derby_pool2
poolA
__TimerPool
DerbyPool
sample_derby_pool
Command list-jdbc-connection-pools executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
jdbc-connection-pools at the command line.

To Contact (Ping) a Connection Pool

Use the ping-connection-pool subcommand in remote mode to test if a connection pool is usable.
For example, if you create a new JDBC connection pool for an application that is expected to be
deployed later, you can test the JDBC pool with this subcommand before the application is
deployed. Running a ping will force the creation of the pool if it hasn’t already been created.

Before You Begin

Before you can contact a connection pool, the connection pool must be created with authentication,
and the server or database must be running.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Ping a connection pool by using the ping-connection-pool subcommand.

Example 11-5 Contacting a Connection Pool

This example tests to see if the DerbyPool connection pool is usable.

asadmin> ping-connection-pool DerbyPool

211

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#ping-connection-pool

Command ping-connection-pool executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help ping-
connection-pool at the command line.

You can also specify that a JDBC connection pool is automatically tested when created or
reconfigured by setting its --ping option to true (the default is false). See To Create a JDBC
Connection Pool or To Update a JDBC Connection Pool.

To Reset (Flush) a Connection Pool

Use the flush-connection-pool in remote mode to reinitialize all connections established in the
specified connection pool without the need for reconfiguring the pool. Connection pool
reconfiguration can result in application redeployment, which is a time-consuming operation. The
JDBC connection pool or connector connection pool is reset to its initial state. Any existing live
connections are destroyed, which means that the transactions associated with these connections
are lost and must be retried. The subcommand then recreates the initial connections for the pool,
and restores the pool to its steady pool size.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Reset a connection pool by using the flush-connection-pool subcommand.

Example 11-6 Resetting (Flushing) a Connection Pool

This example resets the JDBC connection pool named __TimerPool to its steady pool size.

asadmin> flush-connection-pool __TimerPool
Command flush-connection-pool executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help flush-
connection-pool at the command line.

To Update a JDBC Connection Pool

You can change all of the settings for an existing pool except its name. Use the get and set
subcommands to view and change the values of the JDBC connection pool properties.

1. List the JDBC connection pools by using the list-jdbc-connection-pools subcommand.

2. View the attributes of the JDBC connection pool by using the get subcommand.

For example:

asadmin get resources.jdbc-connection-pool.DerbyPool.property

212

https://glassfish.org/docs/latest/reference-manual.pdf#flush-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools

3. Set the attribute of the JDBC connection pool by using the set subcommand.

For example:

asadmin set resources.jdbc-connection-pool.DerbyPool.steady-pool-size=9

4. If needed, restart the server.

Some parameters require server restart. See Configuration Changes That Require Restart.

See Also

For information about how to tune a connection pool, see the Eclipse GlassFish Performance
Tuning Guide.

To Delete a JDBC Connection Pool

Use the delete-jdbc-connection-pool subcommand in remote mode to delete an existing JDBC
connection pool. Deleting a JDBC connection pool is a dynamic event and does not require server
restart.

Before You Begin

Before deleting a JDBC connection pool, all associations to the resource must be removed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the JDBC connection pools by using the list-jdbc-connection-pools subcommand.

3. If necessary, notify users that the JDBC connection pool is being deleted.

4. Delete the connection pool by using the delete-jdbc-connection-pool subcommand.

Example 11-7 Deleting a JDBC Connection Pool

This example deletes the JDBC connection pool named DerbyPool.

asadmin> delete-jdbc-connection-pool jdbc/DerbyPool
Command delete-jdbc-connection-pool executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
jdbc-connection-pool at the command line.

Configuring Specific JDBC Connection Pool Features

In Eclipse GlassFish, JDBC Connection Pools support a variety of features to simplify administration,
monitoring and performance tuning. The following topics address several of these features:

• Transparent Pool Reconfiguration

213

https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG
https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-connection-pool

• Using an Initialization Statement

• Setting a Statement Timeout

• Statement Leak Detection and Leaked Statement Reclamation

• Statement Caching

• Statement Tracing

Transparent Pool Reconfiguration

When the properties or attributes of a JDBC connection pool are changed, the connection pool is
destroyed and re-created. Normally, applications using the connection pool must be redeployed as a
consequence. This restriction can be avoided by enabling transparent JDBC connection pool
reconfiguration. When this feature is enabled, applications do not need to be redeployed. Instead,
requests for new connections are blocked until the reconfiguration operation completes.
Connection requests from any in-flight transactions are served using the old pool configuration so
as to complete the transaction. Then, connections are created using the pool’s new configuration,
and any blocked connection requests are served with connections from the re-created pool.

To enable transparent JDBC connection pool reconfiguration, set the dynamic-reconfiguration-wait-
timeout-in-seconds property of the JDBC connection pool to a positive, nonzero value in one of the
following ways:

• Add it as a property in the Edit JDBC Connection Pool Properties page in the Administration
Console. For more information, click the Help button in the Administration Console.

• Specify it using the --property option in the create-jdbc-connection-pool subcommand. For
more information, see create-jdbc-connection-pool(1).

• Set it using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.dynamic-
reconfiguration-wait-timeout-in-seconds=15

This property specifies the time in seconds to wait for in-use connections to close and in-flight
transactions to complete. Any connections in use or transaction in flight past this time must be
retried.

Using an Initialization Statement

You can specify a statement that executes each time a physical connection to the database is created
(not reused) from a JDBC connection pool. This is useful for setting request or session specific
properties and is suited for homogeneous requests in a single application. Set the Init SQL attribute
of the JDBC connection pool to the SQL string to be executed in one of the following ways:

• Enter an Init SQL value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --initsql option in the asadmin create-jdbc-connection-pool command. For more
information, see create-jdbc-connection-pool(1).

214

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool

• Specify the init-sql option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.init-sql="sql-string"

Setting a Statement Timeout

An abnormally long running JDBC query executed by an application may leave it in a hanging state
unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees that all
queries automatically time out if not completed within the specified period. When statements are
created, the queryTimeout is set according to the statement timeout setting. This works only when
the underlying JDBC driver supports queryTimeout for Statement, PreparedStatement,
CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:

• Enter a Statement Timeout value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --statementtimeout option in the asadmin create-jdbc-connection-pool command. For
more information, see create-jdbc-connection-pool(1).

Statement Leak Detection and Leaked Statement Reclamation

If statements are not closed by an application after use, it is possible for the application to run out
of cursors. Enabling statement leak detection causes statements to be considered as leaked if they
are not closed within a specified period. Additionally, leaked statements can reclaimed
automatically.

To enable statement leak detection, set Statement Leak Timeout In Seconds for the JDBC connection
pool to a positive, nonzero value in one of the following ways:

• Specify the --statementleaktimeout option in the create-jdbc-connection-pool subcommand. For
more information, see create-jdbc-connection-pool(1).

• Specify the statement-leak-timeout-in-seconds option in the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-timeout-in-
seconds=300

When selecting a value for Statement Leak Timeout In Seconds, make sure that:

• It is less than the Connection Leak Timeout; otherwise, the connection could be closed before
the statement leak is recognized.

• It is greater than the Statement Timeout; otherwise, a long running query could be mistaken as
a statement leak.

After enabling statement leak detection, enable leaked statement reclamation by setting Reclaim
Leaked Statements for the JDBC connection pool to a true value in one of the following ways:

215

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool

• Specify the --statementleakreclaim=true option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

• Specify the statement-leak-reclaim option in the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-reclaim=true

Statement Caching

Statement caching stores statements, prepared statements, and callable statements that are
executed repeatedly by applications in a cache, thereby improving performance. Instead of the
statement being prepared each time, the cache is searched for a match. The overhead of parsing
and creating new statements each time is eliminated.

Statement caching is usually a feature of the JDBC driver. The Eclipse GlassFish provides caching
for drivers that do not support caching. To enable this feature, set the Statement Cache Size for the
JDBC connection pool in one of the following ways:

• Enter a Statement Cache Size value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --statementcachesize option in the asadmin create-jdbc-connection-pool command.
For more information, see create-jdbc-connection-pool(1).

• Specify the statement-cache-size option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.statement-cache-
size=10

By default, this attribute is set to zero and the statement caching is turned off. To enable statement
caching, you can set any positive nonzero value. The built-in cache eviction strategy is LRU-based
(Least Recently Used). When a connection pool is flushed, the connections in the statement cache
are recreated.

Statement Tracing

You can trace the SQL statements executed by applications that use a JDBC connection pool. Set the
SQL Trace Listeners attribute to a comma-separated list of trace listener implementation classes in
one of the following ways:

• Enter an SQL Trace Listeners value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --sqltracelisteners option in the asadmin create-jdbc-connection-pool command.
For more information, see create-jdbc-connection-pool(1).

• Specify the sql-trace-listeners option in the asadmin set command. For example:

216

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.sql-trace-
listeners=listeners

The Eclipse GlassFish provides a public interface, org.glassfish.api.jdbc.SQLTraceListener , that
implements a means of recording SQLTraceRecord objects. To make custom implementations of this
interface available to the Eclipse GlassFish, place the implementation classes in as-install/lib.

The Eclipse GlassFish provides an SQL tracing logger to log the SQL operations in the form of
SQLTraceRecord objects in the server.log file. The module name under which the SQL operation is
logged is jakarta.enterprise.resource.sqltrace. SQL traces are logged as FINE messages along with
the module name to enable easy filtering of the SQL logs. A sample SQL trace record looks like this:

[#|2009-11-
27T15:46:52.202+0530|FINE|glassfish7.0|jakarta.enterprise.resource.sqltrace.com.sun.gj
c.util
|_ThreadID=29;_ThreadName=Thread-
1;ClassName=com.sun.gjc.util.SQLTraceLogger;MethodName=sqlTrace;
|ThreadID=77 | ThreadName=p: thread-pool-1; w: 6 | TimeStamp=1259317012202
| ClassName=com.sun.gjc.spi.jdbc40.PreparedStatementWrapper40 |
MethodName=executeUpdate
| arg[0]=insert into table1(colName) values(100) | arg[1]=columnNames | |#]

This trace shows that an executeUpdate(String sql, String columnNames) operation is being done.

When SQL statement tracing is enabled and JDBC connection pool monitoring is enabled, Eclipse
GlassFish maintains a tracing cache of recent queries and their frequency of use. The following
JDBC connection pool properties can be configured to control this cache and the monitoring
statistics available from it:

time-to-keep-queries-in-minutes

Specifies how long in minutes to keep a query in the tracing cache, tracking its frequency of use.
The default value is 5 minutes.

number-of-top-queries-to-report

Specifies how many of the most used queries, in frequency order, are listed the monitoring
report. The default value is 10 queries.

Set these parameters in one of the following ways:

• Add them as properties in the Edit JDBC Connection Pool Properties page in the Administration
Console. For more information, click the Help button in the Administration Console.

• Specify them using the --property option in the create-jdbc-connection-pool subcommand. For
more information, see create-jdbc-connection-pool(1).

• Set them using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.time-to-keep-queries-

217

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool

in-minutes=10

Administering JDBC Resources

A JDBC resource, also known as a data source, provides an application with a means of connecting
to a database. Typically, you create a JDBC resource for each database that is accessed by the
applications deployed in a domain. Multiple JDBC resources can be specified for a database. JDBC
resources can be globally accessible or be scoped to an enterprise application, web module, EJB
module, connector module or application client module, as described in "Application-Scoped
Resources" in Eclipse GlassFish Application Deployment Guide.

A JDBC resource is created by specifying the connection pool with which the resource will be
associated . Use a unique Java Naming and Directory Interface (JNDI) name to identify the resource.
For example, the JNDI name for the resource of a payroll database might be
java:comp/env/jdbc/payrolldb.

The Jakarta EE standard specifies that certain default resources be made available to applications,
and defines specific JNDI names for these default resources. Eclipse GlassFish makes these names
available through the use of logical JNDI names, which map Jakarta EE standard JNDI names to
specific Eclipse GlassFish resources. For JDBC resources, the Jakarta EE standard name
java:comp/DefaultDataSource is mapped to the jdbc/__default resource.

The following tasks and information are used to administer JDBC resources:

• To Create a JDBC Resource

• To List JDBC Resources

• To Update a JDBC Resource

• To Delete a JDBC Resource

To Create a JDBC Resource

Use the create-jdbc-resource subcommand in remote mode to create a JDBC resource. Creating a
JDBC resource is a dynamic event and does not require server restart.

Because all JNDI names are in the java:comp/env subcontext, when specifying the JNDI name of a
JDBC resource in the Administration Console, use only the jdbc/`name format. For example, a
payroll database might be specified as `jdbc/payrolldb.

Before You Begin

Before creating a JDBC resource, you must first create a JDBC connection pool. For instructions, see
To Create a JDBC Connection Pool.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a JDBC resource by using the create-jdbc-resource subcommand.

Information about properties for the subcommand is included in this help page.

218

https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources
https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource

3. If necessary, notify users that the new resource has been created.

Example 11-8 Creating a JDBC Resource

This example creates a JDBC resource named DerbyPool.

asadmin> create-jdbc-resource --connectionpoolid DerbyPool jdbc/DerbyPool
Command create-jdbc-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
jdbc-resource at the command line.

To List JDBC Resources

Use the list-jdbc-resources subcommand in remote mode to list the existing JDBC resources.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List JDBC resources by using the list-jdbc-resources subcommand.

Example 11-9 Listing JDBC Resources

This example lists JDBC resources for localhost.

asadmin> list-jdbc-resources
jdbc/__TimerPool
jdbc/DerbyPool
jdbc/__default
jdbc1
Command list-jdbc-resources executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
jdbc-resources at the command line.

To Update a JDBC Resource

You can enable or disable a JDBC resource by using the set subcommand. The JDBC resource is
identified by its dotted name.

1. List JDBC resources by using the list-jdbc-resources subcommand.

2. Modify the values for the specified JDBC resource by using the set subcommand.

For example:

Example 11-10 Updating a JDBC Resource

219

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources
https://glassfish.org/docs/latest/reference-manual.pdf#set

This example changes the res1 enabled setting to false.

asadmin>set resources.jdbc-resource.res1.enabled=false

To Delete a JDBC Resource

Use the delete-jdbc-resource subcommand in remote mode to delete an existing JDBC resource.
Deleting a JDBC resource is a dynamic event and does not require server restart.

Before You Begin

Before deleting a JDBC resource, all associations with this resource must be removed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List JDBC resources by using the list-jdbc-resources subcommand.

3. If necessary, notify users that the JDBC resource is being deleted.

4. Delete a JDBC resource by using the delete-jdbc-resource subcommand.

Example 11-11 Deleting a JDBC Resource

This example deletes a JDBC resource named DerbyPool.

asadmin> delete-jdbc-resource jdbc/DerbyPool
Command delete-jdbc-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
jdbc-resource at the command line.

Enabling the jdbc/__default Resource in a Clustered Environment

Eclipse GlassFish 7 includes a preconfigured JDBC resource with the JNDI name jdbc/default. This
jdbc/default resource is not enabled by default, so you need to explicitly enable it if you want to
use it in a cluster.

To Enable the jdbc/__default Resource for a Clustered Environment

Instructions for creating JDBC resources in general are provided in To Create a JDBC Resource. Use
the following procedure to enable the preconfigured jdbc/__default resource for a clustered Eclipse
GlassFish environment.

1. Create the jdbc/__default resource reference for the cluster.

asadmin create-resource-ref --target cluster-name jdbc/__default

220

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-resource

2. Enable the resource on the DAS that manages the cluster.

asadmin set resources.jdbc-connection-pool.DerbyPool.property.serverName=DAS-
machine-name

This step is only required if the cluster includes remote instances.

3. Restart the DAS and the target cluster(s).

asadmin stop-cluster cluster-name
asadmin stop-domain domain-name
asadmin start-domain domain-name
asadmin start-cluster cluster-name

Integrating the JDBC Driver

To use JDBC features, you must choose a JDBC driver to work with the Eclipse GlassFish, then you
must set up the driver. This section covers these topics:

• Supported Database Drivers

• Making the JDBC Driver JAR Files Accessible

• Automatic Detection of Installed Drivers

Supported Database Drivers

Supported JDBC drivers are those that have been fully tested by Oracle. For a list of the JDBC drivers
currently supported by the Eclipse GlassFish, see the Eclipse GlassFish Release Notes. For
configurations of supported and other drivers, see Configuration Specifics for JDBC Drivers.

Because the drivers and databases supported by the Eclipse GlassFish are
constantly being updated, and because database vendors continue to upgrade
their products, always check with Oracle technical support for the latest database
support information.

Making the JDBC Driver JAR Files Accessible

To integrate the JDBC driver into a Eclipse GlassFish domain, copy the JAR files into the domain-
dir/lib directory, then restart the server. This makes classes accessible to all applications or
modules deployed on servers that share the same configuration. For more information about
Eclipse GlassFish class loaders, see "Class Loaders" in Eclipse GlassFish Application Development
Guide.

If you are using an Oracle database with EclipseLink extensions, copy the JAR files into the domain-
dir/lib/ext directory, then restart the server. For details, see "Oracle Database Enhancements" in
Eclipse GlassFish Application Development Guide.

221

https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/application-development-guide.pdf#class-loaders
https://glassfish.org/docs/latest/application-development-guide.pdf#oracle-database-enhancements

Automatic Detection of Installed Drivers

The Administration Console detects installed JDBC Drivers automatically when you create a JDBC
connection pool. To create a JDBC connection pool using the Administration Console, open the
Resources component, open the JDBC component, select Connection Pools, and click on the New
button. This displays the New JDBC Connection Pool page.

Based on the Resource Type and Database Vendor you select on the New JDBC Connection Pool
page, data source or driver implementation class names are listed in the Datasource Classname or
Driver Classname field when you click on the Next button. When you choose a specific
implementation class name on the next page, additional properties relevant to the installed JDBC
driver are displayed in the Additional Properties section.

Configuration Specifics for JDBC Drivers
Eclipse GlassFish is designed to support connectivity to any database management system by using
a corresponding JDBC driver. Configuration information is provided for these JDBC drivers:

• IBM DB2 Database Type 2 Driver

• IBM DB2 Database Type 4 Driver

• Apache Derby DB/Derby Type 4 Driver

• MySQL Server Database Type 4 Driver

• Oracle 10 Database Driver

• Oracle 11 Database Driver

• PostgreSQL Type 4 Driver

• DataDirect Type 4 Driver for IBM DB2 Database

• DataDirect Type 4 Driver for IBM Informix

• DataDirect Type 4 Driver for Microsoft SQL Server Database

• DataDirect Type 4 Driver for MySQL Server Database

• DataDirect Type 4 Driver for Oracle 11 Database

• DataDirect Type 4 Driver for Sybase Database

• Inet Oraxo Driver for Oracle Database

• Inet Merlia Driver for Microsoft SQL Server Database

• Inet Sybelux Driver for Sybase Database

• JConnect Type 4 Driver for Sybase ASE 12.5 Database

IBM DB2 Database Type 2 Driver

The JAR files for the DB2 driver are db2jcc.jar, db2jcc_license_cu.jar, and db2java.zip. Set your
environment variables . For example:

LD_LIBRARY_PATH=/usr/db2user/sqllib/lib:${Jakarta EE.home}/lib

222

DB2DIR=/opt/IBM/db2/V8.2
DB2INSTANCE=db2user
INSTHOME=/usr/db2user
VWSPATH=/usr/db2user/sqllib
THREADS_FLAG=native

Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DB2

• DataSource Classname: com.ibm.db2.jcc.DB2SimpleDataSource

• Properties:

◦ databaseName - Set as appropriate.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

◦ driverType - Set to 2.

◦ deferPrepares - Set to false.

IBM DB2 Database Type 4 Driver

The JAR file for the DB2 driver is db2jcc.jar. Configure the connection pool using the following
settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DB2

• DataSource Classname: com.ibm.db2.jcc.DB2SimpleDataSource

• Properties:

◦ databaseName - Set as appropriate.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

◦ driverType - Set to 4.

Apache Derby DB/Derby Type 4 Driver

The Apache Derby DB/Derby JDBC driver is included with Eclipse GlassFish by default, so you do
not need to integrate this JDBC driver with Eclipse GlassFish.

The JAR file for the Apache Derby DB driver is derbyclient.jar. Configure the connection pool using
the following settings:

223

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Apache Derby

• DataSource Classname: Specify one of the following:

org.apache.derby.jdbc.ClientDataSource40
org.apache.derby.jdbc.ClientXADataSource40

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server if it is different from the default.

◦ databaseName - Specify the name of the database.

◦ user - Specify the database user.

This is only necessary if the Apache Derby database is configured to use authentication. The
Apache Derby database does not use authentication by default. When the user is provided, it
is the name of the schema where the tables reside.

◦ password - Specify the database password.

This is only necessary if the Apache Derby database is configured to use authentication.

MySQL Server Database Type 4 Driver

The JAR file for the MySQL driver is mysql-connector-java-5.1.14-bin.jar. Configure the connection
pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: MySql

• DataSource Classname:

com.mysql.jdbc.jdbc2.optional.MysqlDataSource
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server.

◦ databaseName - Set as appropriate.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

224

Oracle 10 Database Driver

The JAR file for the Oracle 10 database driver is ojdbc14.jar. Make sure that the shared library is
available through LD_LIBRARY_PATH and that the ORACLE_HOME property is set.

To make the Oracle driver behave in a Jakarta EE-compliant manner, you must define the following
JVM property:

-Doracle.jdbc.J2EE13Compliant=true

Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Oracle

• DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource
oracle.jdbc.xa.client.OracleXADataSource

• Properties:

◦ user - Set as appropriate.

◦ password - Set as appropriate.

Oracle 11 Database Driver

The JAR file for the Oracle 11 database driver is ojdbc6.jar.

To make the Oracle driver behave in a Jakarta EE-compliant manner, you must define the following
JVM property:

-Doracle.jdbc.J2EE13Compliant=true

Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Oracle

• DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource
oracle.jdbc.xa.client.OracleXADataSource

225

• Properties:

◦ user - Set as appropriate.

◦ password - Set as appropriate.

For this driver, the XAResource.recover method repeatedly returns the same
set of in-doubt Xids regardless of the input flag. According to the XA
specifications, the Transaction Manager initially calls this method with
TMSTARTSCAN and then with TMNOFLAGS repeatedly until no Xids are returned.
The XAResource.commit method also has some issues.

To disable this Eclipse GlassFish workaround, the oracle-xa-recovery-
workaround property value must be set to false.

Additionally, in order for the transaction manager to recover transactions,
the JDBC connection pool’s database user must be given certain Oracle
permissions:

▪ SELECT permission on DBA_PENDING_TRANSACTIONS,
PENDING_TRANS$, DBA_2PC_PENDING and DBA_2PC_NEIGHBORS.

▪ EXECUTE permissions on DBMS_XA and DBMS_SYSTEM.

PostgreSQL Type 4 Driver

The JAR file for the PostgreSQL driver is postgresql-9.0-801.jdbc4.jar. Configure the connection
pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Postgresql

• DataSource Classname: org.postgresql.ds.PGSimpleDataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server.

◦ databaseName - Set as appropriate.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

DataDirect Type 4 Driver for IBM DB2 Database

The JAR file for DataDirect driver is db2.jar. Configure the connection pool using the following
settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

226

• Database Vendor: DataDirect-DB2

• DataSource Classname: com.ddtek.jdbcx.db2.DB2DataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server.

◦ databaseName - Set as appropriate.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

DataDirect Type 4 Driver for IBM Informix

Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DataDirect-Informix

• DataSource Classname: Specify one of the following:

com.informix.jdbcx.IfxDataSource
com.informix.jdbcx.IfxXADataSource

DataDirect DataSource Classname: com.ddtek.jdbcx.informix.InformixDataSourcee

• Properties:

◦ serverName - Specify the Informix database server name.

◦ portNumber - Specify the port number of the database server.

◦ databaseName - Set as appropriate. This is optional.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

◦ IfxIFXHost - Specify the host name or IP address of the database server.

DataDirect Type 4 Driver for Microsoft SQL Server Database

The JAR file for the DataDirect driver is sqlserver.jar. Configure the connection pool using the
following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DataDirect-Microsoft SQL Server

• DataSource Classname: com.ddtek.jdbcx.sqlserver.SQLServerDataSource

227

• Properties:

◦ serverName - Specify the host name or IP address and the port of the database server.

◦ portNumber - Specify the port number of the database server.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

◦ selectMethod - Set to cursor.

DataDirect Type 4 Driver for MySQL Server Database

The JAR file for the DataDirect driver is mysql.jar. Configure the connection pool using the
following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DataDirect-MySQL

• DataSource: com.ddtek.jdbcx.mysql.MySQLDataSource

• Properties:

◦ serverName - Specify the host name or IP address and the port of the database server.

◦ portNumber - Specify the port number of the database server.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

◦ selectMethod - Set to cursor.

DataDirect Type 4 Driver for Oracle 11 Database

The JAR file for the DataDirect driver is oracle.jar.

To make the Oracle driver behave in a Jakarta EE-compliant manner, you must define the following
JVM property:

-Doracle.jdbc.J2EE13Compliant=true

Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DataDirect-Oracle

• DataSource Classname: com.ddtek.jdbcx.oracle.OracleDataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

228

◦ portNumber - Specify the port number of the database server.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

DataDirect Type 4 Driver for Sybase Database

The JAR file for the DataDirect driver is sybase.jar. Configure the connection pool using the
following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DataDirect-Sybase

• DataSource Classname: com.ddtek.jdbcx.sybase.SybaseDataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server.

◦ databaseName - Set as appropriate. This is optional.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

In some situations, using this driver can cause exceptions to be thrown because
the driver creates a stored procedure for every parameterized PreparedStatement
by default. If this situation arises, add the property PrepareMethod, setting its value
to direct.

Inet Oraxo Driver for Oracle Database

The JAR file for the Inet Oracle driver is Oranxo.jar. Configure the connection pool using the
following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Oracle

• DataSource Classname: com.inet.ora.OraDataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server.

◦ user - Specify the database user.

◦ password - Specify the database password.

◦ serviceName - Specify the URL of the database. The syntax is as follows:

229

jdbc:inetora:server:port:dbname

For example:

jdbc:inetora:localhost:1521:payrolldb

In this example,localhost is the name of the host running the Oracle server, 1521 is the
Oracle server’s port number, and payrolldb is the SID of the database. For more information
about the syntax of the database URL, see the Oracle documentation.

◦ streamstolob - If the size of BLOB or CLOB data types exceeds 4 KB and this driver is used for
CMP, this property must be set to true.

Inet Merlia Driver for Microsoft SQL Server Database

The JAR file for the Inet Microsoft SQL Server driver is Merlia.jar. Configure the connection pool
using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: MicrosoftSqlServer

• DataSource Classname: com.inet.tds.TdsDataSource

• Properties:

◦ serverName - Specify the host name or IP address and the port of the database server.

◦ portNumber - Specify the port number of the database server.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

Inet Sybelux Driver for Sybase Database

The JAR file for the Inet Sybase driver is Sybelux.jar. Configure the connection pool using the
following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Sybase

• DataSource Classname: com.inet.syb.SybDataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server.

◦ databaseName - Set as appropriate. Do not specify the complete URL, only the database name.

230

◦ user - Set as appropriate.

◦ password - Set as appropriate.

JConnect Type 4 Driver for Sybase ASE 12.5 Database

The JAR file for the Sybase driver is jconn4.jar. Configure the connection pool using the following
settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Sybase

• DataSource Classname: Specify one of the following:

com.sybase.jdbc4.jdbc.SybDataSource
com.sybase.jdbc4.jdbc.SybXADataSource

• Properties:

◦ serverName - Specify the host name or IP address of the database server.

◦ portNumber - Specify the port number of the database server.

◦ databaseName - Set as appropriate. Do not specify the complete URL, only the database name.

◦ user - Set as appropriate.

◦ password - Set as appropriate.

◦ BE_AS_JDBC_COMPLIANT_AS_POSSIBLE - Set to true.

◦ FAKE_METADATA - Set to true.

231

12 Administering EIS Connectivity
This chapter provides information and procedures for administering connections to enterprise
information system (EIS) data in the Eclipse GlassFish 7 environment by using the asadmin
command-line utility.

If you installed the Web Profile, connector modules that use only outbound
communication features and work-management that does not involve inbound
communication features are supported. Other connector features are supported
only in the Full Platform Profile.

The following topics are addressed here:

• About EIS Connectivity

• Administering Connector Connection Pools

• Administering Connector Resources

• Administering the Resource Adapter Configuration

• Administering Connector Security Maps

• Administering Connector Work Security Maps

• Administering Administered Objects

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

For information about database connectivity, see Administering Database Connectivity.

About EIS Connectivity
Enterprise information system (EIS) refers to any system that holds the data of an organization. It
can be a mainframe, a messaging system, a database system, or an application. Connection
resources are used by applications and modules to access EIS software.)

The key elements of EIS connectivity are the following:

• Connector Module. A connector module, also called a resource adapter, is a Jakarta EE
component that enables applications to interact with EIS software. A connector module is used
by Eclipse GlassFish to implement Java Message Service (JMS). Like other Jakarta EE modules, a
connector module is installed when it is deployed. For instructions on creating a connector
module, see "Developing Connectors" in Eclipse GlassFish Application Development Guide.

• Connector Connection Pool. A connector connection pool is a group of reusable connections for
a particular EIS. A connector connection pool is created when you specify the connector module
that is associated with the pool. For administration procedures, see Administering Connector
Connection Pools.

• Connector Resource. A connector resource is a program object that provides an application with
a connection to an EIS. A connector resource is created when you specify its JNDI name and its

232

https://glassfish.org/docs/latest/application-development-guide.pdf#developing-connectors

associated connection pool. The JNDI name of a connector resource for an EIS is usually in the
`java:comp/env/`eis-specific subcontext. For administration procedures, see Administering
Connector Resources.

• Connector Module Configuration. A connector module configuration is the information that
resides in the domain configuration file (domain.xml) for the particular connector module
(resource adapter). For administration procedures, see Administering the Resource Adapter
Configuration.

• Connector Security Map. A connector security map associates the caller identity of the
application (principal or user group) to a suitable EIS principal or group. For administration
procedures, see Administering Connector Security Maps.

• Connector Work Security Map. A connector work security map associates the caller identity of
the work submitted by the connector module (resource adapter) EIS principal or EIS user group
to a suitable principal or user group in the Eclipse GlassFish security domain. For
administration procedures, see Administering Connector Work Security Maps.

• Administered Object. An administered object provides specialized functionality for an
application, such as providing access to a parser that is specific to the connector module and its
associated EIS. For administration procedures, see Administering Administered Objects.

At runtime, the following sequence occurs when an application connects to an EIS:

1. The application gets the connector resource (data source) associated with the EIS by making a
call through the JNDI API.

Using the JNDI name of the connector resource, the naming and directory service locates the
resource. Each EIS resource specifies a connector connection pool.

2. Using the connector resource, the application gets an EIS connection.

Eclipse GlassFish retrieves a physical connection from the connection pool that corresponds to
the EIS resource. The pool defines connection attributes such as the EIS name, user name, and
password.

3. After the EIS connection is established, the application can read, modify, and add data to the
EIS.

The application accesses the EIS information by making calls to the JMS API.

4. When the application is finished accessing the EIS, the application closes the connection and
returns the connection to the connection pool.

Administering Connector Connection Pools
After a connector module has been deployed, you are ready to create a connector connection pool
for it.

The following topics are addressed here:

• To Create a Connector Connection Pool

233

• To List Connector Connection Pools

• To Connect to (Ping) or Reset (Flush) a Connector Connection Pool

• To Update a Connector Connection Pool

• To Delete a Connector Connection Pool

To Create a Connector Connection Pool

Use the create-connector-connection-pool subcommand in remote mode to create a connector
connection pool for a deployed connector module. When you are building the connector connection
pool, certain data specific to the EIS will be required. The value in the mandatory
--connectiondefintion option provides the EIS info.

Multiple connector resources can specify a single connection pool.

Creating a connector connection pool is a dynamic event and does not require server restart.
However, there are some parameters that do require server restart. See Configuration Changes
That Require Restart.

Before You Begin

Before creating the connector connection pool, the connector must be installed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create the connector connection pool by using the create-connector-connection-pool
subcommand.

Information about properties for the subcommand is included in this help page.

3. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

4. You can verify that a connection pool is usable by using the ping-connection-pool subcommand.

For instructions, see To Contact (Ping) a Connection Pool.

Example 12-1 Creating a Connector Connection Pool

This example creates the new jms/qConnPool pool for the jakarta.jms.QueueConnectionFactory
connector module.

asadmin> create-connector-connection-pool --steadypoolsize 20 --maxpoolsize 100
--poolresize 2 --maxwait 60000 --raname jmsra --connectiondefinition
jakarta.jms.QueueConnectionFactory jms/qConnPool

Command create-connector-connection-pool executed successfully

234

https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-connection-pool

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
connector-connection-pool at the command line.

To List Connector Connection Pools

Use the list-connector-connection-pools subcommand in remote mode to list the pools that have
been created.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the connector connection pools by using the list-connector-connection-pools subcommand.

Example 12-2 Listing Connector Connection Pools

This example lists the existing connector connection pools.

asadmin> list-connector-connection-pools
jms/qConnPool
Command list-connector-connection-pools executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
connector-connection-pools at the command line.

To Connect to (Ping) or Reset (Flush) a Connector Connection Pool

Use the ping-connection-pool or flush-connection-pool subcommands in remote mode to perform
these tasks on a connection pools. See To Contact (Ping) a Connection Pool or To Reset (Flush) a
Connection Pool for instructions.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Connect to or reset a connector connection pool by using the flush-connection-pool
subcommand or the ping-connection-pool subcommand.

To Update a Connector Connection Pool

Use the get and set subcommands to view and change the values of the connector connection pool
properties.

1. List the connector connection pools by using the list-connector-connection-pools subcommand.

2. View the properties of the connector connection pool by using the get subcommand. For
example:

asadmin> get domain.resources.connector-connection-pool.conectionpoolname.*

235

https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#flush-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#ping-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#get

3. Set the property of the connector connection pool by using the set subcommand. For example:

asadmin> set domain.resources.connector-connection-pool
.conectionpoolname.validate-atmost-once-period-in-seconds=3

4. If needed, restart the server. Some properties require server restart. See Configuration Changes
That Require Restart. If your server needs to be restarted, see To Restart a Domain.

To Delete a Connector Connection Pool

Use the delete-connector-connection-pool subcommand in remote mode to remove a connector
connection pool.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the connector connection pools by using the list-connector-connection-pools subcommand.

3. If necessary, notify users that the connector connection pool is being deleted.

4. Delete the connector connection pool by using the delete-connector-connection-pool
subcommand.

Example 12-3 Deleting a Connector Connection Pool

This example deletes the connection pool named jms/qConnPool.

asadmin> delete-connector-connection-pool --cascade=false jms/qConnPool
Command delete-connector-connection-pool executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
connector-connection-pool at the command line.

Administering Connector Resources
A connector resource provides an application or module with the means of connecting to an EIS.
Typically, you create a connector resource for each EIS that is accessed by the applications deployed
in the domain.

The following topics are addressed here:

• To Create a Connector Resource

• To List Connector Resources

• To Update a Connector Resource

• To Delete a Connector Resource

236

https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-connection-pool

To Create a Connector Resource

Use the create-connector-resource subcommand in remote mode to register a new connector
resource with its JNDI name.

Creating a connector resource is a dynamic event and does not require server restart. However,
there are some parameters that do require server restart. See Configuration Changes That Require
Restart.

Before You Begin

Before creating a connector resource, you must first create a connector connection pool. For
instructions, see To Create a Connector Connection Pool.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create the connector resource by using the create-connector-resource subcommand.

Information about properties for the subcommand is included in this help page.

3. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 12-4 Creating a Connector Resource

This example creates a new resource named jms/qConnFactory for the jms/qConnPool connection
pool.

asadmin> create-connector-resource --poolname jms/qConnPool
--description "creating sample connector resource" jms/qConnFactory
Command create-connector-resource executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
connector-resource at the command line.

To List Connector Resources

Use the list-connector-resources subcommand in remote mode to list the connector resources that
have been created.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the connector connection pools by using the list-connector-resources subcommand.

Example 12-5 Listing Connector Resources

This example lists the existing connector resources.

237

https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-resource
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-resources

asadmin> list-connector-resources
jms/qConnFactory
Command list-connector-resources executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
connector-resources at the command line.

To Update a Connector Resource

Use the get and set subcommands to view and change the values of the connector resource
properties.

1. List the connector connection pools by using the list-connector-resources subcommand.

2. View the properties of the connector resource by using the get subcommand. For example

asadmin> get domain.resources.connector-resource.jms/qConnFactory

3. Set the property of the connector resource by using the set subcommand. For example:

asadmin> set domain.resources.connector-resource.jms/qConnFactory.enabled=true

4. If needed, restart the server. Some properties require server restart. See Configuration Changes
That Require Restart. If your server needs to be restarted, see To Restart a Domain.

To Delete a Connector Resource

Use the delete-connector-resource subcommand in remote mode to remove a connector resource
by specifying the JNDI name.

Before You Begin

Before deleting a resource, all associations with the resource must be removed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the connector connection pools by using the list-connector-resources subcommand.

3. If necessary, notify users that the connector resource is being deleted.

4. Delete the connector resource by using the delete-connector-resource subcommand.

Example 12-6 Deleting a Connector Resource

This example deletes the jms/qConnFactory connector resource.

asadmin> delete-connector-resource jms/qConnFactory

238

https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-resources
https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-resources
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-resource

Command delete-connector-resources executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
connector-resource at the command line.

Administering the Resource Adapter Configuration
The following topics are addressed here:

• To Create Configuration Information for a Resource Adapter

• To List Resource Adapter Configurations

• To Update a Resource Adapter Configuration

• To Delete a Resource Adapter Configuration

To Create Configuration Information for a Resource Adapter

Use the create-resource-adapter-config subcommand in remote mode to create configuration
information for a resource adapter, also known as a connector module. You can run the
subcommand before deploying a resource adapter, so that the configuration information is
available at the time of deployment. The resource adapter configuration can also be created after
the resource adapter is deployed. In this situation, the resource adapter is restarted with the new
configuration.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create configuration information by using the create-resource-adapter-config subcommand.

Information about properties for the subcommand is included in this help page.

Example 12-7 Creating a Resource Adapter Configuration

This example creates the configuration for resource adapter ra1.

asadmin> create-resource-adapter-config --property foo=bar
--threadpoolid mycustomerthreadpool ra1
Command create-resource-adapter-config executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
resource-adapter-config at the command line.

To List Resource Adapter Configurations

Use the list-resource-adapter-configs subcommand in remote mode to list the configuration
information contained in the domain configuration file (domain.xml) for the specified resource

239

https://glassfish.org/docs/latest/reference-manual.pdf#create-resource-adapter-config

adapter (connector module).

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the configurations for a resource adapter by using the list-resource-adapter-configs
subcommand.

Example 12-8 Listing Configurations for a Resource Adapter

This example lists all the resource adapter configurations.

asadmin> list-resource-adapter-configs
ra1
ra2
Command list-resource-adapter-configs executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
resource-adapter-configs at the command line.

To Update a Resource Adapter Configuration

Use the get and set subcommands to view and change the values of the resource adapter
configuration properties.

1. List the configurations for a resource adapter by using the list-resource-adapter-configs
subcommand.

2. View the properties of the connector resource by using the get subcommand. For example:

asadmin>get domain.resources.resource-adapter-config.ra1.*

3. Set the property of the connector resource by using the set subcommand. For example:

asadmin> set domain.resources.resource-adapter-config.ra1.raSpecificProperty=value

To Delete a Resource Adapter Configuration

Use the delete-resource-adapter-config subcommand in remote mode to delete the configuration
information contained in the domain configuration file (domain.xml) for a specified resource
adapter (connector module).

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the configurations for a resource adapter by using the list-resource-adapter-configs
subcommand.

3. Delete the configuration for a resource adapter by using the delete-resource-adapter-config

240

https://glassfish.org/docs/latest/reference-manual.pdf#list-resource-adapter-configs
https://glassfish.org/docs/latest/reference-manual.pdf#list-resource-adapter-configs
https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-resource-adapter-configs
https://glassfish.org/docs/latest/reference-manual.pdf#delete-resource-adapter-config

subcommand.

Example 12-9 Deleting a Resource Adapter Configuration

This example deletes the configuration for resource adapter ra1.

asadmin> delete-resource-adapter-config ra1
Command delete-resource-adapter-config executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
resource-adapter-config at the command line.

Administering Connector Security Maps
The EIS is any system that holds the data of an organization. It can be a mainframe, a messaging
system, a database system, or an application. The connector security map is used to map the
application’s credentials to the EIS credentials.

A security map applies to a particular connector connection pool. One or more named security
maps can be associated with a connector connection pool.

The following topics are addressed here:

• To Create a Connector Security Map

• To List Connector Security Maps

• To Update a Connector Security Map

• To Delete a Connector Security Map

To Create a Connector Security Map

Use the create-connector-security-map subcommand in remote mode to create a security map for
the specified connector connection pool. If the security map is not present, a new one is created.
You can specify back-end EIS principals or back-end EIS user groups. The connector security map
configuration supports the use of the wild card asterisk (*) to indicate all users or all user groups.

You can also use this subcommand to map the caller identity of the application (principal or user
group) to a suitable EIS principal in container-managed authentication scenarios.

Before You Begin

For this subcommand to succeed, you must have first created a connector connection pool. For
instructions, see To Create a Connector Connection Pool.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a connector security map by using the create-connector-security-map subcommand.

241

https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-security-map

Information about the options for the subcommand is included in this help page.

3. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 12-10 Creating a Connector Security Map

This example creates a connector security map securityMap1 for connection-pool1.

asadmin> create-connector-security-map --poolname connector-pool1
--principals principal1, principal2 --mappedusername backend-username securityMap1
Command create-connector-security-map executed successfully

To List Connector Security Maps

Use the list-connector-security-maps subcommand in remote mode to list the existing security
maps belonging to the specified connector connection pool. You can get a simple listing of the
connector security maps for a connector connection pool, or you can get a more comprehensive
listing that shows the principals of the map.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List existing connector connection pools by using the list-connector-connection-pools
subcommand.

3. List the security maps for a specific connector connection pool by using the list-connector-
security-maps subcommand.

Example 12-11 Listing All Connector Security Maps for a Connector Connection Pool

This example lists the connector security maps associated with connector-Pool1.

asadmin> list-connector-security-maps connector-Pool1
securityMap1
Command list-connector-security-maps executed successfully.

Example 12-12 Listing Principals for a Specific Security Map for a Connector Connection Pool

This example lists the principals associated with securityMap1.

asadmin> list-connector-security-maps --securitymap securityMap1 connector-Pool1
principal1
principal1
Command list-connector-security-maps executed successfully.

Example 12-13 Listing Principals of All Connector Security Maps for a Connector Connection Pool

242

https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-security-maps
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-security-maps

This example lists the connector security maps associated with connector-Pool1.

asadmin> list-connector-security-maps --verbose connector-Pool1
securityMap1
principal1
principal1
Command list-connector-security-maps executed successfully.

To Update a Connector Security Map

Use the update-connector-security-map subcommand in remote mode to create or modify a security
map for the specified connector connection pool.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List existing connector security maps by using the list-connector-security-maps subcommand.

3. Modify a security map for a specific connector connection pool by using the update-connector-
security-map subcommand.

4. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 12-14 Updating a Connector Security Map

This example adds principals to securityMap1.

asadmin> update-connector-security-map --poolname connector-pool1
--addprincipals principal1, principal2 securityMap1
Command update-connector-security-map executed successfully.

To Delete a Connector Security Map

Use the delete-connector-security-map subcommand in remote mode to delete a security map for
the specified connector connection pool.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List existing connector connection pools by using the list-connector-connection-pools
subcommand.

3. Delete a security map for a specific connector connection pool by using the delete-connector-
security-map subcommand.

Information about options for this subcommand is included in this help page.

Example 12-15 Deleting a Connector Security Map

This example deletes securityMap1 from connector-pool1.

243

https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-security-maps
https://glassfish.org/docs/latest/reference-manual.pdf#update-connector-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#update-connector-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-security-map

asadmin> delete-connector-security-map --poolname connector-pool1 securityMap1

Command delete-connector-security-map executed successfully

Administering Connector Work Security Maps
The EIS is any system that holds the data of an organization. It can be a mainframe, a messaging
system, a database system, or an application. The connector work security map is used to is used to
map the EIS credentials to the credentials of Eclipse GlassFish security domain.

A security map applies to a particular connector connection pool. One or more named security
maps can be associated with a connector connection pool.

The following topics are addressed here:

• To Create a Connector Work Security Map

• To List Connector Work Security Maps

• To Update a Connector Work Security Map

• To Delete a Connector Work Security Map

To Create a Connector Work Security Map

Use the create-connector-work-security-map subcommand in remote mode to map the caller
identity of the work submitted by the connector module (resource adapter) EIS principal or EIS
user group to a suitable principal or user group in the Eclipse GlassFish security domain. One or
more work security maps can be associated with a connector module.

The connector security map configuration supports the use of the wild card asterisk (*) to indicate
all users or all user groups.

Before You Begin

Before creating a connector work security map, you must first create a connector connection pool.
For instructions, see To Create a Connector Connection Pool.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create the connector work security map by using the create-connector-work-security-map
subcommand.

Information about properties for the subcommand is included in this help page.

3. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 12-16 Creating Connector Work Security Maps

244

https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-work-security-map

The following examples create workSecurityMap1 and workSecurityMap2 for my-resource-adapter-name.

asadmin> create-connector-work-security-map --raname my-resource-adapter-name
--principalsmap eis-principal-1=server-principal-1,eis-principal-2=server-principal-2,
eis-principal-3=server-principal-1 workSecurityMap1

asadmin> create-connector-work-security-map --raname my-resource-adapter-name
--groupsmap eis-group-1=server-group-1,eis-group-2=server-group-2,
eis-group-3=server-group-1 workSecurityMap2
Command create-connector-work-security-map executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
connector-work-security-map at the command line.

To List Connector Work Security Maps

Use the list-connector-work-security-maps subcommand in remote mode to list the work security
maps that belong to a specific connector module.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the connector work security maps by using the list-connector-work-security-maps
subcommand.

Example 12-17 Listing the Connector Work Security Maps

This example lists the generic work security maps.

asadmin> list-connector-work-security-maps generic-ra
generic-ra-groups-map: EIS group=eis-group, mapped group=glassfish-group
generic-ra-principals-map: EIS principal=eis-bar, mapped principal=bar
generic-ra-principals-map: EIS principal=eis-foo, mapped principal=foo
Command list-connector-work-security-maps executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
connector-work-security-maps at the command line.

To Update a Connector Work Security Map

Use the update-connector-work-security-map subcommand in remote to modify a work security map
that belongs to a specific resource adapter (connector module).

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the connector work security maps by using the list-connector-work-security-maps
subcommand.

245

https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-work-security-maps
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-work-security-maps

3. If necessary, notify users that the connector work security map is being modified.

4. Update a connector work security map by using the update-connector-work-security-map
subcommand.

Example 12-18 Updating a Connector Work Security Map

This example removes a principal from a work security map.

asadmin> update-connector-work-security-map --raname generic-ra
--removeprincipals eis-foo generic-ra-principals-map
Command update-connector-work-security-map executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help update-
connector-work-security-map at the command line.

To Delete a Connector Work Security Map

Use the delete-connector-work-security-map subcommand in remote mode to delete a work security
map that belongs to a specific connector module (resource adapter).

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the connector work security maps by using the list-connector-work-security-maps
subcommand.

3. Delete a connector work security map by using the delete-connector-work-security-map
subcommand.

Example 12-19 Deleting a Connector Work Security Map

This example deletes the worksecuritymap1 map from the my_ra connector module.

asadmin> delete-connector-work-security-map --raname my_ra worksecuritymap1
Command delete-connector-work-security-map executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
connector-work-security-map at the command line.

Administering Administered Objects
Packaged within a connector module, an administered object provides specialized functionality for
an application. For example, an administered object might provide access to a parser that is specific
to the connector module and its associated EIS.

The following topics are addressed here:

246

https://glassfish.org/docs/latest/reference-manual.pdf#update-connector-work-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-work-security-maps
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-work-security-map

• To Create an Administered Object

• To List Administered Objects

• To Update an Administered Object

• To Delete an Administered Object

To Create an Administered Object

Use the create-admin-object subcommand to create an administered object resource. When
creating an administered object resource, name-value pairs are created, and the object is associated
to a JNDI name.

Before You Begin

The resource adapter must be deployed before running this subcommand (jmsrar.rar).

1. Create an administered object by using the create-admin-object subcommand.

Information about properties for the subcommand is included in this help page.

2. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 12-20 Creating an Administered Object

For this example, the jakarta.jms.Queue resource type is obtained from the ra.xml file. The JNDI
name of the new administered object is jms/samplequeue.

asadmin> create-admin-object --restype jakarta.jms.Queue --raname jmsra
--description "sample administered object" --property Name=sample_jmsqueue
jms/samplequeue
Command create-admin-object executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
admin-object at the command line.

To List Administered Objects

Use the list-admin-object subcommand in remote mode to list the existing administered objects.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the administered objects by using the list-admin-objects subcommand.

Example 12-21 Listing Administered Objects

This example lists the existing administered objects.

247

https://glassfish.org/docs/latest/reference-manual.pdf#create-admin-object
https://glassfish.org/docs/latest/reference-manual.pdf#list-admin-objects

asadmin> list-admin-objects
jms/samplequeue
Command list-admin-objects executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
admin-object at the command line.

To Update an Administered Object

Use the get and set subcommands to view and change the values of the administered objects
properties.

1. List the administered objects by using the list-admin-objects subcommand.

2. View the properties of the administered object by using the get subcommand. For example:

asadmin> get domain.resources.admin-object-resource.jms/samplequeue.*

3. Set the property of the administered object by using the set subcommand. For example:

asadmin> set domain.resources.admin-object-resource.jms/samplequeue.enabled=false

4. If needed, restart the server. Some properties require server restart. See Configuration Changes
That Require Restart. If your server needs to be restarted, see To Restart a Domain.

To Delete an Administered Object

Use the delete-admin-object subcommand to delete an administered objects.

1. List the administered objects by using the list-admin-objects subcommand.

2. If necessary, notify users that the administered object is being deleted.

3. Delete an administered object by using the delete-admin-object subcommand.

Example 12-22 Deleting an Administered Object

This example deletes the administered object with the JNDI name jms/samplequeue.

asadmin> delete-admin-object jms/samplequeue
Command delete-admin-object executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
admin-object at the command line.

248

https://glassfish.org/docs/latest/reference-manual.pdf#list-admin-objects
https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-admin-objects
https://glassfish.org/docs/latest/reference-manual.pdf#delete-admin-object

13 Administering Internet Connectivity
This chapter provides procedures for performing internet connectivity tasks in the Eclipse
GlassFish 7 environment by using the asadmin command-line utility.

The following topics are addressed here:

• About Internet Connectivity

• Administering HTTP Network Listeners

• Administering Virtual Servers

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About Internet Connectivity
The HTTP service provides functionality for deploying web applications and for making deployed
web applications accessible by Internet clients, either in a single application server instance or in a
cluster of multiple server instances. HTTP services are provided by two kinds of related objects:
listeners and virtual servers.

For more information about clusters, see the Eclipse GlassFish High Availability Administration
Guide.

The following topics are addressed here:

• About HTTP Network Listeners

• About Virtual Servers

About HTTP Network Listeners

An HTTP listener, also known as a network listener, is a listen socket that has an Internet Protocol
(IP) address, a port number, a server name, and a default virtual server. Each virtual server
provides connections between the server and clients through one or more listeners. Each listener
must have a unique combination of port number and IP address. For example, an HTTP listener can
listen for a host on all configured IP addresses on a given port by specifying the IP address 0.0.0.0.
Alternatively, the listener can specify a unique IP address for each listener while using the same
port.

Because an HTTP listener is a combination of IP address and port number, you can have multiple
HTTP listeners with the same IP address and different port numbers, or with different IP addresses
and the same port number (if your host was configured to respond to these addresses). However, if
an HTTP listener uses the 0.0.0.0 IP address, which listens on all IP addresses on a port, you cannot
create HTTP listeners for additional IP addresses that listen on the same port for a specific IP
address. For example, if an HTTP listener uses 0.0.0.0:8080 (all IP addresses on port 8080), another
HTTP listener cannot use 1.2.3.4:8080. The host running the Eclipse GlassFish typically has access to
only one IP address. HTTP listeners typically use the 0.0.0.0 IP address and different port numbers,

249

https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG

with each port number serving a different purpose. However, if the host does have access to more
than one IP address, each address can serve a different purpose.

To access a web application deployed on Eclipse GlassFish, use the URL http://localhost:8080/ (or
https://localhost:8081/ for a secure application), along with the context root specified for the web
application.

To access the Administration Console, use the URL https://localhost:4848/ or
http://localhost:4848/asadmin/ (console default context root).

About Virtual Servers

A virtual server, sometimes called a virtual host, is an object that allows the same physical server to
host multiple Internet domain names. All virtual servers hosted on the same physical server share
the IP address of that physical server. A virtual server associates a domain name for a server (such
as www.aaa.com) with the particular server on which Eclipse GlassFish is running. Each virtual server
must be registered with the DNS server for your network.

Do not confuse an Internet domain with the administrative domain of Eclipse
GlassFish.

For example, assume that you want to host the following domains on your physical server:
www.aaa.com, www.bbb.com, and www.ccc.com. Assume that these domains are respectively associated
with web modules web1, web2, and web3. This means that the following URLs are handled by your
physical server:

http://www.aaa.com:8080/web1
http://www.bbb.com:8080/web2
http://www.ccc.com:8080/web3

The first URL is mapped to virtual server www.aaa.com, the second URL is mapped to virtual server
www.bbb.com, and the third is mapped to virtual server www.ccc.com. For this mapping to work,
www.aaa.com, www.bbb.com, and www.ccc.com must all resolve to your physical server’s IP address and
each virtual server must be registered with the DNS server for your network. In addition, on a UNIX
system, add these domains to your /etc/hosts file (if the setting for hosts in your /etc/nsswitch.conf
file includes files).

Administering HTTP Network Listeners
By default, when Eclipse GlassFish starts, the following HTTP listeners are started automatically:

• HTTP listeners associated with the virtual server named server:

◦ The listener named http-listener-1 does not have security enabled.

◦ The listener named http-listener-2 has security enabled.

• An HTTP listener named admin-listener, associated with the virtual server named __asadmin. For
this listener, security is not enabled.

250

http://localhost:8080/
https://localhost:8081/
https://localhost:4848/
http://localhost:4848/asadmin/

The following table describes the Eclipse GlassFish default ports for the listeners that use ports.

Table 13-1 Default Ports for Listeners

Listener Default
Port

Description

Administrative
server

4848 A domain’s administrative server is accessed by the Administration
Console and the asadmin utility. For the Administration Console,
specify the port number in the URL of the browser. When running
an asadmin subcommand remotely, specify the port number by
using the --port option.

HTTP 8080 The web server listens for HTTP requests on a port. To access
deployed web applications and services, clients connect to this port.

HTTPS 8181 Web applications configured for secure communications listen on a
separate port.

The following topics are addressed here:

• To Create an Internet Connection

• Administering HTTP Protocols

• Administering HTTP Configurations

• Administering HTTP Transports

• Administering HTTP Network Listeners

To Create an Internet Connection

Use the subcommands in this procedure to create an internet connection with the full range of
listener options. A network listener is created behind the scenes. For the shortcut version of this
process , see To Create an HTTP Network Listener.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create an HTTP or HTTPS protocol by using the create-protocol subcommand with the
--securityenabled option. To use the built-in http-listener-1 HTTP protocol, or http-listener-2
HTTPS protocol, skip this step.

3. Create an HTTP configuration by using the create-http subcommand. To use a built-in protocol,
skip this step.

4. Create a transport by using the create-transport subcommand. To use the built-in tcp transport,
skip this step.

5. Create a thread pool by using the create-threadpool subcommand. To avoid using a thread pool,
or to use the built-in http-thread-pool thread pool, skip this step. For additional thread pool
information, see Administering Thread Pools.

6. Create an HTTP listener by using the create-network-listener subcommand. Specify a protocol
and transport, optionally a thread pool.

7. To apply your changes, restart Eclipse GlassFish. See To Restart a Domain.

251

https://glassfish.org/docs/latest/reference-manual.pdf#create-protocol
https://glassfish.org/docs/latest/reference-manual.pdf#create-http
https://glassfish.org/docs/latest/reference-manual.pdf#create-transport
https://glassfish.org/docs/latest/reference-manual.pdf#create-threadpool
https://glassfish.org/docs/latest/reference-manual.pdf#create-network-listener

See Also

You can also view the full syntax and options of the subcommand by typing a command such as
asadmin help create-http-listener at the command line.

Administering HTTP Protocols

Each HTTP listener has an HTTP protocol, which is created either by using the create-protocol
subcommand or by using the built-in protocols that are applied when you follow the instructions in
To Create an HTTP Network Listener.

The following topics are addressed here:

• To Create a Protocol

• To List Protocols

• To Delete a Protocol

To Create a Protocol

Use the create-protocol subcommand in remote mode to create a protocol.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a protocol by using the create-protocol

Information about options and properties for the subcommand are included in this help page.

Example 13-1 Creating an HTTP Protocol

This example creates a protocol named http-1 with security enabled.

asadmin> create-protocol --securityenabled=true http-1
Command create-protocol executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
protocol at the command line.

To List Protocols

Use the list-protocols subcommand in remote mode to list the existing HTTP protocols.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the existing protocols by using the list-protocols subcommand.

Example 13-2 Listing the Protocols

This example lists the existing protocols.

252

https://glassfish.org/docs/latest/reference-manual.pdf#create-protocol
https://glassfish.org/docs/latest/reference-manual.pdf#list-protocols

asadmin> list-protocols
admin-listener
http-1
http-listener-1
http-listener-2
Command list-protocols executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
protocols at the command line.

To Delete a Protocol

Use the delete-protocol subcommand in remote mode to remove a protocol.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Delete a protocol by using the delete-protocol subcommand

Example 13-3 Deleting a Protocol

This example deletes the protocol named http-1.

asadmin> delete-protocol http-1
Command delete-protocol executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
protocol at the command line.

Administering HTTP Configurations

Each HTTP listener has an HTTP configuration, which is created either by using the create-http
subcommand or by using the built-in configurations that are applied when you follow the
instructions in To Create an HTTP Network Listener.

The following topics are addressed here:

• To Create an HTTP Configuration

• To Delete an HTTP Configuration

To Create an HTTP Configuration

Use the create-http subcommand in remote mode to create a set of HTTP parameters for a protocol.
This set of parameters configures one or more network listeners,

1. Ensure that the server is running. Remote subcommands require a running server.

253

https://glassfish.org/docs/latest/reference-manual.pdf#delete-protocol

2. Create an HTTP configuration by using the create-http subcommand. Information about
options and properties for the subcommand are included in this help page.

Example 13-4 Creating an HTTP Configuration

This example creates an HTTP parameter set for the protocol named http-1.

asadmin> create-http --timeout-seconds 60 --default-virtual-server server http-1
Command create-http executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
http at the command line.

To Delete an HTTP Configuration

Use the delete-http subcommand in remote mode to remove HTTP parameters from a protocol.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Delete the HTTP parameters from a protocol by using the delete-http subcommand.

Example 13-5 Deleting an HTTP Configuration

This example deletes the HTTP parameter set from a protocol named http-1.

asadmin> delete-http http-1
Command delete-http executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
http at the command line.

Administering HTTP Transports

Each HTTP listener has an HTTP transport, which is created either by using the create-transport
subcommand or by using the built-in transports that are applied when you follow the instructions
in To Create an HTTP Network Listener.

The following topics are addressed here:

• To Create a Transport

• To List Transports

• To Delete a Transport

254

https://glassfish.org/docs/latest/reference-manual.pdf#create-http
https://glassfish.org/docs/latest/reference-manual.pdf#delete-http

To Create a Transport

Use the create-transport subcommand in remote mode to create a transport for a network listener,

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a transport by using the create-transport subcommand. Information about options and
properties for the subcommand are included in this help page.

Example 13-6 Creating a Transport

This example creates a transport named http1-trans that uses a non-default number of acceptor
threads.

asadmin> create-transport --acceptorthreads 100 http1-trans
Command create-transport executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
transport at the command line.

To List Transports

Use the list-transports subcommand in remote mode to list the existing HTTP transports.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the existing transports by using the list-transports subcommand.

Example 13-7 Listing HTTP Transports

This example lists the existing transports.

asadmin> list-transports
http1-trans
tcp
Command list-transports executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
transports at the command line.

To Delete a Transport

Use the delete-transport subcommand in remote mode to remove a transport.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Delete a transport by using the delete-transport subcommand.

255

https://glassfish.org/docs/latest/reference-manual.pdf#create-transport
https://glassfish.org/docs/latest/reference-manual.pdf#list-transports
https://glassfish.org/docs/latest/reference-manual.pdf#delete-transport

Example 13-8 Deleting a Transport

This example deletes he transport named http1-trans.

asadmin> delete-transport http1-trans
Command delete-transport executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
transport at the command line.

Administering HTTP Network Listeners

The following topics are addressed here:

• To Create an HTTP Network Listener

• To List HTTP Network Listeners

• To Update an HTTP Network Listener

• To Delete an HTTP Network Listener

• To Configure an HTTP Listener for SSL

• To Configure Optional Client Authentication for SSL

• To Configure a Custom SSL Implementation

• To Delete SSL From an HTTP Listener

• To Assign a Default Virtual Server to an HTTP Listener

To Create an HTTP Network Listener

Use the create-http-listener subcommand or the create-network-listener subcommand in remote
mode to create a listener. These subcommands provide backward compatibility and also provide a
shortcut for creating network listeners that use the HTTP protocol. Behind the scenes, a network
listener is created as well as its associated protocol, transport, and HTTP configuration. This method
is a convenient shortcut, but it gives access to only a limited number of options. If you want to
specify the full range of listener options, follow the instructions in To Create an Internet
Connection.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create an HTTP network listener by using the create-network-listener subcommand or the
create-http-listener subcommand.

3. If needed, restart the server.

If you edit the special HTTP network listener named admin-listener, you must restart the server
for changes to take effect. See To Restart a Domain.

Example 13-9 Creating an HTTP Listener

256

https://glassfish.org/docs/latest/reference-manual.pdf#create-network-listener
https://glassfish.org/docs/latest/reference-manual.pdf#create-http-listener

This example creates an HTTP listener named sampleListener that uses a non-default number of
acceptor threads. Security is not enabled at runtime.

asadmin> create-http-listener --listeneraddress 0.0.0.0
--listenerport 7272 --defaultvs server --servername host1.sun.com
--acceptorthreads 100 --securityenabled=false
--enabled=false sampleListener
Command create-http-listener executed successfully.

Example 13-10 Creating a Network Listener

This example a network listener named sampleListener that is not enabled at runtime:

asadmin> create-network-listener --listenerport 7272 protocol http-1
--enabled=false sampleListener
Command create-network-listener executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
http-listener or asadmin help create-network-listener at the command line.

To List HTTP Network Listeners

Use the list-http-listeners subcommand or the list-network-listeners subcommand in remote
mode to list the existing HTTP listeners.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List HTTP listeners by using the list-http-listeners or list-network-listeners subcommand.

Example 13-11 Listing HTTP Listeners

This example lists the HTTP listeners. The same output is given if you use the list-network-
listeners subcommand.

asadmin> list-http-listeners
admin-listener
http-listener-2
http-listener-1
Command list-http-listeners executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
http-listeners or asadmin help list-network-listeners at the command line.

257

https://glassfish.org/docs/latest/reference-manual.pdf#list-http-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#list-network-listeners

To Update an HTTP Network Listener

1. List HTTP listeners by using the list-http-listeners or list-network-listeners subcommand.

2. Modify the values for the specified listener by using the set subcommand.

The listener is identified by its dotted name.

Example 13-12 Updating an HTTP Network Listener

This example changes security-enabled to false on http-listener-2.

asadmin> set server.network-config.protocols.protocol.http-listener-2.security-
enabled=false
Command set executed successfully.

To Delete an HTTP Network Listener

Use the delete-http-listener subcommand or the delete-network-listener subcommand in remote
mode to delete an existing HTTP listener. This disables secure communications for the listener.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List HTTP listeners by using the list-http-listeners subcommand.

3. Delete an HTTP listener by using the delete-http-listener or delete-network-listener
subcommand.

4. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 13-13 Deleting an HTTP Listener

This example deletes the HTTP listener named sampleListener:

asadmin> delete-http-listener sampleListener
Command delete-http-listener executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
http-listener or asadmin help delete-network-listener at the command line.

To Configure an HTTP Listener for SSL

Use the create-ssl subcommand in remote mode to create and configure an SSL element in the
specified listener. This enables secure communication for the listener.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Configure an HTTP listener by using the create-ssl subcommand.

258

https://glassfish.org/docs/latest/reference-manual.pdf#list-http-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#list-network-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-http-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#delete-http-listener
https://glassfish.org/docs/latest/reference-manual.pdf#delete-network-listener
https://glassfish.org/docs/latest/reference-manual.pdf#create-ssl

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 13-14 Configuring an HTTP Listener for SSL

This example enables the HTTP listener named http-listener-1 for SSL:

asadmin> create-ssl --type http-listener --certname sampleCert http-listener-1
Command create-ssl executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
ssl at the command line.

To Configure Optional Client Authentication for SSL

In Eclipse GlassFish, you can configure the SSL protocol of an HTTP listener such that it requests a
certificate before permitting a client connection, but does not refuse a connection if the client does
not provide one. To enable this feature, set the client-auth property of the SSL protocol to the value
want. For example:

asadmin> set configs.config.config-name.network-config.protocols.\
protocol.listener-name.ssl.client-auth=want

To Configure a Custom SSL Implementation

In Eclipse GlassFish, you can configure the SSL protocol an HTTP listener such that it uses a custom
implementation of SSL. To enable this feature, set the classname property of the SSL protocol to the
name of a class that implements the com.sun.grizzly.util.net.SSLImplementation interface. For
example:

asadmin> set configs.config.config-name.network-config.protocols.\
protocol.listener-name.ssl.classname=SSLImplementation-class-name

By default, Eclipse GlassFish uses the implementation
com.sun.enterprise.security.ssl.GlassfishSSLImpl for the SSL protocol.

To Delete SSL From an HTTP Listener

Use the delete-ssl subcommand in remote mode to delete the SSL element in the specified listener.
This disables secure communications for the listener.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Delete SSL from an HTTP listener by using the delete-ssl subcommand.

259

https://glassfish.org/docs/latest/reference-manual.pdf#delete-ssl

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 13-15 Deleting SSL From an HTTP Listener

This example disables SSL for the HTTP listener named http-listener-1:

asadmin> delete-ssl --type http-listener http-listener-1
Command delete-http-listener executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
ssl at the command line.

To Assign a Default Virtual Server to an HTTP Listener

1. In the Administration Console, open the HTTP Service component under the relevant
configuration.

2. Open the HTTP Listeners component under the HTTP Service component.

3. Select or create a new HTTP listener.

4. Select from the Default Virtual Server drop-down list.

For more information, see To Assign a Default Web Module to a Virtual Server.

See Also

For details, click the Help button in the Administration Console from the HTTP Listeners page.

Administering Virtual Servers
A virtual server is a virtual web server that serves content targeted for a specific URL. Multiple
virtual servers can serve content using the same or different host names, port numbers, or IP
addresses. The HTTP service directs incoming web requests to different virtual servers based on the
URL.

When you first install Eclipse GlassFish, a default virtual server is created. You can assign a default
virtual server to each new HTTP listener you create.

Web applications and Jakarta EE applications containing web components (web modules) can be
assigned to virtual servers during deployment. A web module can be assigned to more than one
virtual server, and a virtual server can have more than one web module assigned to it. If you
deploy a web application and don’t specify any assigned virtual servers, the web application is
assigned to all currently defined virtual servers. If you then create additional virtual servers and
want to assign existing web applications to them, you must redeploy the web applications. For more
information about deployment, see the Eclipse GlassFish Application Deployment Guide.

260

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

You can define virtual server properties using the asadmin set command. For example:

asadmin> set server-config.http-service.virtual-server.MyVS.property.sso-
enabled="true"

Some virtual server properties can be set for a specific web application. For details, see "glassfish-
web-app" in Eclipse GlassFish Application Deployment Guide.

The following topics are addressed here:

• To Create a Virtual Server

• To List Virtual Servers

• To Update a Virtual Server

• To Delete a Virtual Server

• To Assign a Default Web Module to a Virtual Server

• To Assign a Virtual Server to an Application or Module

• To Set JSESSIONIDSSO Cookie Attributes

To Create a Virtual Server

By default, when Eclipse GlassFish starts, the following virtual servers are started automatically:

• A virtual server named server, which hosts all user-defined web modules.

For development, testing, and deployment of web services in a non-production environment,
server is often the only virtual server required.

• A virtual server named __asadmin, which hosts all administration-related web modules
(specifically, the Administration Console). This server is restricted, which means that you cannot
deploy web modules to this virtual server.

In a production environment, additional virtual servers provide hosting facilities for users and
customers so that each appears to have its own web server, even though there is only one physical
server.

Use the create-virtual-server subcommand in remote mode to create the named virtual server.

Before You Begin

A virtual server must specify an existing HTTP listener. Because the virtual server cannot specify an
HTTP listener that is already being used by another virtual server, create at least one HTTP listener
before creating a new virtual server.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a virtual server by using the create-virtual-server subcommand.

Information about properties for this subcommand is included in this help page.

261

https://glassfish.org/docs/latest/application-deployment-guide.pdf#glassfish-web-app
https://glassfish.org/docs/latest/application-deployment-guide.pdf#glassfish-web-app
https://glassfish.org/docs/latest/reference-manual.pdf#create-virtual-server

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 13-16 Creating a Virtual Server

This example creates a virtual server named sampleServer on localhost.

asadmin> create-virtual-server sampleServer
Command create-virtual-server executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
virutal-server at the command line.

To List Virtual Servers

Use the list-virtual-servers subcommand in remote mode to list the existing virtual servers.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List virtual servers by using the list-virtual-servers subcommand.

Example 13-17 Listing Virtual Servers

This example lists the virtual servers for localhost.

asadmin> list-virtual-servers
server
__asadmin
Command list-virtual-servers executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
virutal-servers at the command line.

To Update a Virtual Server

1. List virtual servers by using the list-virtual-servers subcommand.

2. Modify the values for the specified virtual server by using the set subcommand.

The virtual server is identified by its dotted name.

To Delete a Virtual Server

Use the delete-virtual-server subcommand in remote mode to delete an existing virtual server.

262

https://glassfish.org/docs/latest/reference-manual.pdf#list-virtual-servers
https://glassfish.org/docs/latest/reference-manual.pdf#list-virtual-servers
https://glassfish.org/docs/latest/reference-manual.pdf#set

1. Ensure that the server is running. Remote subcommands require a running server.

2. List virtual servers by using the list-virtual-servers subcommand.

3. If necessary, notify users that the virtual server is being deleted.

4. Delete a virtual server by using the delete-virtual-server subcommand.

5. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 13-18 Deleting a Virtual Server

This example deletes the virtual server named sampleServer from localhost.

asadmin> delete-virtual-server sampleServer
Command delete-virtual-server executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
virutal-server at the command line.

To Assign a Default Web Module to a Virtual Server

A default web module can be assigned to the default virtual server and to each new virtual server.
To access the default web module for a virtual server, point the browser to the URL for the virtual
server, but do not supply a context root. For example:

http://myvserver:3184/

A virtual server with no default web module assigned serves HTML or JavaServer Pages (JSP)
content from its document root, which is usually domain-dir/docroot. To access this HTML or JSP
content, point your browser to the URL for the virtual server, do not supply a context root, but
specify the target file.

For example:

http://myvserver:3184/hellothere.jsp

To Assign a Virtual Server to an Application or Module

You can assign a virtual server to a deployed application or web module.

Before You Begin

The application or module must already be deployed. For more information, see the Eclipse
GlassFish Application Deployment Guide.

263

https://glassfish.org/docs/latest/reference-manual.pdf#list-virtual-servers
https://glassfish.org/docs/latest/reference-manual.pdf#delete-virtual-server
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

1. In the Administration Console, open the HTTP Service component under the relevant
configuration.

2. Open the Virtual Servers component under the HTTP Service component.

3. Select the virtual server to which you want to assign a default web module.

4. Select the application or web module from the Default Web Module drop-down list.

For more information, see To Assign a Default Web Module to a Virtual Server.

To Set JSESSIONIDSSO Cookie Attributes

Use the sso-cookie-http-only and sso-cookie-secure virtual server attributes to set the HttpOnly and
Secure attributes of any JSESSIONIDSSO cookies associated with web applications deployed to the
virtual server.

Use the set subcommand to set the value of the sso-cookie-http-only and sso-cookie-secure virtual
server attributes.

The values supported for these attributes are as follows:

sso-cookie-http-only

A boolean value that specifies whether the HttpOnly attribute is included in JSESSIONIDSSO
cookies. When set to true, which is the default, the HttpOnly attribute is included. When set to
false, the HttpOnly attribute is not included.

sso-cookie-secure

A string value that specifies whether the Secure attribute is included in JSESSIONIDSSO cookies.
Allowed values are as follows:

• true — The Secure attribute is included.

• false — The Secure attribute is not included.

• dynamic — The Secure attribute setting is inherited from the first session participating in SSO.
This is the default value.

264

https://glassfish.org/docs/latest/reference-manual.pdf#set

14 Administering Concurrent Resources
This chapter provides procedures for administering concurrent resources in the Eclipse GlassFish
environment by using the asadmin command-line utility.

The following topics are addressed here:

• About Concurrent Resources

• Default Concurrent Resources

• Configuring Context Services

• Configuring Managed Thread Factories

• Configuring Managed Executor Services

• Configuring Managed Scheduled Executor Services

Instructions for accomplishing these tasks by using the Administration Console are contained in the
Administration Console online help.

About Concurrent Resources
Concurrent resources are managed objects that provide concurrency capabilities to Jakarta EE
applications. In Eclipse GlassFish, you configure concurrent resources and make them available for
use by application components such as servlets and EJBs. Concurrent resources are accessed
through JNDI lookup or resource injection.

Concurrent resources are resources of the following types:

• Context services. See Configuring Context Services.

• Managed thread factories. Configuring Managed Thread Factories.

• Managed executor services. See Configuring Managed Executor Services.

• Managed scheduled executor services. Configuring Managed Scheduled Executor Services.

For detailed information about concurrent resources, see Concurrency Utilities in The Jakarta EE
Tutorial. Also see Java Specification Request 236: Concurrency Utilities for Jakarta EE.

Default Concurrent Resources
When you create a concurrent resource, you specify a unique JNDI name for the resource.
Applications use this name to access the resource.

The Jakarta EE standard specifies that certain default resources be made available to applications,
and defines specific JNDI names for these default resources. Eclipse GlassFish makes these names
available through the use of logical JNDI names, which map Jakarta EE standard JNDI names to
specific Eclipse GlassFish resources. For concurrent resources, the mappings are as follows:

265

https://eclipse-ee4j.github.io/jakartaee-tutorial/#jakarta-concurrency-2
http://jcp.org/en/jsr/detail?id=236

java:comp/DefaultContextService

This Jakarta EE standard name is mapped to the concurrent/__defaultContextService resource.

java:comp/DefaultManagedThreadFactory

This Jakarta EE standard name is mapped to the concurrent/__defaultManagedThreadFactory
resource.

java:comp/DefaultManagedExecutorService

This Jakarta EE standard name is mapped to the concurrent/__defaultManagedExecutorService
resource.

java:comp/DefaultManagedScheduledExecutorService

This Jakarta EE standard name is mapped to the
concurrent/__defaultManagedScheduledExecutorService resource.

Configuring Context Services
Context services are used to create dynamic proxy objects that capture the context of a container
and enable applications to run within that context at a later time. The context of the container is
propagated to the thread executing the task.

The following tasks are used to administer context service resources:

• To Create a Context Service

• To List Context Services

• To Update a Context Service

• To Delete a Context Service

To Create a Context Service

Use the create-context-service subcommand in remote mode to create a context service resource.

Because all JNDI names are in the java:comp/env subcontext, when specifying the JNDI name of a
context service, use only the concurrent/`name format. For example, `concurrent/Context1.

For more information about the default context service resource included with Eclipse GlassFish,
see Default Concurrent Resources.

Creating a context service resource is a dynamic event and typically does not
require server restart. Applications can use a resource as soon as it is created.
However, if an application tried to use a resource before it was created, and that
resource is created later, the application or the server must be restarted.
Otherwise, the application will not be able to locate the resource.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a context service by using the create-context-service subcommand.

266

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource

3. If necessary, notify users that the new resource has been created.

Example 14-1 Creating a Context Service

This example creates a context service resource named concurrent/Context1.

asadmin> create-context-service concurrent/Context1
Context service concurrent/Context1 created successfully.
Command create-context-service executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
context-service at the command line.

To List Context Services

Use the list-context-services subcommand in remote mode to list the existing context service
resources.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List context service resources by using the list-context-services subcommand.

Example 14-2 Listing Context Services

This example lists context service resources on the default server instance, server.

asadmin> list-context-services
concurrent/__defaultContextService
concurrent/Context1
concurrent/Context2
Command list-context-services executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
context-services at the command line.

To Update a Context Service

You can change all of the settings for an existing context service resource except its JNDI name. Use
the get and set subcommands to view and change the values of the context service attributes.

When a resource is updated, the existing resource is shut down and recreated. If
an application used the resource prior to the update, the application or the server
must be restarted.

1. Ensure that the server is running. Remote subcommands require a running server.

267

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources

2. List the context service resources by using the list-context-services subcommand.

3. View the attributes of a specific context service by using the get subcommand. For example:

asadmin> get resources.context-service.concurrent/Context1.*

4. Set an attribute of the context service by using the set subcommand. For example:

asadmin> set resources.context-service.concurrent/Context1.deployment-order=120

To Delete a Context Service

Use the delete-context-service subcommand in remote mode to delete an existing context service.
Deleting a context service is a dynamic event and does not require server restart.

Before deleting a context service resource, all associations to the resource must be removed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the context service resources by using the list-context-services subcommand.

3. If necessary, notify users that the context service is being deleted.

4. Delete the context service by using the delete-context-service subcommand.

Example 14-3 Deleting a Context Service

This example deletes the context service resource named concurrent/Context1.

asadmin> delete-context-service concurrent/Context1
Context service concurrent/Context1 deleted successfully.
Command delete-context-service executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
context-service at the command line.

Configuring Managed Thread Factories
Managed thread factories are used by applications to create managed threads on demand. The
threads are started and managed by the container. The context of the container is propagated to the
thread executing the task.

The following tasks are used to administer managed thread factory resources:

• To Create a Managed Thread Factory

• To List Managed Thread Factories

268

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-connection-pool

• To Update a Managed Thread Factory

• To Delete a Managed Thread Factory

To Create a Managed Thread Factory

Use the create-managed-thread-factory subcommand in remote mode to create a managed thread
factory resource.

Because all JNDI names are in the java:comp/env subcontext, when specifying the JNDI name of a
managed thread factory, use only the concurrent/name format. For example, concurrent/Factory1.

For more information about the default managed thread factory resource included with Eclipse
GlassFish, see Default Concurrent Resources.

Creating a managed thread factory resource is a dynamic event and typically does
not require server restart. Applications can use a resource as soon as it is created.
However, if an application tried to use a resource before it was created, and that
resource is created later, the application or the server must be restarted.
Otherwise, the application will not be able to locate the resource.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a managed thread factory by using the create-managed-thread-factory subcommand.

3. If necessary, notify users that the new resource has been created.

Example 14-4 Creating a Managed Thread Factory

This example creates a managed thread factory resource named concurrent/Factory1.

asadmin> create-managed-thread-factory concurrent/Factory1
Managed thread factory concurrent/Factory1 created successfully.
Command create-managed-thread-factory executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
managed-thread-factory at the command line.

To List Managed Thread Factories

Use the list-managed-thread-factories subcommand in remote mode to list the existing managed
thread factory resources.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List managed thread factory resources by using the list-managed-thread-factories
subcommand.

Example 14-5 Listing Managed Thread Factories

269

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources

This example lists managed thread factory resources on the default server instance, server.

asadmin> list-managed-thread-factories
concurrent/__defaultManagedThreadFactory
concurrent/Factory1
concurrent/Factory2
Command list-managed-thread-factories executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
managed-thread-factories at the command line.

To Update a Managed Thread Factory

You can change all of the settings for an existing managed thread factory resource except its JNDI
name. Use the get and set subcommands to view and change the values of the managed thread
factory attributes.

When a resource is updated, the existing resource is shut down and recreated. If
applications used the resource prior to the update, the application or the server
must be restarted.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the managed thread factory resources by using the list-managed-thread-factories
subcommand.

3. View the attributes of a managed thread factory by using the get subcommand. For example:

asadmin> get resources.managed-thread-factory.concurrent/Factory1.*

4. Set an attribute of the managed thread factory by using the set subcommand. For example:

asadmin> set resources.managed-thread-factory.concurrent/Factory1.deployment-
order=120

To Delete a Managed Thread Factory

Use the delete-managed-thread-factory subcommand in remote mode to delete an existing managed
thread factory. Deleting a managed thread factory is a dynamic event and does not require server
restart.

Before deleting a managed thread factory resource, all associations to the resource must be
removed.

1. Ensure that the server is running. Remote subcommands require a running server.

270

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools

2. List the managed thread factory resources by using the list-managed-thread-factories
subcommand.

3. If necessary, notify users that the managed thread factory is being deleted.

4. Delete the managed thread factory by using the delete-managed-thread-factory subcommand.

Example 14-6 Deleting a Managed Thread Factory

This example deletes the managed thread factory resource named concurrent/Factory1.

asadmin> delete-managed-thread-factory concurrent/Factory1
Managed thread factory concurrent/Factory1 deleted successfully.
Command delete-managed-thread-factory executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
managed-thread-factory at the command line.

Configuring Managed Executor Services
Managed executor services are used by applications to execute submitted tasks asynchronously.
Tasks are executed on threads that are started and managed by the container. The context of the
container is propagated to the thread executing the task.

The following tasks are used to administer managed executor service resources:

• To Create a Managed Executor Service

• To List Managed Executor Services

• To Update a Managed Executor Service

• To Delete a Managed Executor Service

To Create a Managed Executor Service

Use the create-managed-executor-service subcommand in remote mode to create a managed
executor service resource.

Because all JNDI names are in the java:comp/env subcontext, when specifying the JNDI name of a
managed executor service, use only the concurrent/`name format. For example,
`concurrent/Executor1.

For more information about the default managed executor service resource included with Eclipse
GlassFish, see Default Concurrent Resources.

Creating a managed executor service resource is a dynamic event and typically
does not require server restart. Applications can use a resource as soon as it is
created. However, if an application tried to use a resource before it was created,

271

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-connection-pool

and that resource is created later, the application or the server must be restarted.
Otherwise, the application will not be able to locate the resource.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a managed executor service by using the create-managed-executor-service subcommand.

3. If necessary, notify users that the new resource has been created.

Example 14-7 Creating a Managed Executor Service

This example creates a managed executor service resource named concurrent/Executor1.

asadmin> create-managed-executor-service concurrent/Executor1
Managed executor service concurrent/Executor1 created successfully.
Command create-managed-executor-service executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
managed-executor-service at the command line.

To List Managed Executor Services

Use the list-managed-executor-services subcommand in remote mode to list the existing managed
executor service resources.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List managed executor service resources by using the list-managed-executor-services
subcommand.

Example 14-8 Listing Managed Executor Services

This example lists managed executor service resources on the default server instance, server.

asadmin> list-managed-executor-services
concurrent/__defaultManagedExecutorService
concurrent/Executor1
concurrent/Executor2
Command list-managed-executor-services executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
managed-executor-services at the command line.

To Update a Managed Executor Service

You can change all of the settings for an existing managed executor service resource except its JNDI

272

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources

name. Use the get and set subcommands to view and change the values of the managed executor
service attributes.

When a resource is updated, the existing resource is shut down and recreated. If
applications used the resource prior to the update, the application or the server
must be restarted.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the managed executor service resources by using the list-managed-executor-services
subcommand.

3. View the attributes of a managed executor service by using the get subcommand. For example:

asadmin> get resources.managed-executor-service.concurrent/Executor1.*

4. Set an attribute of the managed executor service by using the set subcommand. For example:

asadmin> set resources.managed-executor-service.concurrent/Executor1.deployment-
order=120

To Delete a Managed Executor Service

Use the delete-managed-executor-service subcommand in remote mode to delete an existing
managed executor service. Deleting a managed executor service is a dynamic event and does not
require server restart.

Before deleting a managed executor service resource, all associations to the resource must be
removed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the managed executor service resources by using the list-managed-executor-services
subcommand.

3. If necessary, notify users that the managed executor service is being deleted.

4. Delete the managed executor service by using the delete-managed-executor-service
subcommand.

Example 14-9 Deleting a Managed Executor Service

This example deletes the managed executor service resource named concurrent/Executor1.

asadmin> delete-managed-executor-service concurrent/Executor1
Managed executor service concurrent/Executor1 deleted successfully.
Command delete-managed-executor-service executed successfully.

See Also

273

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-connection-pool

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
managed-executor-service at the command line.

Configuring Managed Scheduled Executor Services
Managed scheduled executor services are used by applications to execute submitted tasks
asynchronously at specific times. Tasks are executed on threads that are started and managed by
the container. The context of the container is propagated to the thread executing the task.

The following tasks are used to administer managed scheduled executor service resources:

• To Create a Managed Scheduled Executor Service

• To List Managed Scheduled Executor Services

• To Update a Managed Scheduled Executor Service

• To Delete a Managed Scheduled Executor Service

To Create a Managed Scheduled Executor Service

Use the create-managed-scheduled-executor-service subcommand in remote mode to create a
managed scheduled executor service resource.

Because all JNDI names are in the java:comp/env subcontext, when specifying the JNDI name of a
managed scheduled executor service, use only the concurrent/`name format. For example,
`concurrent/ScheduledExecutor1.

For more information about the default managed scheduled executor service resource included
with Eclipse GlassFish, see Default Concurrent Resources.

Creating a managed scheduled executor service resource is a dynamic event and
typically does not require server restart. Applications can use a resource as soon
as it is created. However, if an application tried to use a resource before it was
created, and that resource is created later, the application or the server must be
restarted. Otherwise, the application will not be able to locate the resource.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a managed scheduled executor service by using the create-managed-scheduled-executor-
service subcommand.

3. If necessary, notify users that the new resource has been created.

Example 14-10 Creating a Managed Scheduled Executor Service

This example creates a managed scheduled executor service resource named
concurrent/ScheduledExecutor1.

asadmin> create-managed-scheduled-executor-service concurrent/ScheduledExecutor1
Managed scheduled executor service concurrent/ScheduledExecutor1 created successfully.

274

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource

Command create-managed-scheduled-executor-service executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
managed-scheduled-executor-service at the command line.

To List Managed Scheduled Executor Services

Use the list-managed-scheduled-executor-services subcommand in remote mode to list the existing
managed scheduled executor service resources.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List managed scheduled executor service resources by using the list-managed-scheduled-
executor-services subcommand.

Example 14-11 Listing Managed Scheduled Executor Services

This example lists managed scheduled executor service resources on the default server instance,
server.

asadmin> list-managed-scheduled-executor-services
concurrent/__defaultManagedScheduledExecutorService
concurrent/ScheduledExecutor1
concurrent/ScheduledExecutor2
Command list-managed-scheduled-executor-services executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
managed-scheduled-executor-services at the command line.

To Update a Managed Scheduled Executor Service

You can change all of the settings for an existing managed scheduled executor service resource
except its JNDI name. Use the get and set subcommands to view and change the values of the
managed scheduled executor service attributes.

When a resource is updated, the existing resource is shut down and recreated. If
applications used the resource prior to the update, the application or the server
must be restarted.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the managed scheduled executor service resources by using the list-managed-scheduled-
executor-services subcommand.

3. View the attributes of a managed scheduled executor service by using the get subcommand. For
example:

275

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools

asadmin> get resources.managed-scheduled-executor-
service.concurrent/ScheduledExecutor1.*

4. Set an attribute of the managed scheduled executor service by using the set subcommand. For
example:

asadmin> set resources.managed-scheduled-executor-
service.concurrent/ScheduledExecutor1.deployment-order=120

To Delete a Managed Scheduled Executor Service

Use the delete-managed-scheduled-executor-service subcommand in remote mode to delete an
existing managed scheduled executor service. Deleting a managed scheduled executor service is a
dynamic event and does not require server restart.

Before deleting a managed scheduled executor service resource, all associations to the resource
must be removed.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the managed scheduled executor service resources by using the list-managed-scheduled-
executor-service subcommand.

3. If necessary, notify users that the managed scheduled executor service is being deleted.

4. Delete the managed scheduled executor service by using the delete-managed-scheduled-
executor-service subcommand.

Example 14-12 Deleting a Managed Scheduled Executor Service

This example deletes the managed scheduled executor service resource named
concurrent/ScheduledExecutor1.

asadmin> delete-managed-scheduled-executor-service concurrent/ScheduledExecutor1
Managed scheduled executor service concurrent/ScheduledExecutor1 deleted successfully.
Command delete-managed-scheduled-executor-service executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
managed-scheduled-executor-service at the command line.

276

https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-connection-pool

15 Administering the Object Request Broker
(ORB)
Eclipse GlassFish supports a standard set of protocols and formats that ensure interoperability.
Among these protocols are those defined by CORBA. The Object Request Broker (ORB) is the central
component of CORBA. The ORB provides the required infrastructure to identify and locate objects,
handle connection management, deliver data, and request communication. This chapter describes
how to configure the ORB and the IIOP listeners.

The following topics are addressed here:

• About the ORB

• Configuring the ORB

• Administering IIOP Listeners

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About the ORB
The Common Object Request Broker Architecture (CORBA) model is based on clients requesting
services from distributed objects or servers through a well-defined interface by issuing requests to
the objects in the form of remote method requests. A remote method request carries information
about the operation that needs to be performed, including the object name (called an object
reference) of the service provider and parameters, if any, for the invoked method. CORBA
automatically handles network programming tasks such as object registration, object location,
object activation, request de-multiplexing, error-handling, marshalling, and operation dispatching.

Configuring the ORB
A CORBA object never talks directly with another. Instead, the object makes requests through a
remote stub to the Internet Inter-Orb Protocol (IIOP) running on the local host. The local ORB then
passes the request to an ORB on the other host using IIOP. The remote ORB then locates the
appropriate object, processes the request, and returns the results.

IIOP can be used as a Remote Method Invocation (RMI) protocol by applications or objects using
RMI-IIOP. Remote clients of enterprise beans (EJB modules) communicate with Eclipse GlassFish by
using RMI-IIOP.

Administering IIOP Listeners
An IIOP listener is a listen socket that accepts incoming connections from the remote clients of
enterprise beans and from other CORBA-based clients. Multiple IIOP listeners can be configured for
Eclipse GlassFish. For each listener, specify a port number (optional; default 1072), a network
address, and security attributes (optional). If you create multiple listeners, you must assign a

277

different port number for each listener.

The following topics are addressed here:

• To Create an IIOP Listener

• To List IIOP Listeners

• To Update an IIOP Listener

• To Delete an IIOP Listener

To Create an IIOP Listener

Use the create-iiop-listener subcommand in remote mode to create an IIOP listener.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create an IIOP listener by using the create-iiop-listener subcommand.

Information about the properties for the subcommand is included in this help page.

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 15-1 Creating an IIOP Listener

This example creates an IIOP listener named sample_iiop_listener.

asadmin> create-iiop-listener --listeneraddress 192.168.1.100
--iiopport 1400 sample_iiop_listener
Command create-iiop-listener executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
iiop-listener at the command line.

To List IIOP Listeners

Use the list-iiop-listeners subcommand in remote mode to list the existing IIOP listeners.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the IIOP listeners by using the list-iiop-listeners subcommand.

Example 15-2 Listing IIOP Listeners

This example lists all the IIOP listeners for the server instance.

asadmin> list-iiop-listeners
orb-listener-1

278

https://glassfish.org/docs/latest/reference-manual.pdf#create-iiop-listener
https://glassfish.org/docs/latest/reference-manual.pdf#list-iiop-listeners

SSL
SSL_MUTUALAUTH
sample_iiop_listener
Command list-iiop-listeners executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
iiop-listeners at the command line.

To Update an IIOP Listener

1. List the IIOP listeners by using the list-iiop-listeners subcommand.

2. Modify the values for the specified IIOP listener by using the set subcommand.

The listener is identified by its dotted name.

Example 15-3 Updating an IIOP Listener

This example changes SSL from enabled to disabled.

asadmin> set "server.iiop-service.iiop-listener.SSL.enabled"
server.iiop-service.iiop-listener.SSL.enabled=false
Command set executed successfully.

To Delete an IIOP Listener

Use the delete-iiop-listener subcommand in remote mode to delete an IIOP listener.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the IIOP listeners by using the list-iiop-listeners subcommand.

3. Delete an IIOP listener by using the delete-iiop-listener subcommand.

4. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 15-4 Deleting an IIOP Listener

This example deletes the IIOP listener named sample_iiop_listener.

asadmin> delete-iiop-listener sample_iiop_listener
 Command delete-iiop-listener executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
iiop-listener at the command line.

279

https://glassfish.org/docs/latest/reference-manual.pdf#list-iiop-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-iiop-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#delete-iiop-listener

16 Administering the Jakarta Mail Service
Eclipse GlassFish includes the Jakarta Mail API along with Jakarta Mail service providers that allow
an application component to send email notifications over the Internet and to read email from
IMAP and POP3 mail servers.

The following topics are addressed here:

• About Jakarta Mail

• Administering Jakarta Mail Resources

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About Jakarta Mail
The Jakarta Mail API is a set of abstract APIs that model a mail system. The Jakarta Mail API
provides a platform-independent and protocol-independent framework to build mail and
messaging applications and provide facilities for reading and sending electronic messages. Service
providers implement particular protocols. Using the API you can add email capabilities to your
applications. Jakarta Mail provides access from Java applications to Internet Message Access
Protocol (IMAP) and Simple Mail Transfer Protocol (SMTP) capable mail servers on your network or
the Internet. The API does not provide mail server functionality; you must have access to a mail
server to use Jakarta Mail.

The Jakarta Mail API is implemented as an optional package in the Java platform and is also
available as part of the Jakarta EE platform.

To learn more about the Jakarta Mail API, consult the Jakarta Mail web site .

Administering Jakarta Mail Resources
When you create a mail session, the server-side components and applications are enabled to access
Jakarta Mail services with JNDI, using the session properties you assign for them. When creating a
mail session, you can designate the mail hosts, the transport and store protocols, and the default
mail user so that components that use Jakarta Mail do not have to set these properties. Applications
that are heavy email users benefit because Eclipse GlassFish creates a single session object and
makes the session available to any component that needs it.

Jakarta Mail settings such as the following can be specified:

• JNDI Name. The unique name for the mail session. Use the naming sub-context prefix mail/ for
Jakarta Mail resources. For example: mail/MySession

• Mail Host. The host name of the default mail server. The connect methods of the store and
transport objects use this value if a protocol-specific host property is not supplied. The name
must be resolvable to an actual host name.

• Default User. The default user name to provide when connecting to a mail server. The connect

280

https://jakartaee.github.io/mail-api/

methods of the store and transport objects use this value if a protocol-specific username
property is not supplied.

• Default Return Address. The email address of the default user, in the form:
username@host.domain.

• Description. A descriptive statement for the component.

• Session. Indicates whether or not mail session is enabled or disabled at this time

The following topics are addressed here:

• To Create a Jakarta Mail Resource

• To List Jakarta Mail Resources

• To Update a Jakarta Mail Resource

• To Delete a Jakarta Mail Resource

To Create a Jakarta Mail Resource

Use the create-mail-resource subcommand in remote mode to create a Jakarta Mail session
resource. The JNDI name for a Jakarta Mail session resource customarily includes the mail/ naming
subcontext, For example: mail/MyMailSession.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a Jakarta Mail resource by using the create-mail-resource subcommand.

Information about the properties for the subcommand is included in this help page.

3. To apply your changes, restart Eclipse GlassFish.

See To Restart a Domain.

Example 16-1 Creating a Jakarta Mail Resource

This example creates a Jakarta Mail resource named mail/MyMailSession. The escape character (\) is
used in the --fromaddress option to distinguish the dot (.) and at sign (@).

asadmin> create-mail-resource --mailhost localhost
--mailuser sample --fromaddress sample\@sun\.com mail/MyMailSession
Command create-mail-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
mail-resource at the command line.

To List Jakarta Mail Resources

Use the list-mail-resources subcommand in remote mode to list the existing Jakarta Mail session
resources.

281

https://glassfish.org/docs/latest/reference-manual.pdf#create-mail-resource

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the Jakarta Mail resources by using the list-mail-resources subcommand.

Example 16-2 Listing Jakarta Mail Resources

This example lists the Jakarta Mail resources on localhost.

asadmin> list-mail-resources
mail/MyMailSession
Command list-mail-resources executed successfuly.

See Also

You can also view the full syntax and options of the subcommands by typing asadmin help list-
mail-resources at the command line.

To Update a Jakarta Mail Resource

1. List the Jakarta Mail resources by using the list-mail-resources subcommand.

2. Modify the values for the specified Jakarta Mail source by using the set subcommand.

The resource is identified by its dotted name.

Example 16-3 Updating a Jakarta Mail Resource

This example changes joeserver to joe.

asadmin> set server.resources.mail-resource.mail/
MyMailSession.user=joeserver.resources.mail-resource.mail/
MyMailSession.user=joe
Command set executed successfully.

To Delete a Jakarta Mail Resource

Use the delete-mail-resource subcommands in remote mode to delete a Jakarta Mail session
resource.

Before You Begin

References to the specified resource must be removed before running the delete-mail-resource
subcommands.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the Jakarta Mail resources by using the list-mail-resources subcommands.

3. Delete a Jakarta Mail resource by using the delete-mail-resource subcommands.

4. To apply your changes, restart Eclipse GlassFish.

282

https://glassfish.org/docs/latest/reference-manual.pdf#list-mail-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-mail-resources
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-mail-resources
https://glassfish.org/docs/latest/reference-manual.pdf#delete-mail-resource

See To Restart a Domain.

Example 16-4 Deleting a Jakarta Mail Resource

This example deletes the Jakarta Mail session resource named mail/MyMailSession.

asadmin> delete-mail-resource mail/MyMailSession
Command delete-mail-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
mail-resource at the command line.

283

17 Administering the Java Message Service
(JMS)
The Java Message Service (JMS) API is a messaging standard that allows Jakarta EE applications and
components, including message-driven beans (MDBs), to create, send, receive, and read messages. It
enables distributed communication that is loosely coupled, reliable, and asynchronous.

Eclipse GlassFish supports JMS messaging by communicating with a JMS provider through a Jakarta
EE Connector resource adapter. By default, Eclipse GlassFish provides JMS messaging through its
built-in jmsra resource adapter communicating with Open Message Queue, which is included with
Eclipse GlassFish. This combination, known as the JMS Service, is tightly integrated with Eclipse
GlassFish, providing a rich set of asadmin subcommands and Administration Console pages to
simplify JMS messaging administration tasks.

Eclipse GlassFish also supports the Generic Resource Adapter for JMS (GenericJMSRA) for use as a
resource adapter to connect to other JMS providers. The last section in this chapter, Using the
Generic Resource Adapter for JMS to Integrate Supported External JMS Providers, describes the
GenericJMSRA and provides instructions for using it to make other supported JMS providers
available to Eclipse GlassFish.

The following topics are addressed here:

• About the JMS Service

• Updating the JMS Service Configuration

• Administering JMS Hosts

• Administering JMS Connection Factories and Destinations

• Administering JMS Physical Destinations

• Special Situations When Using the JMS Service

• Troubleshooting the JMS Service

• Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Instructions for accomplishing the task in this chapter by using the Administration Console are
contained in the Administration Console online help.

About the JMS Service
To support JMS messaging, the JMS Service provides the following administrative objects:

JMS Service Configuration

The JMS service configuration is part of the overall configuration for a GlassFish standalone
instance or cluster. It specifies how the JMS Service is to create and maintain connections with
JMS Hosts.

284

JMS Hosts

JMS hosts are the message servers that host destinations, store messages, and interact with
applications to send and receive messages across connections. In Message Queue, JMS hosts are
called brokers.
The JMS service supports these types of JMS hosts:

• Embedded type, in which the JMS host runs in the same JVM as the GlassFish instance; its
configuration and lifecycle are managed by the JMS service.

• Local type, in which the JMS host runs separately on the same host as the GlassFish instance;
its configuration and lifecycle are managed by the JMS service.

• Remote type, in which the JMS host represents a Message Queue broker or broker cluster
that is external to the JMS service; its operation is managed using Message Queue
administrative tools.

For more information about JMS host types, see About JMS Host Types.

JMS Connection Factory Resources

JMS connection factory resources house the information that applications use to connect to a
JMS provider. For each JMS connection factory, the JMS service automatically maintains a
GlassFish connector resource and a GlassFish connector connection pool in order to support
connection pooling and failover.

JMS Destination Resources

JMS destination resources house the information that applications use to specify the target
destination of messages they produce and the source destination of messages they consume. For
each JMS destination resource, the JMS service automatically maintains a GlassFish
administered object.

JMS Physical Destinations

JMS physical destinations provide a means to create and manage JMS destinations
administratively instead of having them created dynamically when needed by an application.
While dynamic creation of destinations is often sufficient during application development,
administratively created physical destinations are more suitable for production environments.

JMS Service High Availability

Just as Eclipse GlassFish supports clusters of instances to provide high availability, Message Queue
supports clusters of brokers to provide service availability or service and data availability,
depending on the type of broker cluster, as described in "Broker Clusters" in Open Message Queue
Technical Overview.

The JMS service takes advantage of this Message Queue capability and automatically creates and
manages a Message Queue broker cluster when a GlassFish cluster’s configuration specifies
Embedded or Local type JMS hosts. Additionally, both GlassFish clusters and standalone instances
can use Message Queue broker clusters as Remote type JMS hosts.

For information about how the JMS service supports GlassFish clusters and Message Queue broker
clusters, see "Configuring Java Message Service High Availability" in Eclipse GlassFish High

285

https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html/broker-clusters.html#GMTOV00028
https://glassfish.org/docs/latest/ha-administration-guide.pdf#configuring-java-message-service-high-availability

Availability Administration Guide.

Updating the JMS Service Configuration
Because the JMS service configuration is part of the overall configuration for a standalone instance
or cluster, it is created when the standalone instance or cluster is created. You can then update the
JMS service configuration by using the Java Message Service page for the configuration in the
Administration Console, or by using a set subcommand of the following form:

set configs.config.config-name.jms-service.attribute-name=attribute-value

The attributes you can set are:

type

The JMS host type the service is to use. Available choices are EMBEDDED, LOCAL and REMOTE. See
About JMS Host Types for more information.

init-timeout-in-seconds

The number of seconds Eclipse GlassFish waits for the JMS service to start before aborting the
startup.

start-args

A list of arguments the JMS service passes to Embedded and Local type JMS hosts on startup.
Permissible arguments are the options supported by the Message Queue imqbrokerd command,
as described in "Broker Utility" in Open Message Queue Administration Guide.

default-jms-host

The name of the default JMS host.

reconnect-enabled

When set to true, the JMS service attempts to reconnect to a JMS host (or one of the JMS hosts in
the AddressList) when a connection is lost.

reconnect-attempts

The number of attempts to connect (or reconnect) for each JMS host in the AddressList before
the JMS service tries the next address in the list. A value of -1 indicates that the number of
reconnect attempts is unlimited (the JMS service attempts to connect to the first address until it
succeeds).

reconnect-interval-in-seconds

The number of seconds between reconnect attempts. This interval applies for attempts on each
JMS host in the AddressList and for successive addresses in the list. If it is too short, this time
interval does not give a JMS host time to recover. If it is too long, the reconnect might represent
an unacceptable delay.

addresslist-behavior

The order of connection attempts. Available choices are:

286

https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/command-line-reference.html#GMADG00280

random

Select a JMS host from the AddressList randomly. If there are many clients attempting a
connection using the same connection factory, specify random to prevent them from all being
connected to the same JMS host.

priority

Always try to connect to the first JMS host in the AddressList and use another one only if the
first one is not available.

addresslist-iterations

The number of times the JMS service iterates through the AddressList in an effort to establish (or
reestablish) a connection. A value of -1 indicates that the number of attempts is unlimited.

mq-scheme

mq-service

The Message Queue address scheme name and connection service name to use for the
AddressList if a non-default scheme or service is to be used. See "Connection Handling" in Open
Message Queue Administration Guide for syntax information.

After making changes to the JMS service configuration, Eclipse GlassFish instances
that use the configuration must be restarted in order for the changes to be
propagated.

Setting Message Queue Broker Properties in the JMS Service Configuration

You can specify any Message Queue broker property in the JMS service configuration by adding it
by name to the Additional Properties table on the Java Message Service page for the configuration
in the Administration Console, or by using a set subcommand of the following form:

set configs.config.config-name.jms-service.property.broker-property-name=value

If the broker property name includes dots, preface the dots with two backslashes (\\); for example,
to set the imq.system.max_count property, specify imq\\.system\\.max_count in the set subcommand.

You can also set broker properties in the JMS host. If you set the same broker
property in both the JMS service configuration and the JMS host, the value
specified in the JMS host is used.

Administering JMS Hosts
A JMS host represents a Message Queue broker. JMS contains a JMS hosts list (the AddressList
property) that contains all the JMS hosts that are used by Eclipse GlassFish. The JMS hosts list is
populated with the hosts and ports of the specified Message Queue brokers and is updated
whenever a JMS host configuration changes. When you create JMS resources or deploy message
driven beans, the resources or beans inherit the JMS hosts list.

287

https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html/administered-object-attributes.html#GMADG00622

The following topics are addressed here:

• About JMS Host Types

• Configuring Embedded and Local JMS Hosts

• To Create a JMS Host

• To List JMS Hosts

• To Update a JMS Host

• To Delete a JMS Host

For information about administering JMS hosts that are servicing GlassFish clusters, see
"Configuring GlassFish Clusters to Use Message Queue Broker Clusters" in Eclipse GlassFish High
Availability Administration Guide.

About JMS Host Types

The JMS service uses Message Queue (MQ) brokers as JMS hosts, integrating them in three ways:

Embedded Type

When the JMS service configuration’s type attribute is EMBEDDED, the MQ broker is co-located in
the same JVM as the Eclipse GlassFish instance it services. The JMS service starts it in-process
and manages its configuration and lifecycle.
For this type, the JMS service uses lazy initialization to start the broker when the first JMS
operation is requested instead of immediately when the GlassFish instance is started. If
necessary, you can force startup of the broker by using the jms-ping command.
Additionally, if the GlassFish instance is a standalone instance (not a clustered instance), JMS
operations use a Message Queue feature called direct mode to bypass the networking stack,
leading to performance optimization.

Local Type

When the JMS service configuration’s type attribute is LOCAL, the JMS service starts the MQ
broker specified in the configuration as the default JMS host in a separate process on the same
host as the Eclipse GlassFish instance. The JMS service manages its configuration and lifecycle.
For this type, the JMS service starts the broker immediately when the GlassFish instance is
started.
The JMS service provides the Message Queue broker an additional port to start the RMI registry.
This port number is equal to the broker’s JMS port plus 100. For example, if the JMS port number
is 37676, then the additional port’s number will be 37776. Additionally, the start-args property
of the JMS service configuration can be used to specify Message Queue broker startup options.

Remote Type

When the JMS service configuration’s type attribute is REMOTE, the JMS service uses the
information defined by the default JMS host to communicate with an MQ broker or broker
cluster that has been configured and started using Message Queue tools, as described in the
Open Message Queue Administration Guide. Ongoing administration and tuning of the broker or
broker cluster are also performed using Message Queue tools.

288

https://glassfish.org/docs/latest/ha-administration-guide.pdf#configuring-glassfish-clusters-to-use-message-queue-broker-clusters
https://glassfish.org/docs/latest/reference-manual.pdf#jms-ping
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html

Configuring Embedded and Local JMS Hosts

Because the JMS service, not Message Queue, manages Embedded and Local JMS hosts
automatically, you should avoid using Message Queue utilities to configure them. Instead, specify
broker properties in the JMS service configuration or in the JMS host.

Should the need to use Message Queue utilities arise, you must use the -varhome option when
running certain Message Queue utilities to specify the IMQ_VARHOME location of the Embedded or
Local JMS host. This location depends on which GlassFish instance the JMS host is servicing:

• For server, the Domain Administration Server (DAS), the IMQ_VARHOME location is:

domain-root-dir/domain-dir/imq

• For any other GlassFish instance, the IMQ_VARHOME location is:

as-install/nodes/node-name/instance-name/imq

For example, the broker log file for an Embedded or Local JMS host servicing the DAS is available at
domain-root-dir/domain-dir/imq/instances/imqbroker/log/log.txt, and the broker log file for an
Embedded or Local JMS host servicing any other GlassFish instance is available at as-install
/nodes/node-name/instance-name`/imq/instances/mq-instance-name/log/log.txt``.

When using Message Queue utilities on the Windows platform, you must explicitly
use the Windows executable (.exe) versions of the utilities, even when running
command shells such as Cygwin. For example, instead of running imqcmd, you must
run imqcmd.exe.

To Create a JMS Host

The default JMS service configuration includes a JMS host, default_JMS_host. For most situations,
this host is sufficient, so replacing it or creating additional JMS hosts is not often necessary and is a
task for advanced users. Use the create-jms-host subcommand in remote asadmin mode to create an
additional JMS host.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. Create the JMS host by using the create-jms-host subcommand:

asadmin> create-jms-host --mqhost hostName --mqport portNumber
--mquser adminUser --mqpassword adminPassword --target glassfishTarget
--property mqBrokerPropList --force trueFalse jms-host-name

289

https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host

--mqhost

The host name of the Message Queue broker.

--mqport

The port number of the Message Queue broker.

--mquser

The user name of the administrative user of the Message Queue broker.

--mqpassword

The password of the administrative user of the Message Queue broker.

--target

The Eclipse GlassFish object for which the JMS host is being created. For details, see create-
jms-host(1).

--property

A list of one or more Message Queue broker properties to configure the broker. The list is
colon-separated (:) and has the form:

prop1Name=prop1Value:prop2Name=prop2Value:...

If a broker property name includes dots, preface the dots with two backslashes (\\); for
example, to include the imq.system.max_count property, specify imq\\.system\\.max_count in
the --property option.

You can also set broker properties in the JMS service configuration. If you
set the same broker property in both the JMS host and the JMS service
configuration, the value specified in the JMS host is used.

--force

Specifies whether the subcommand overwrites the existing JMS host of the same name. The
default value is false.

jms-host-name

The unique name of the JMS host.

Example 17-1 Creating a JMS Host

This example creates a JMS host named MyNewHost.

asadmin> create-jms-host --mqhost pigeon --mqport 7677
--mquser admin --mqpassword admin MyNewHost
Jms Host MyNewHost created.
Command create-jms-host executed successfully.

290

https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host
https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host
https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
jms-host at the command line.

To List JMS Hosts

Use the list-jms-hosts subcommand in remote asadmin mode to list the existing JMS hosts.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. List the JMS hosts by using the list-jms-hosts subcommand.

Example 17-2 Listing JMS Hosts

The following subcommand lists the existing JMS hosts.

asadmin> list-jms-hosts
default_JMS_host
MyNewHost
Command list-jmsdest executed successfully

To Update a JMS Host

Use the set subcommand in remote asadmin mode to update an existing JMS host.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. Use the get subcommand to list the current attribute values of the desired JMS host:

asadmin> get configs.config.config-name.jms-service.jms-host.jms-host-name.*

For information about JMS host attributes, see create-jms-host(1).

3. Use the set subcommand to modify a JMS host attribute:

asadmin> set configs.config.config-name.jms-service.jmshost.
jms-host-name.attribute-name=attribute-value

The attributes you can set are

host

The host name of the Message Queue broker.

291

https://glassfish.org/docs/latest/reference-manual.pdf#list-jms-hosts
https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host
https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host
https://glassfish.org/docs/latest/reference-manual.pdf#set

port

The port number of the Message Queue broker.

admin-user-name

The user name of the administrative user of the Message Queue broker.

admin-password

The password of the administrative user of the Message Queue broker.

`property.`broker-property-name

A Message Queue broker property. The property, and the value assigned to it, are used to
configure the Message Queue broker.

If the broker property name includes dots, preface the dots with two
backslashes (`\\`); for example, to include the `imq.system.max_count`
property, specify `imq\\.system\\.max_count` in the `set` subcommand.

You can also set broker properties in the JMS service configuration. If you
set the same broker property in both the JMS host and the JMS service
configuration, the value specified in the JMS host is used.

Example 17-3 Updating a JMS Host

This example changes the value of the host attribute of the JMS host default_JMS_Host. By default
this value is localhost.

asadmin> set configs.config.server-config.jms-service.jms-host.default_JMS_host.host=
"server1.middleware.example.com"

To Delete a JMS Host

Use the delete-jms-host subcommand in remote asadmin mode to delete a JMS host from the JMS
service. If you delete the only JMS host, the JMS service will not be able to start until you create a
new JMS host.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. List the JMS hosts by using the list-jms-hosts subcommand.

3. Delete a JMS host by using the delete-jms-host subcommand.

Example 17-4 Deleting a JMS Host

This example deletes a JMS host named MyNewHost.

292

https://glassfish.org/docs/latest/reference-manual.pdf#list-jms-hosts
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jms-host

asadmin> delete-jms-host MyNewHost
Command delete-jms-host executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
jms-host at the command line.

Administering JMS Connection Factories and
Destinations
The JMS API uses two kinds of administered objects. Connection factory objects allow an
application to create other JMS objects programmatically. Destination objects serve as repositories
for messages. How these objects are created is specific to each implementation of JMS. In Eclipse
GlassFish, JMS is implemented by performing the following tasks:

• Creating a connection factory

• Creating a destination, which requires creating a physical destination and a destination
resource that refers to the physical destination

JMS applications use the Java Naming and Directory Interface (JNDI) API to access the connection
factory and destination resources. A JMS application normally uses at least one connection factory
and at least one destination. By studying the application or consulting with the application
developer, you can determine what resources must be created. The order in which the resources
are created does not matter.

The Jakarta EE standard specifies that certain default resources be made available to applications,
and defines specific JNDI names for these default resources. Eclipse GlassFish makes these names
available through the use of logical JNDI names, which map Jakarta EE standard JNDI names to
specific Eclipse GlassFish resources. For JMS connection factory resources, the Jakarta EE standard
name java:comp/DefaultJMSConnectionFactory is mapped to the jms/__defaultConnectionFactory
resource.

Eclipse GlassFish provides the following types of connection factory objects:

• QueueConnectionFactory objects, used for point-to-point communication

• TopicConnectionFactory objects, used for publish-subscribe communication

• ConnectionFactory objects, which can be used for both point-to-point and publish-subscribe
communications (recommended for new applications)

Eclipse GlassFish provides the following types of destination objects:

• Queue objects, used for point-to-point communication

• Topic objects, used for publish-subscribe communication

The following topics are addressed here:

293

• To Create a Connection Factory or Destination Resource

• To List JMS Resources

• To Delete a Connection Factory or Destination Resource

The subcommands in this section can be used to administer both the connection factory resources
and the destination resources. For information on JMS service support of connection pooling and
failover, see "Connection Failover" in Eclipse GlassFish High Availability Administration Guide. For
instructions on administering physical destinations, see Administering JMS Physical Destinations.

To Create a Connection Factory or Destination Resource

For each JMS connection factory that you create, Eclipse GlassFish creates a connector connection
pool and connector resource. For each JMS destination that you create, Eclipse GlassFish creates a
connector admin object resource. If you delete a JMS resource, Eclipse GlassFish automatically
deletes the connector resources.

Use the create-jms-resource command in remote asadmin mode to create a JMS connection factory
resource or a destination resource.

To specify the addresslist property (in the format
host:mqport,host2:mqport,host3:mqport) for the asadmin create-jms-resource
command, escape the : by using \\. For example,
host1\\:mqport,host2\\:mqport,host3\\:mpqport. For more information about using
escape characters, see the asadmin(1M) help page.

To update a JMS connection factory, use the set subcommand for the underlying connector
connection pool, See To Update a Connector Connection Pool.

To update a destination, use the set subcommand for the admin object resource. See To Update an
Administered Object.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. Create a JMS resource by using the create-jms-resource command.

Information about the properties for the subcommand is included in this help page.

3. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 17-5 Creating a JMS Connection Factory

This example creates a connection factory resource of type jakarta.jms.ConnectionFactory whose
JNDI name is jms/DurableConnectionFactory. The ClientId property sets a client ID on the connection
factory so that it can be used for durable subscriptions. The JNDI name for a JMS resource
customarily includes the jms/ naming subcontext.

294

https://glassfish.org/docs/latest/ha-administration-guide.pdf#connection-failover
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-resource

asadmin> create-jms-resource --restype jakarta.jms.ConnectionFactory
--description "connection factory for durable subscriptions"
--property ClientId=MyID jms/DurableConnectionFactory
Command create-jms-resource executed successfully.

Example 17-6 Creating a JMS Destination

This example creates a destination resource whose JNDI name is jms/MyQueue.

asadmin> create-jms-resource --restype jakarta.jms.Queue
--property Name=PhysicalQueue jms/MyQueue
Command create-jms-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
jms-resource at the command line.

To List JMS Resources

Use the list-jms-resources subcommand in remote asadmin mode to list the existing connection
factory and destination resources.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. List the existing JMS resources by using the list-jms-resources subcommand.

Example 17-7 Listing All JMS Resources

This example lists all the existing JMS connection factory and destination resources.

asadmin> list-jms-resources
jms/Queue
jms/ConnectionFactory
jms/DurableConnectionFactory
jms/Topic
Command list-jms-resources executed successfully

Example 17-8 Listing a JMS Resources of a Specific Type

This example lists the resources for the resource type javax.

asadmin> list-jms-resources --restype jakarta.jms.TopicConnectionFactory
jms/DurableTopicConnectionFactory
jms/TopicConnectionFactory

295

https://glassfish.org/docs/latest/reference-manual.pdf#list-jms-resources

Command list-jms-resources executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-jms-
resources at the command line.

To Delete a Connection Factory or Destination Resource

Use the delete-jms-resource subcommand in remote asadmin mode to remove the specified
connection factory or destination resource.

Before You Begin

Ensure that you remove all references to the specified JMS resource before running this
subcommand.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. List the existing JMS resources by using the list-jms-resources subcommand.

3. Delete the JMS resource by using the delete-jms-resource subcommand.

Example 17-9 Deleting a JMS Resource

This example deletes the jms/Queue resource.

asadmin> delete-jms-resource jms/Queue
Command delete-jms-resource executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
jms-resource at the command line.

Administering JMS Physical Destinations
Messages are delivered for routing and delivery to consumers by using physical destinations in the
JMS provider. A physical destination is identified and encapsulated by an administered object (such
as a Topic or Queue destination resource) that an application component uses to specify the
destination of messages it is producing and the source of messages it is consuming. For instructions
on configuring a destination resource, see To Create a Connection Factory or Destination Resource.

If a message-driven bean is deployed and the physical destination it listens to does not exist, Eclipse
GlassFish automatically creates the physical destination and sets the value of the
maxNumActiveConsumers property to -1. However, it is good practice to create the physical destination
beforehand. The first time that an application accesses a destination resource, Message Queue

296

https://glassfish.org/docs/latest/reference-manual.pdf#list-jms-resources
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jms-resource

automatically creates the physical destination specified by the Name property of the destination
resource. This automatically created physical destination is temporary and expires after a period
specified by a Message Queue configuration property, provided that there are no messages in it and
no message producers or consumers connected to it.

The following topics are addressed here:

• To Create a JMS Physical Destination

• To List JMS Physical Destinations

• To Purge Messages From a Physical Destination

• To Delete a JMS Physical Destination

To Create a JMS Physical Destination

For production purposes, always create physical destinations. During the development and testing
phase, however, this step is not required. Use the create-jmsdest subcommand in remote asadmin
mode to create a physical destination.

Because a physical destination is actually a Message Queue object rather than a server object, you
use Message Queue broker commands to update properties. For information on Message Queue
properties, see the Open Message Queue Administration Guide.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. Create a JMS physical destination by using the create-jmsdest subcommand.

Information about the properties for the subcommand is included in this help page.

3. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 17-10 Creating a JMS Physical Destination

This example creates a queue named PhysicalQueue.

asadmin> create-jmsdest --desttype queue --property
User=public:Password=public PhysicalQueue
Command create-jmsdest executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
jmsdest at the command line.

297

https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://glassfish.org/docs/latest/reference-manual.pdf#create-jmsdest

To List JMS Physical Destinations

Use the list-jmsdest subcommand in remote asadmin mode to list the existing JMS physical
destinations.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. List the existing JMS physical destinations by using the list-jmsdest subcommand.

Example 17-11 Listing JMS Physical Destinations

This example lists the physical destinations for the default server instance.

asadmin> list-jmsdest
PhysicalQueue queue {}
PhysicalTopic topic {}
Command list-jmsdest executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
jmsdest at the command line.

To Purge Messages From a Physical Destination

Use the flush-jmsdest subcommand in remote asadmin mode to purge the messages from a physical
destination in the specified target’s JMS service configuration.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. Purge messages from the a JMS physical destination by using the flush-jmsdest subcommand.

3. If needed, restart the server.

Some properties require server restart. See Configuration Changes That Require Restart. If your
server needs to be restarted, see To Restart a Domain.

Example 17-12 Flushing Messages From a JMS Physical Destination

This example purges messages from the queue named PhysicalQueue.

asadmin> flush-jmsdest --desttype queue PhysicalQueue
Command flush-jmsdest executed successfully

See Also

298

https://glassfish.org/docs/latest/reference-manual.pdf#list-jmsdest
https://glassfish.org/docs/latest/reference-manual.pdf#flush-jmsdest

You can also view the full syntax and options of the subcommand by typing asadmin help flush-
jmsdest at the command line.

To Delete a JMS Physical Destination

Use the delete-jmsdest subcommand in remote asadmin mode to remove the specified JMS physical
destination.

1. Ensure that the server is running.

Remote asadmin subcommands require a running server.

2. List the existing JMS physical destinations by using the list-jmsdest subcommand.

3. Delete the physical resource by using the delete-jmsdest subcommand.

Example 17-13 Deleting a Physical Destination

This example deletes the queue named PhysicalQueue.

asadmin> delete-jmsdest --desttype queue PhysicalQueue
Command delete-jmsdest executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
jmsdest at the command line.

Special Situations When Using the JMS Service
As mentioned earlier, Message Queue, through the built-in jmsra resource adapter, is tightly
integrated with Eclipse GlassFish to provide JMS messaging managed through a rich set of asadmin
subcommands and Administration Console pages to simplify JMS messaging administration tasks.
In most instances, this tight integration is transparent and automatic, requiring no special effort on
the part of an administrator. In certain special situations, though, an administrator must perform a
task such a setting a Message Queue broker property or a GlassFish object attribute to enable or
disable a capability of the integration. The topics in this section describe these situations.

Restarting an Embedded or Local Broker That Has Failed

Because the JMS service, not Message Queue, manages the lifecycle of brokers acting as
Embedded and Local JMS hosts, do not use the imqbrokerd Message Queue utility to start such a
broker that has failed. Instead, restart the GlassFish instance that the broker is servicing.

Changing the Admin User Password for an Embedded or Local Broker

Follow these steps to change the admin user password for an Embedded or Local broker:

1. Make sure the broker is running.

2. Use the imqusermgr Message Queue utility to change the password of the admin user.

299

https://glassfish.org/docs/latest/reference-manual.pdf#list-jmsdest
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jmsdest

3. Edit the configuration of the JMS host, changing the password of the admin user to the new
password.

4. Restart the GlassFish instance that the broker is servicing.
When changing the password for the brokers in a broker cluster, first perform steps 1 and 2
on each broker. Then, perform step 3. Finally, perform step 4 on each broker.

Using SSL to Connect to an Oracle Internet Directory (OID) or Oracle Virtual Directory (OVD) User
Respository:: When using SSL to connect to an OID or OVD user repository, you must set the
imq.user_repository.ldap.ssl.socketfactory Message Queue broker property to
com.sun.enterprise.security.auth.realm.ldap.CustomSocketFactory.

Troubleshooting the JMS Service
If you encounter problems, consider the following:

• Use the jms-ping subcommand to confirm that the Message Queue broker is running.

• View the Eclipse GlassFish log file. For server, the Domain Administrations Server (DAS), the log
is available at domain-dir/logs/server.log; for other GlassFish instances, the log is available at
as-install/nodes/node-name/instance-name/logs/server.log.

If the log file indicates that a Message Queue broker acting as a Remote JMS host did not
respond to a message, stop the broker and then restart it.

• View the broker log. For a broker associated with the Domain Administration Server (DAS), the
log is available at domain-dir`/imq/instances/imqbroker/log/log.txt`; for brokers associated with
other GlassFish instances, the log is available at as-install/nodes/node-name/instance-
name`/imq/instances/mq-instance-name/log/log.txt``.

• For Remote type JMS hosts, be sure to start Message Queue brokers first, then Eclipse GlassFish
instances.

• If all Message Queue brokers are down, it can take up to 30 minutes for Eclipse GlassFish to go
down or up when you are using the default values in JMS. You can change the default values for
this timeout. For example:

asadmin set domain1.jms-service.reconnect-interval-in-seconds=5

Using the Generic Resource Adapter for JMS to
Integrate Supported External JMS Providers
Eclipse GlassFish supports the integration and use of Oracle WebLogic JMS and IBM WebSphere MQ
JMS providers through the use of the Generic Resource Adapter for JMS (GenericJMSRA). This
Jakarta EE connector 1.5 resource adapter can wrap the JMS client library of Oracle WebLogic JMS
and IBM WebSphere MQ and make it available for use by GlassFish. The adapter is a .rar archive
that can be deployed and configured using Eclipse GlassFish administration tools.

The following topics are addressed here:

300

https://glassfish.org/docs/latest/reference-manual.pdf#jms-ping

• Configuring GenericJMSRA for Supported External JMS Providers

• Using GenericJMSRA with WebLogic JMS

• Using GenericJMSRA with IBM WebSphere MQ

Configuring GenericJMSRA for Supported External JMS Providers

GenericJMSRA has three main properties that need to be configured: SupportXA, DeliveryType, and
ProviderIntegrationMode. The values that need to be set for them depends on the capabilities of the
JMS provider being used, as follows:

• SupportXA — indicates whether the JMS provider supports XA or not.

• DeliveryType — indicates whether an MDB should use a ConnectionConsumer or
Consumer.receive() when consuming messages.

• ProviderIntegrationMode — indicates what mode of integration is required. The available
integration modes are jndi and javabean. Some JMS providers support only one integration
mode while others may offer the choice of both

◦ If jndi is specified, then the resource adapter will obtain JMS connection factories and
destinations from the JMS provider’s JNDI repository.

◦ If javabean is specified then the resource adapter will obtain JMS connection factories and
destinations by instantiating the appropriate classes directly.

Which option is specified determines which other properties need to be set.

To Deploy and Configure GenericJMSRA

Before deploying GenericJMSRA, JMS client libraries must be made available to Eclipse GlassFish.
For some JMS providers, client libraries might also include native libraries. In such cases, these
native libraries must be made available to any Eclipse GlassFish JVMs.

1. Download the genericra.rar archive.

2. Deploy GenericJMSRA the same way you would deploy a connector module.

See "Deploying a Connector Module" in Eclipse GlassFish Application Deployment Guide.

3. Configure the resource adapter’s properties.

See GenericJMSRA Configuration Properties.

4. Create a connector connection pool.

See To Create a Connector Connection Pool.

5. Create a connector resource.

See To Create a Connector Resource.

6. Create an administered object resource.

301

https://glassfish.org/docs/latest/application-deployment-guide.pdf#deploying-a-connector-module

See To Create an Administered Object.

GenericJMSRA Configuration Properties

The following table describes the properties that can be set to when configuring the resource
adapter.

Property Name Valid Values Default
Value

Description

SupportsXA true/false false Specifies whether the JMS client
supports XA transactions.

DeliveryType Synchronous/

Asynchronous

Asynchrono
us

Specifies whether an MDB should use
a ConnectionConsumer (Asynchronous)
or consumer.receive() (Synchronous)
when consuming messages.

QueueConnectionFactoryCla
ssName

A valid class
name

None Class name of
jakarta.jms.QueueConnectionFactory
implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is javabean.

TopicConnectionFactoryCla
ssName

A valid class
name

None Class name of
jakarta.jms.TopicConnectionFactory
implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is specified
as javabean.

XAConnectionFactoryClassN
ame

A valid class
name

None Class name of
jakarta.jms.ConnectionFactory
implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is specified
as javabean.

XAQueueConnectionFactoryC
lassName

A valid class
name

None Class name of
jakarta.jms.``XAQueueConnectionFacto
ry implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is specified
as javabean.

302

Property Name Valid Values Default
Value

Description

XATopicConnectionFactoryC
lassName

A valid class
name

None Class name of
jakarta.jms.``XATopicConnectionFacto
ry implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is javabean.

TopicClassName A valid class
name

None Class Name of jakarta.jms.Topic
implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is javabean.

QueueClassName A valid class
name

None Class Name of jakarta.jms.Queue
implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is specified
as a javabean.

ConnectionFactoryProperti
es

Name value pairs
separated by
comma

None Specifies the javabean property
names and values of the
ConnectionFactory of the JMS client.
Required only if
ProviderIntegrationMode is javabean.

JndiProperties Name value pairs
separated by
comma

None Specifies the JNDI provider
properties to be used for connecting
to the JMS provider’s JNDI. Used only
if ProviderIntegrationMode is jndi.

CommonSetterMethodName Method name None Specifies the common setter method
name that some JMS vendors use to
set the properties on their
administered objects. Used only if
ProviderIntegrationMode is javabean.
For example, in the case of Message
Queue, this would be setProperty.

UserName Name of the JMS
user

None User name to connect to the JMS
Provider.

Password Password for the
JMS user

None Password to connect to the JMS
provider.

303

Property Name Valid Values Default
Value

Description

RMPolicy ProviderManaged
or
OnePerPhysicalCon
nection

Provider``Ma
naged

The isSameRM method on an
XAResource is used by the Transaction
Manager to determine if the
Resource Manager instance
represented by two XAResources are
the same. When RMPolicy is set to
ProviderManaged (the default value),
the JMS provider is responsible for
determining the RMPolicy and the
XAResource wrappers in
GenericJMSRA merely delegate the
isSameRM call to the JMS provider’s XA
resource implementations. This
should ideally work for most JMS
providers.

Some XAResource implementations
such as WebSphere MQ rely on a
resource manager per physical
connection and this causes issues
when there is inbound and outbound
communication to the same queue
manager in a single transaction (for
example, when an MDB sends a
response to a destination). When
RMPolicy is set to
OnePerPhysicalConnection, the
XAResource wrapper
implementation’s isSameRM in
GenericJMSRA would check if both
the XAResources use the same physical
connection, before delegating to the
wrapped objects.

Connection Factory Properties

ManagedConnectionFactory properties are specified when a connector-connection-pool is created. All
the properties specified while creating the resource adapter can be overridden in a
ManagedConnectionFactory. Additional properties available only in ManagedConnectionFactory are
given below.

304

Property Name Valid
Value

Default Value Description

ClientId A
valid
client
ID

None ClientID as specified
by JMS 1.1
specification.

ConnectionFactoryJ
ndiName

JNDI
Name

None JNDI name of the
connection factory
bound in the JNDI
tree of the JMS
provider. The
administrator should
provide all
connection factory
properties (except
clientID) in the JMS
provider itself. This
property name will
be used only if
ProviderIntegratinMo
de is jndi.

ConnectionValidati
onEnabled

true/fa
lse

false If set to true, the
resource adapter will
use an exception
listener to catch any
connection exception
and will send a
CONNECTION_ERROR_OCC
URED event to
application server.

Destination Properties

Properties in this section are specified when a destination (queue or topic) is created. All the
resource adapter properties can be overridden in a destination. Additional properties available
only in the destination are given below.

Property Name Valid Value Default
Value

Description

DestinationJndiName JNDI Name None JNDI name of the destination bound in the
JNDI tree of the JMS provider. The
Administrator should provide all
properties in the JMS provider itself. This
property name will be used only if
ProviderIntegrationMode is jndi.

305

Property Name Valid Value Default
Value

Description

DestinationProperties Name value
pairs
separated by
a comma

None Specifies the javabean property names and
values of the destination of the JMS client.
Required only if ProviderIntegrationMode
is javabean.

Activation Spec Properties

Properties in this section are specified in the Eclipse GlassFish glassfish-ejb-jar.xml deployment
descriptor of an MDB as activation-config-properties. All the resource adapter properties can be
overridden in an Activation Spec. Additional properties available only in ActivationSpec are given
below.

Property Name Valid Value Default
Value

Description

MaxPoolSize An integer 8 Maximum size of server
session pool internally
created by the resource
adapter for achieving
concurrent message
delivery. This should be
equal to the maximum pool
size of MDB objects.

MaxWaitTime An integer 3 The resource adapter will
wait for the time in seconds
specified by this property to
obtain a server session from
its internal pool. If this limit
is exceeded, message
delivery will fail.

SubscriptionDurability Durable or
Non-Durable

Non-
Durable

SubscriptionDurability as
specified by JMS 1.1
specification.

SubscriptionName + None SubscriptionName as
specified by JMS 1.1
specification.

MessageSelector A valid
message
selector

None MessageSelector as specified
by JMS 1.1 specification.

ClientID A valid
client ID

None ClientID as specified by JMS
1.1 specification.

306

Property Name Valid Value Default
Value

Description

ConnectionFactoryJndiName A valid JNDI
Name

None JNDI name of connection
factory created in JMS
provider. This connection
factory will be used by
resource adapter to create a
connection to receive
messages. Used only if
ProviderIntegrationMode is
configured as jndi.

DestinationJndiName A valid JNDI
Name

None JNDI name of destination
created in JMS provider.
This destination will be used
by resource adapter to
create a connection to
receive messages from. Used
only if
ProviderIntegrationMode is
configured as jndi.

DestinationType jakarta.jms.
Queue or
jakarta.jms.
Topic

Null Type of the destination the
MDB will listen to.

DestinationProperties Name-value
pairs
separated by
comma

None Specifies the javabean
property names and values
of the destination of the JMS
client. Required only if
ProviderIntegrationMode is
javabean.

RedeliveryAttempts integer + Number of times a message
will be delivered if a
message causes a runtime
exception in the MDB.

Redelivery``Interval time in
seconds

+ Interval between repeated
deliveries, if a message
causes a runtime exception
in the MDB.

SendBadMessagesToDMD true/false False Indicates whether the
resource adapter should
send the messages to a dead
message destination, if the
number of delivery attempts
is exceeded.

307

Property Name Valid Value Default
Value

Description

DeadMessageDestinationJndiName a valid JNDI
name.

None JNDI name of the destination
created in the JMS provider.
This is the target destination
for dead messages. This is
used only if
ProviderIntegrationMode is
jndi.

DeadMessageDestinationClassName class name
of
destination
object.

None Used if
ProviderIntegrationMode is
javabean.

DeadMessageDestinationProperties Name Value
Pairs
separated by
comma

None Specifies the javabean
property names and values
of the destination of the JMS
client. This is required only
if ProviderIntegrationMode is
javabean.

DeadMessageConnectionFactoryJndiName a valid JNDI
name

None JNDI name of the connection
factory created in the JMS
provider. This is the target
connection factory for dead
messages. This is used only
if ProviderIntegrationMode is
jndi.

DeadMessageDestinationType queue or
topic
destination

None The destination type for
dead messages.

ReconnectAttempts integer 0 Number of times a
reconnect will be attempted
in case exception listener
catches an error on
connection.

ReconnectInterval time in
seconds

0 Interval between
reconnects.

Using GenericJMSRA with WebLogic JMS

You can configure GenericJMSRA to enable applications running in Eclipse GlassFish to send
messages to, and receive messages from, Oracle WebLogic JMS.

GenericJMSRA should be used in conjunction with the WebLogic Server Thin T3 Client. Due to the
nature of this client, messages exchanged between Eclipse GlassFish and WebLogic Server cannot
be sent or received in XA transactions. There is also only limited support for asynchronous receipt

308

of messages in an MDB, as described in detail in Limitations When Using GenericJMSRA with
WebLogic JMS.

The following topics are addressed here:

• Deploy the WebLogic Thin T3 Client JAR in Eclipse GlassFish

• Configure WebLogic JMS Resources for Integration

• Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS

• Deploy the GenericJMSRA Resource Archive

• Configuring an MDB to Receive Messages from WebLogic JMS

• Accessing Connections and Destinations Directly

• Limitations When Using GenericJMSRA with WebLogic JMS

• Configuration Reference of GenericJMSRA Properties for WebLogic JMS

Deploy the WebLogic Thin T3 Client JAR in Eclipse GlassFish

WebLogic Server provides several different clients for use by standalone applications that run
outside of WebLogic Server. These client are summarized in "Overview of Stand-alone Clients" in
Programming Stand-alone Clients for Oracle WebLogic Server. When connecting from Eclipse
GlassFish to WebLogic JMS resources you must use the WebLogic Thin T3 client, wlthint3client.jar.

There are a couple of methods to deploy the WebLogic Thin T3 client in Eclipse GlassFish and make
it available to GenericJMSRA:

• To make the Thin T3 client available to all applications, copy the wlthint3client.jar to the as-
install/lib directory under your Eclipse GlassFish installation. The Thin T3 client can be found
in a WebLogic Server installation in a directory similar to MW_HOME/server/lib.

• It is also possible to deploy the Thin T3 client in a less global manner, so that it is specific to an
individual application. For information on how to do this, see "Application-Specific Class
Loading" in Eclipse GlassFish Application Development Guide.

Configure WebLogic JMS Resources for Integration

If you need to configure the necessary WebLogic JMS resources on the WebLogic Server from which
you want to access messages using Eclipse GlassFish, then follow the instructions in the WebLogic
Server documentation for configuring the necessary resources, such as destinations, and
connection factories.

• JMS System Module Configuration

• Queue and Topic Destination Configuration

• Connection Factory Configuration

The example code snippets in this section refer to a WebLogic JMS connection factory named
WLoutboundQueueFactory and queue destination named WLoutboundQueue. For conceptual overviews on
configuring WebLogic JMS resources, refer to "Understanding JMS Resource Configuration" in
Configuring and Managing JMS for Oracle WebLogic Server. For detailed instructions on

309

http://www.oracle.com/pls/as1111/lookup?id=SACLT117
https://glassfish.org/docs/latest/application-development-guide.pdf#application-specific-class-loading
https://glassfish.org/docs/latest/application-development-guide.pdf#application-specific-class-loading
http://www.oracle.com/pls/as1111/lookup?id=JMSAD123

configuring WebLogic JMS resources, refer to "Configure JMS system modules and add JMS
resources" in the WebLogic Administration Console Online Help.

Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS

When you deploy GenericJMSRA, you also need to create a resource adapter configuration in
Eclipse GlassFish. You can do this using either the Administration Console or the asadmin command.
If you use theAdministration Console then you need deploy the GenericJMSRA resource archive
first. Here’s an example using asadmin:

asadmin create-resource-adapter-config --host localhost --port 4848 --property
SupportsXA=false:DeliveryType=Synchronous:ProviderIntegrationMode
 =jndi:JndiProperties=java.naming.factory.initial\

=weblogic.jndi.WLInitialContextFactory,java.naming.provider.url\
 =t3\://localhost\:7001,java.naming.factory.url.pkgs\
 =weblogic.corba.client.naming genericra

This creates a resource adapter configuration with the name genericra, and Oracle recommends
not changing the default name. The resource adapter configuration is configured with the
properties specified using the --properties argument; multiple properties are configured as a
colon-separated list of name-value pairs that are entered as a single line. You will also need to
change the host and port that WebLogic Server is running on to suit your installation.

In this example, the following properties are configured:

Property Value

SupportsXA false

DeliveryType Synchronous

ProviderIntegrationMode jndi

JndiProperties
java.naming.factory.initial
=weblogic.jndi.WLInitialContextFactory,java.naming.provider.
url
=t3://localhost:7001,java.naming.factory.url.pkgs
=weblogic.corba.client.naming

(replace "localhost:7001" with the host:port of WebLogic
Server)

You must use the same values for SupportsXA, DeliveryType and ProviderIntegrationMode as the
required values that are used in this table. The JndiProperties value must be set to a list of JNDI
properties needed for connecting to WebLogic JNDI.

When using asadmin you need to escape each = and any : characters by prepending
a backward slash \. The escape sequence is not necessary if the configuration is
performed through the Administration Console.

310

http://www.oracle.com/pls/as1111/lookup?id=WLACH01854
http://www.oracle.com/pls/as1111/lookup?id=WLACH01854

For a description of all the resource adapter properties that are relevant for WebLogic JMS, see the
Configuration Reference of GenericJMSRA Properties for WebLogic JMS.

Deploy the GenericJMSRA Resource Archive

1. Download the GenericJMSRA resource archive (genericra.rar).

2. Deploy the resource adapter. You can do this using either the Administration Console or the
asadmin deploy command. Here’s an example using the asadmin deploy command:

$ asadmin deploy --user admin --password adminadmin
 <location of the generic resource adapter rar file>

If you deploy the resource adapter using the Administration Console, then after deployment you
need to create a resource adapter configuration as described in Create a Resource Adapter
Configuration for GenericJMSRA to Work With WebLogic JMS.

Configuring an MDB to Receive Messages from WebLogic JMS

In this example, all configuration information is defined in two deployment descriptor files: ejb-
jar.xml and the Eclipse GlassFish glassfish-ejb-jar.xml file. To configure a MDB to receive
messages from WebLogic JMS, you would configure these deployment descriptor files as follows:

1. Configure the ejb-jar.xml deployment descriptor:

<ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>SimpleMessageEJB</ejb-name>
 <ejb-class>test.simple.queue.ejb.SimpleMessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>SimpleMessageEJB</ejb-name>
 <method-name>onMessage</method-name>
 <method-params>
 <method-param>jakarta.jms.Message</method-param>
 </method-params>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

If container-managed transactions are configured, then the transactional
attribute must be set to NotSupported. For more information, see Limitations

311

When Using GenericJMSRA with WebLogic JMS.

2. Configure the glassfish-ejb-jar.xml deployment descriptor:

<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 <ejb-name>SimpleMessageEJB</ejb-name>
 <mdb-resource-adapter>
 <resource-adapter-mid>genericra</resource-adapter-mid>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 ConnectionFactoryJndiName
 </activation-config-property-name>
 <activation-config-property-value>
 jms/WLInboundQueueFactory
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 DestinationJndiName
 </activation-config-property-name>
 <activation-config-property-value>
 jms/WLInboundQueue
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </mdb-resource-adapter>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

where:

The <resource-adapter-mid>genericra</resource-adapter-mid> element is used to specify the
resource adapter and resource adapter configurations that was deployed in the Create a
Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS instructions. It
is recommended you stick to genericra as is used here.

The activation-config element in glassfish-ejb-jar.xml is the one which defines how and
where the MDB receives messages, as follows: * The ConnectionFactoryJndiName property must
be set to the JNDI name of the connection factory in the WebLogic JNDI store that will be used to
receive messages. Therefore, replace jms/WLInboundQueueFactory in the example above with the
JNDI name used in your environment. * The DestinationJndiName property must be set to the
JNDI name of the destination (the queue or topic from which messages will be consumed) in the
WebLogic JNDI store. Therefore, replace jms/WLInboundQueue in the example above with the JNDI
name used in your environment.

312

For a description of all the ActivationSpec properties that are relevant for WebLogic JMS, see the
Configuration Reference of GenericJMSRA Properties for WebLogic JMS.

Make sure to use the appropriate WebLogic administration tools, such as the WebLogic
Administration Console or the WebLogic Scripting Tool (WLST). For more information, see
"Configure Messaging" in WebLogic Server Administration Console Online Help and WebLogic
Server WLST Online and Offline Command Reference.

Accessing Connections and Destinations Directly

When configuring a MDB to consume messages from WebLogic JMS your code does not need to
access the WebLogic JMS connection factory and destination directly. You simply define them in the
activation configuration, as shown in Configuring an MDB to Receive Messages from WebLogic JMS.
However when configuring an MDB to send messages, or when configuring a EJB, Servlet, or
application client to either send or receive messages, your code needs to obtain these objects using
a JNDI lookup.

If you want configure connections and destination resources using the
Administration Console, this is explained in the Administration Console online
help. When using Administration Console, follow the instructions for creating a
new Connector Connection Pool and Admin Object Resources, and not the
instructions for creating a JMS Connection Pool and Destination Resources. For
more information about using asadmin to create these resources, see To Create a
Connector Connection Pool and To Create a Connector Resource.

1. Looking up the connection factory and destination

The following code looks up a connection factory with the JNDI name jms/QCFactory and a queue
with the name jms/outboundQueue from the Eclipse GlassFish JNDI store:

 Context initialContect = new InitialContext();
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 jndiContext.lookup("java:comp/env/jms/MyQCFactory");
 Queue queue = (Queue) jndiContext.lookup("java:comp/env/jms/outboundQueue");

Note that the resources used are Eclipse GlassFish resources, not WebLogic JMS resources. For
every connection factory or destination that you want to use in the WebLogic JMS JNDI store,
you need to create a corresponding connection factory or destination in the Eclipse GlassFish
JNDI store and configure the Eclipse GlassFish object to point to the corresponding WebLogic
JMS object.

2. Declaring the connection factory and destination

In accordance with standard Jakarta EE requirements, these resources need to be declared in
the deployment descriptor for the MDB, EJB or other component. For example, for a session
bean, configure the ejb-jar.xml with <resource-env-ref> elements, as follows:

<ejb-jar>

313

http://www.oracle.com/pls/as1111/lookup?id=WLACH01853
http://www.oracle.com/pls/as1111/lookup?id=WLSTC112
http://www.oracle.com/pls/as1111/lookup?id=WLSTC112

 <enterprise-beans>
 <session>
 . . .
 <resource-env-ref>
 <resource-env-ref-name>jms/QCFactory</resource-env-ref-name>
 <resource-env-ref-type>jakarta.jms.QueueConnectionFactory</resource-env-
ref-type>
 </resource-env-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/outboundQueue</resource-env-ref-name>
 <resource-env-ref-type>jakarta.jms.Queue</resource-env-ref-type>
 </resource-env-ref>

3. Create a Connector Connection Pool and Connector Resource by entering the following asadmin
commands, both all in one line:

In order to configure a JMS Connection Factory using GenericJMSRA, a Connector connection
pool and resource need to be created in Eclipse GlassFish using names that map to the
corresponding connection factory in the WebLogic JNDI store.

asadmin create-connector-connection-pool --host localhost --port 4848
 --raname genericra --connectiondefinition jakarta.jms.QueueConnectionFactory
 --target server --transactionsupport LocalTransaction
 --property ConnectionFactoryJndiName=jms/WLOutboundQueueFactory
 qcpool

asadmin create-connector-resource --host localhost --port 4848
 --poolname qcpool --target server jms/QCFactory

These asadmin commands together creates a connection factory in Eclipse GlassFish and its
corresponding connection pool.

◦ The connection pool has the JNDI name jms/WLoutboundQueueFactory and obtains connections
from a connection pool named qcpool.

◦ The connection pool qcpool uses the resource adapter genericra and contains objects of type
jakarta.jms.QueueConnectionFactory.

◦ The transactionsupport argument is set to LocalTransaction, which specifies that the
connection will be used in local transactions only. You can also specify NoTransaction.
However, the default setting of XATransaction cannot be used. For more information, see
Limitations When Using GenericJMSRA with WebLogic JMS.

◦ The connection pool is configured with the properties specified using the properties
argument; multiple properties are configured as a colon-separated list of name-value pairs.
Only one property is configured in this example, as follows:

ConnectionFactoryJndiName=jms/WLOutboundQueueFactory

314

The ConnectionFactoryJndiName property must be set to the JNDI name of the corresponding
connection factory in the WebLogic JMS JNDI store. Therefore, replace
jms/WLOutboundQueueFactory in the example above with the JNDI name used in your
environment.

◦ For a description of the ManagedConnectionFactory properties that are relevant for WebLogic
JMS, see the Configuration Reference of GenericJMSRA Properties for WebLogic JMS.

4. Create a destination object that refers to a corresponding WebLogic JMS destination by entering
the following asadmin command, all in one line:

asadmin create-admin-object --host localhost --port 4848 --target server
 --restype jakarta.jms.Queue --property DestinationJndiName=jms/WLOutboundQueue
 --raname genericra jms/outboundQueue

This asadmin command creates a destination in Eclipse GlassFish.

◦ The destination has the JNDI name jms/outboundQueue, uses the resource adapter genericra,
and is of type jakarta.jms.Queue.

◦ The destination is configured with the properties specified using the properties argument;
multiple properties are configured as a colon-separated list of name-value pairs. Only one
property is configured in this example, as follows:

DestinationJndiName=jms/WLOutboundQueue

The DestinationJndiName property must be set to the JNDI name of the corresponding
destination in the WebLogic JMS JNDI store. Therefore, replace jms/WLOutboundQueue in the
example above with the JNDI name used in your environment.

◦ For a description of the destination properties that are relevant for WebLogic JMS, see the
Configuration Reference of GenericJMSRA Properties for WebLogic JMS.

Limitations When Using GenericJMSRA with WebLogic JMS

Due to the nature of the WebLogic T3 Thin Client there are a number of limitations in the way in
which it can be used with GenericJMSRA.

No Support for XA Transactions

WebLogic JMS does not support the optional JMS "Chapter 8" interfaces for XA transactions in a
form suitable for use outside of WebLogic Server. Therefore, the GenericJMSRA configuration must
have the SupportsXA property set to -false. This has a number of implications for the way in which
applications may be used, as described in this section.

Using a MDB to Receive Messages: Container-managed Transactions (CMT)

• If container-managed transactions are used, the transactional attribute of a MDB should be set
to NotSupported. No transaction will be started. Messages will be received in a non-transacted

315

session with an acknowledgeMode of AUTO_ACKNOWLEDGE.

• A transactional Required attribute should not be used; otherwise, MDB activation will fail with
an exception: javax.resource.ResourceException: MDB is configured to use container managed
transaction. But SupportsXA is configured to false in the resource adapter.

The remaining transactional attributes are normally considered inappropriate for use with a MDB.
If used, the following behavior will occur:

• If the transactional attribute is RequiresNew, then MDB activation will fail with an exception:
javax.resource.ResourceException: MDB is configured to use container managed transaction
But SupportsXA is configured to false in the resource adapter.

• If the transactional attribute is Mandatory, the MDB can be activated but a
TransactionRequiredException (or similar) will always be thrown by the server.

• If the transactional attribute is Supports, then no transaction will be started and the MDB will
work as if NotSupported had been used.

• If the transactional attribute is Never, then no transaction will be started and the MDB will work
as if NotSupported had been used.

Using a MDB to Receive Messages: Bean-managed Transactions (BMT)

• If bean-managed transactions are configured in accordance with the EJB specification any
UserTransaction started by the bean will have no effect on the consumption of messages.

• Messages will be received in a non-transacted session with an acknowledgeMode of
AUTO_ACKNOWLEDGE.

Accessing Connections and Destinations Directly - Container-managed Transactions (CMT)

When accessing connections directly (such as when sending messages from a MDB or an EJB) and
container-managed transactions are being used, the connection pool’s transaction-support property
should be set to either LocalTransaction or NoTransaction. If the default value of XATransaction is
used, an exception will be thrown at runtime when createConnection() is called. This is the case
irrespective of the transactional attribute of the MDB or EJB. Note that MDBs must have their
transactional attribute set to NotSupported as specified above; whereas, an EJB can use any
transactional attribute.

If there is no transaction in progress within the bean method (for example, notSupported is being
used) then it does not make any difference whether the connection pool’s transaction-support
property is set to LocalTransaction or NoTransaction; the transactional behavior will be determined
by the arguments to createSession(). If you want the outbound message to be sent without a
transaction, call createSession(false, …). If you want the outbound message to be sent in a local
transaction call createSession(true, Session.SESSION_TRANSACTED), remembering to call
session.commit() or `session.rollback()`after the message is sent.

If there is a transaction in progress within the bean method (which will only be possible for EJBs),
then setting the connection pool’s transaction-support property to LocalTransaction or
NoTransaction gives different results:

• If it is set to NoTransaction then a non-transacted session will be used.

316

• If it is set to LocalTransaction then a (local, non-XA) transacted session will be used, which will
be committed or rolled back when the UserTransaction is committed or rolled back. In this case,
calling session.commit() or session.rollback() will cause an exception.

No Support for Redelivery Limits and Dead Message Queue

Due to the lack of XA support when using WebLogic JMS, there is no support for GenericJMSRA’s
dead message queue feature, in which a message that has been redelivered to a MDB a defined
number of times is sent to a dead message queue.

Limited Support for Asynchronous Receipt of Messages In a MDB

WebLogic JMS does not support the optional JMS "Chapter 8" interfaces for "Concurrent Processing
of a Subscription’s Messages" (that is, ServerSession, ServerSessionPool and ConnectionConsumer) in a
form suitable for use outside of WebLogic Server. Therefore, the generic JMSRA configuration must
set the property DeliveryType to Synchronous.

This affects the way in which MDBs consume messages from a queue or topic as follows:

• When messages are being received from a queue, each MDB instance will have its own session
and consumer, and it will consume messages by repeatedly calling receive(timeout). This allows
the use of a pool of MDBs to process messages from the queue.

• When messages are being received from a topic, only one MDB instance will be used
irrespective of the configured pool size. This means that a pool of multiple MDBs cannot be used
to share the load of processing messages, which may reduce the rate at which messages can be
received and processed.

This restriction is a consequence of the semantics of synchronously consuming messages from
topics in JMS: In the case of non-durable topic subscriptions, each consumer receives a copy of
all the messages on the topic, so using multiple consumers would result in multiple copies of
each message being received rather than allowing the load to be shared among the multiple
MDBs. In the case of durable topic subscriptions, only one active consumer is allowed to exist at
a time.

Configuration Reference of GenericJMSRA Properties for WebLogic JMS

The tables in this section list the properties that need to be set to configure the resource adapter
and any activation specs, managed connections, and other administered objects that are relevant
only when using GenericJMSRA to communicate with WebLogic JMS. For a complete list of
properties, see the comprehensive table in GenericJMSRA Configuration Properties

Resource Adapter Properties

These properties are used to configure the resource adapter itself when it is deployed, and can be
specified using the create-resource-adapter-config command.

317

Property Name Required Value Description

SupportsXA false Specifies whether the JMS
client supports XA
transactions.

Set to false for WebLogic
JMS.

DeliveryType Synchronous Specifies whether an MDB
should use a
ConnectionConsumer
(Asynchronous) or
consumer.receive()
(Synchronous) when
consuming messages.

Set to Synchronous for
WebLogic JMS.

ProviderIntegrationMode jndi Specifies that connection
factories and destinations in
GlassFish’s JNDI store are
configured to refer to
connection factories and
destinations in WebLogic’s
JNDI store.

Set to jndi for WebLogic
JMS.

JndiProperties
java.naming.factory.initial=webl
ogic.jndi.WLInitialContextFactor
y,
java.naming.provider.url=t3://lo
calhost:7001,
java.naming.factory.url.pkgs=web
logic.corba.client.naming
(replace localhost:7001 with the
host:port of WebLogic Server)

JNDI properties for connect
to WebLogic JNDI, specified
as comma-separated list of
name=value pairs without
spaces.

UserName Name of the WebLogic JMS user User name to connect to
WebLogic JMS. The user
name can be overridden in
ActivationSpec and
ManagedConnection. If no user
name is specified
anonymous connections will
be used, if permitted.

318

Property Name Required Value Description

Password Password for the WebLogic JMS user Password to connect to
WebLogic JMS. The
password can be overridden
in ActivationSpec and
ManagedConnection.

LogLevel Desired log level of JDK logger Used to specify the level of
logging.

Connection Factory Properties

ManagedConnectionFactory objects are created in the Eclipse GlassFish JNDI store using the
Administration Console or the asadmin connector-connection-pool command. All the properties that
can be set on a resource adapter configuration can be overridden by setting them on a destination
object. The properties specific to ManagedConnectionFactory objects are listed in the following table.

Property Name Valid Value Default
Value

Description

ClientId A valid
client ID

None ClientID as specified by JMS 1.1
specification.

ConnectionFactoryJndiName A valid JNDI
Name

None JNDI name of connection factory in
the Eclipse GlassFish JNDI store.
This connection factory should be
configured to refer to the physical
connection factory in the WebLogic
JNDI store.

ConnectionValidationEnabled true or false FALSE If set to true, the resource adapter
will use an exception listener to
catch any connection exception and
will send a
CONNECTION_ERROR_OCCURED event to
Eclipse GlassFish.

Destination Properties

Destination (queue or topic) objects are created in the Eclipse GlassFish JNDI store using the
Administration Console or the asadmin connector-admin-object command. All the properties that
can be set on a resource adapter configuration can be overridden by setting them on a destination
object. The properties specific to destination objects are listed in the following table.

319

Property Name Valid Value Default
Value

Description

DestinationJndiName A valid JNDI
name

None JNDI name of the destination object in the
Eclipse GlassFish JNDI store. This destination
object should be configured to refer to the
corresponding physical destination in the
WebLogic JNDI store.

ActivationSpec Properties

An ActivationSpec is a set of properties that configures a MDB. It is defined either in the MDB’s
Eclipse GlassFish deployment descriptor glassfish-ejb-jar.xml using activation-config-property
elements or in the MDB itself using annotation. All the resource adapter properties listed in the
table above can be overridden in an ActivationSpec. Additional properties available only to a
ActivationSpec are given below.

Property Name Valid Value Default
Value

Description

MaxPoolSize An integer 8 Maximum size of server session
pool internally created by the
resource adapter for achieving
concurrent message delivery. This
should be equal to the maximum
pool size of MDB objects.

Only used for queues; ignored for
topics, when a value of 1 is always
used.

SubscriptionDurability Durable or Non-
Durable

Non-Durable Only used for topics. Specifies
whether the subscription is durable
or non-durable.

SubscriptionName None Only used for topics when
SubscriptionDurability is Durable.
Specifies the name of the durable
subscription.

MessageSelector A valid message
selector

None JMS message selector.

ClientID A valid client ID None JMS ClientID.

ConnectionFactoryJndiName A valid JNDI
Name

None JNDI name of connection factory in
the Eclipse GlassFish JNDI store.
This connection factory should be
configured to refer to the physical
connection factory in the WebLogic
JNDI store.

320

Property Name Valid Value Default
Value

Description

DestinationJndiName A valid JNDI
Name

None JNDI name of destination in the
Eclipse GlassFish JNDI store. This
destination should be configured to
refer to the physical destination in
the WebLogic JNDI store.

DestinationType jakarta.jms.Queue
or
jakarta.jms.Topic

Null Specifies whether the configured
DestinationJndiName refers to a
queue or topic.

ReconnectAttempts integer 0 Number of times a reconnect will
be attempted in case exception
listener catches an error on
connection.

ReconnectInterval time in seconds 0 Interval between reconnection
attempts.

Using GenericJMSRA with IBM WebSphere MQ

You can configure GenericJMSRA to enable applications running in Eclipse GlassFish to send
messages to, and receive messages from, IBM WebSphere MQ. Eclipse GlassFishonly supports using
GenericJMSRA with WebSphere MQ version 6.0 and WebSphere MQ version 7.0

These instructions assume that the WebSphere MQ broker and Eclipse GlassFish are deployed and
running on the same physical host/machine. If you have the WebSphere MQ broker running on a
different machine and need to access it remotely, refer to the WebSphere MQ documentation for
configuration details. The resource adapter configuration and other application server related
configuration remains unchanged.

The following topics are addressed here:

• Preliminary Setup Procedures for WebSphere MQ Integration

• Configure the WebSphere MQ Administered Objects

• Create a Resource Adapter Configuration for GenericJMSRA to Work With WebSphere MQ

• Deploy the GenericJMSRA Archive

• Create the Connection Factories and Administered Objects in Eclipse GlassFish

• Configuring an MDB to Receive Messages from WebSphere MQ

Preliminary Setup Procedures for WebSphere MQ Integration

Before you can configure WebSphere MQ to exchange messages with Eclipse GlassFish, you must
complete the following tasks:

• The following permissions must be added to the server.policy and the client.policy file to
deploy GenericJMSRA and to run the client application.

321

◦ Use a text editor to modify the server.policy file in the `${appserver-install-
dir}/domains/domain1/config/`directory by adding the following line to the default grant
block:

permission java.util.logging.LoggingPermission "control";
permission java.util.PropertyPermission "*", "read,write";

◦ If you use an application client in your application, edit the client’s client.policy file in the
${appserver-install-dir}/lib/appclient/ directory by adding the following permission:

permission javax.security.auth.PrivateCredentialPermission
"javax.resource.spi.security.PasswordCredential * \"*\"","read";

• To integrate Eclipse GlassFishwith WebSphere MQ 6.0 or 7.0, copy the necessary JAR files to the
as-install/lib directory:

◦ For WebSphere MQ 6.0, copy these JAR files to the as-install/lib directory:

/opt/mqm/java/lib/com.ibm.mq.jar
/opt/mqm/java/lib/com.ibm.mq.jms.Nojndi.jar
/opt/mqm/java/lib/com.ibm.mq.soap.jar
/opt/mqm/java/lib/com.ibm.mqjms.jar
/opt/mqm/java/lib/com.ibm.mqetclient.jar
/opt/mqm/java/lib/commonservices.jar
/opt/mqm/java/lib/dhbcore.jar
/opt/mqm/java/lib/rmm.jar
/opt/mqm/java/lib/providerutil.jar
/opt/mqm/java/lib/CL3Export.jar
/opt/mqm/java/lib/CL3Nonexport.jar

where /opt/mqm is the location of the WebSphere MQ 6.0 installation.

◦ For WebSphere MQ 7.0, copy these JAR files to the as-install/lib directory:

/opt/mqm/java/lib/com.ibm.mq.jar,
/opt/mqm/java/lib/com.ibm.mq.jms.Nojndi.jar,
/opt/mqm/java/lib/com.ibm.mq.soap.jar,
/opt/mqm/java/lib/com.ibm.mqjms.jar,
/opt/mqm/java/lib/com.ibm.mq.jmqi.jar,
/opt/mqm/java/lib/com.ibm.mq.commonservices.jar,
/opt/mqm/java/lib/dhbcore.jar,
/opt/mqm/java/lib/rmm.jar,
/opt/mqm/java/lib/providerutil.jar,
/opt/mqm/java/lib/CL3Export.jar,
/opt/mqm/java/lib/CL3Nonexport.jar

322

where /opt/mqm is the location of the WebSphere MQ 7.0 installation.

• Set the LD_LIBRARY_PATH environment variable to the java/lib directory, and then restart Eclipse
GlassFish. For example, in a UNIX—based system, with WebSphere MQ installed under /opt/mqm,
you would enter:

$ export LD_LIBRARY_PATH=/opt/mqm/java/lib

Configure the WebSphere MQ Administered Objects

This section provides an example of how you could configure the necessary administered objects,
such as destinations and connection factories, on the WebSphere MQ instance from which you
want to access messages using Eclipse GlassFish. Therefore, you will need to change the
administered object names to suit your installation.

Before You Begin

If WebSphere MQ created a user and a group named mqm during the installation, then you must
specify a password for the mqm user using the $ passwd mqm command.

1. Switch to the mqm user:
$ su mqm

2. For Linux, set the following kernel version:
$ export LD_ASSUME_KERNEL=2.2.5

3. Create a new MQ queue manager named "QM1":
$ crtmqm QM1

4. Start the new MQ queue manager.
In the image above, QM1 is associated with the IBM WebSphere MQ broker.
$ strmqm QM1

5. Start the MQ listener:
$ runmqlsr -t tcp -m QM1 -p 1414 &

6. Modify the default JMSAdmin console configuration as follows:

1. Edit the JMSAdmin script in the /opt/mqm/java/bin directory to change the JVM to a location
of a valid JVM your system.

2. Set the relevant environment variable required for JMSAdmin by sourcing the setjmsenv

323

script located in the /opt/mqm/java/bin directory.

$ cd /opt/mqm/java/bin
$ source setjmsenv

where /opt/mqm is the location of the WebSphere MQ installation.

3. Change the JMSAdmin.config file to indicate the Initial Context Factory you will be using by
setting the following name-value pairs and commenting out the rest:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/opt/tmp

7. Create WebSphere MQ queues using the runmqsc console and MQJMS_PSQ.mqsc script.
$ runmqsc QM1 < MQJMS_PSQ.mqsc

8. Create user defined physical queue for your application using runmqsc console and an
appropriate physical queue name. An example of how this could be done is shown below.
In the image above, ORANGE.LOCAL.QUEUE is associated with QM1.

 $ runmqsc QM1
 > DEFINE QLOCAL(ORANGE.LOCAL.QUEUE)
 > end

9. Start the WebSphere MQ Broker:
$ strmqbrk -m QM1

10. In the WebSphere MQ JMSAdmin console, use the following commands to create the connection
factories, XA connection factories, and destinations for your application, as shown in the
following sample, which lists each of the various JMS administered objects.
In the image above, QCF (for QM1) and TQueue (associated with ORANGE.LOCAL.QUEUE) are defined in
the FileSystem Naming Context.

$./JMSAdmin

 InitCtx>def qcf<JNDI name to be given to the Queue Connection Factory>
 hostname<IBM MQ server hostname> port(1414) channel(SYSTEM.DEF.SVRCONN)
 transport(CLIENT) qmanager<name of queue manager defined>

 For example:
 def qcf(QCF) hostname(localhost) port(1414) channel(SYSTEM.DEF.SVRCONN)
 transport(CLIENT) qmanager(QM1)

 InitCtx%def xaqcf<JNDI name to be given to the XA Queue Connection Factory>
 hostname<IBM MQ server hostname> port(1414) channel(SYSTEM.DEF.SVRCONN)
 transport(CLIENT) qmanager<name of queue manager defined>

324

 For example:
 def xaqcf(XAQCF) hostname(localhost) port(1414) channel(SYSTEM.DEF.SVRCONN)
 transport(CLIENT) qmanager(QM1)

 InitCtx%def q<JNDI Name to be given to the Queue> queue<physical queue name>
 qmanager(name of queue manager defined)

 For example: def q(TQueue) queue(ORANGE.LOCAL.QUEUE) qmanager(QM1)

 InitCtx%def tcf<JNDI Name to be given to the Topic Connection Factory>
 qmanager(name of queue manager defined)

 For example: def tcf(TCF) qmanager(QM1)

 InitCtx%def xatcf<JNDI Name to be given to the XA Topic Connection Factory>
 qmanager(name of queue manager defined)

 For example: def xatcf(XATCF) qmanager(QM1)

 InitCtx%def t<JNDI Name to be given to the Topic> topic<sample topic name>

 For example: def t(TTopic) topic(topic)

Create a Resource Adapter Configuration for GenericJMSRA to Work With WebSphere MQ

Before deploying GenericJMSRA, you need to create a resource adapter configuration in Eclipse
GlassFish. You can do this using either the Administration Console or the asadmin command. Use the
following asadmin command to create a resource adapter configuration for genericra to configure it
to work with WebSphere MQ.

 asadmin> create-resource-adapter-config
 --user <adminname> --password <admin password>
 --property SupportsXA=true:ProviderIntegrationMode
 =jndi:UserName=mqm:Password=###:RMPolicy
 =OnePerPhysicalConnection:JndiProperties
 =java.naming.factory.url.pkgs\\
 =com.ibm.mq.jms.naming,java.naming.factory.initial\\

=com.sun.jndi.fscontext.RefFSContextFactory,java.naming.provider.url\\
 =file\\:\\/\\/opt\\/tmp:LogLevel=finest genericra

When using asadmin you need to escape each = and any : characters by prepending
a backward slash \. The escape sequence is not necessary if the configuration is
performed through the Administration Console. Also , ensure that the provider
URL is configured correctly depending on the platform. For example, on Windows
systems it should be file:/C:/opt/tmp and on UNIX—based systems it is
file://opt/tmp.

325

file://opt/tmp

This creates a resource adapter configuration with the name genericra, and Oracle recommends
not changing the default name. The resource adapter configuration is configured with the
properties specified using the --properties argument; multiple properties are configured as a
colon-separated list of name-value pairs that are entered as a single line.

In this example, the following properties are configured:

The tables in this section describe the GenericJMSRA properties that are relevant
only when integrating with WebSphere MQ. For a complete list of properties, see
the comprehensive table in GenericJMSRA Configuration Properties.

Property Name Required Value Description

SupportsXA true Set the supports distributed
transactions attribute to
true. The level of
transactional support the
adapter provides — none,
local, or XA — depends on
the capabilities of the
Enterprise Information
System (EIS) being adapted.
If an adapter supports XA
transactions and this
attribute is XA, the
application can use
distributed transactions to
coordinate the EIS resource
with JDBC and JMS
resources.

ProviderIntegrationMod
e

jndi Specifies that connection
factories and destinations in
GlassFish’s JNDI store are
configured to refer to
connection factories and
destinations in WebSphere
MQ’s JNDI store.

JndiProperties
JndiProperties=java.naming.factory.
url.pkgs\\=com.ibm.mq.jms.naming,
java.naming.factory.initial\\=com.s
un.jndi.fscontext.RefFSContextFacto
ry,
java.naming.provider.url\\=file\\:\
\/\\/opt\\/tmp:LogLevel=finest
genericra

JNDI properties for
connecting to WebSphere
MQ’s JNDI, specified as
comma-separated list of
name=value pairs without
spaces.

326

Property Name Required Value Description

UserName Name of the WebSphere MQ user User name to connect to
WebSphere MQ. The user
name can be overridden in
ActivationSpec and
ManagedConnection. If no user
name is specified
anonymous connections will
be used, if permitted.

Password Password for the WebSphere MQ user Password to connect to
WebSphere MQ. The
password can be overridden
in ActivationSpec and
ManagedConnection.

RMIPolicy OnePerPhysicalConnection Some XAResource
implementations, such as
WebSphere MQ, rely on a
Resource Manager per
Physical Connection, and
this causes issues when
there is inbound and
outbound communication to
the same queue manager in
a single transaction (for
example, when an MDB
sends a response to a
destination).

When RMPolicy is set to
OnePerPhysicalConnection,
the XAResource wrapper
implementation’s isSameRM
in GenericJMSRA would
check if both the
XAResources use the same
physical connection, before
delegating to the wrapped
objects. Therefore, ensure
that this attribute is set to
OnePerPhysicalConnection if
the application uses XA.

LogLevel Desired log level of JDK logger Used to specify the level of
logging.

You must use the values for SupportsXA, RMPolicy and ProviderIntegrationMode as
the required values that are used in this table.

327

Deploy the GenericJMSRA Archive

For instructions on downloading and deploying GenericJMSRA, see Deploy the GenericJMSRA
Resource Archive.

Create the Connection Factories and Administered Objects in Eclipse GlassFish

In order to configure a JMS Connection Factory using GenericJMSRA, a Connector Connection Pool
and resource needs to be created in Eclipse GlassFish, as described in this section.

Using the example WebSphere MQ configuration in Configure the WebSphere MQ Administered
Objects, you will see mypool (pointing to GenericJMSRA and QCF) and jms/MyQCF (for mypool) created in
Eclipse GlassFish.

If you want configure connections and destination resources using the
Administration Console, this is explained in the Administration Console online
help. When using Administration Console, following the, instructions for creating a
new Connector Connection Pool and Admin Object Resources, and not the
instructions for creating a JMS Connection Pool and Destination Resources. For
more information about using asadmin to create these resources, see To Create a
Connector Connection Pool and To Create a Connector Resource.

Creating Connections and Destinations

In order to configure a JMS Connection Factory, using GenericJMSRA, a Connector Connection Pool
and Destination resources need to be created in Eclipse GlassFish using names that map to the
corresponding connection and destination resources in WebSphere MQ. The connections and
destination name in these steps map to the example WebSphere MQ configuration in Configure the
WebSphere MQ Administered Objects.

1. Create connection pools that point to the connection pools in WebSphere MQ.

The following asadmin command creates a Connection Pool called mypool and points to the XAQCF
created in WebSphere MQ:

 asadmin create-connector-connection-pool -- raname genericra
connectiondefinition
 jakarta.jms.QueueConnectionFactory --transactionsupport XATransaction
 --property ConnectionFactoryJndiName=QCF mypool

The following asadmin command creates a Connection Pool called mypool2 and points to the XATCF
created in WebSphere MQ:

 asadmin create-connector-connection-pool
 -- raname genericra connectiondefinition
jakarta.jms.TopicConnectionFactory
 --transactionsupport XATransaction
 --property ConnectionFactoryJndiName=XATCF mypool2

328

2. Create the connector resources.

The following asadmin command creates a connector resource named jms/MyQCF and binds this
resource to JNDI for applications to use:

 asadmin create-connector-resource --poolname mypool jms/MyQCF

The following asadmin command creates a connector resource named jms/MyTCF and binds this
resource to JNDI for applications to use:

 asadmin create-connector-resource --poolname mypool2 jms/MyTCF

3. Create the JMS destination resources as administered objects.

In the image above, jms/MyQueue (pointing to GenericJMSRA and TQueue) is created in Eclipse
GlassFish.

The following asadmin command creates a jakarta.jms.Queue administered object and binds it to
the Eclipse GlassFish JNDI tree at jms/MyQueue and points to the jms/TQueue created in WebSphere
MQ.

 asadmin create-admin-object --raname genericra --restype jakarta.jms.Queue
 --property DestinationJndiName=TQueue jms/MyQueue

The following asadmin command creates a jakarta.jms.Topic administered object and binds it to
the Eclipse GlassFish JNDI tree at jms/MyTopic and points to the jms/TTopic created in WebSphere
MQ.

 asadmin create-admin-object --raname genericra --restype jakarta.jms.Topic
 --property DestinationJndiName=TTopic jms/MyTopic

Configuring an MDB to Receive Messages from WebSphere MQ

The administered object names in the sample deployment descriptor below map to the example
WebSphere MQ configuration in Configure the WebSphere MQ Administered Objects. The
deployment descriptors need to take into account the resource adapter and the connection
resources that have been created. A sample sun-ejb-jar.xml for a Message Driven Bean that listens
to a destination called TQueue in WebSphere MQ, and publishes back reply messages to a destination
resource named jms/replyQueue in Eclipse GlassFish, as shown below.

 <sun-ejb-jar>
 <enterprise-beans>
 <unique-id.1</unique-id>
 <ejb>
 <ejb-name>SimpleMessageEJB</ejb-name>

329

 <jndi-name>jms/SampleQueue</jndi-name>
 <!-- QCF used to publish reply messages -->
 <resource-ref>
 <res-ref-name>jms/MyQueueConnectionFactory</res-ref-name>
 <jndi-name>jms/MyQCF</jndi-name>
 <default-resource-principal>
 <name>mqm</name>
 <password>mqm</password>
 </default-resource-principal>
 </resource-ref>
 <!-- reply destination resource> Creating of this replyQueue destination
resource is not
 shown above, but the steps are similar to creating the "jms/MyQueue"
resource -->
 <resource-env-ref>
 <resource-env-ref-name>jms/replyQueue</resource-env-ref-name>
 <jndi-name>jms/replyQueue</jndi-name>
 </resource-env-ref>

 <!-- Activation related RA specific configuration for this MDB -->
 <mdb-resource-adapter>
 <!-- resource-adapter-mid points to the Generic Resource Adapter for JMS
-->
 <resource-adapter-mid>genericra</resource-adapter-mid>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>DestinationType</activation-config-
property-name>
 <activation-config-property-value>javax>jms>Queue</activation-
config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
ConnectionFactoryJndiName</activation-config-property-name>
 <activation-config-property-value>QCF</activation-config-property-
value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>DestinationJndiName</activation-
config-property-name>
 <activation-config-property-value>TQueue</activation-config-
property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>MaxPoolSize</activation-config-
property-name>
 <activation-config-property-value>32</activation-config-property-
value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>RedeliveryAttempts</activation-

330

config-property-name>
 <activation-config-property-value>0</activation-config-property-
value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>ReconnectAttempts</activation-
config-property-name>
 <activation-config-property-value>4</activation-config-property-
value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>ReconnectInterval</activation-
config-property-name>
 <activation-config-property-value>10</activation-config-property-
value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>RedeliveryInterval</activation-
config-property-name>
 <activation-config-property-value>1</activation-config-property-
value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>SendBadMessagesToDMD</activation-
config-property-name>
 <activation-config-property-value>false</activation-config-property-
value>
 </activation-config-property>
 </activation-config>
 </mdb-resource-adapter>
 </ejb>
 </enterprise-beans>
 </sun-ejb-jar>

The business logic encoded in Message Driven Bean could then lookup the configured
QueueConnectionFactory/Destination resource to create a connection as shown below.

 Context context = null;
 ConnectionFactory connectionFactory = null;
 logger.info("In PublisherBean>ejbCreate()");
 try {
 context = new InitialContext();
 queue = (javax.jms.Queue) context.lookup (
"java:comp/env/jms/replyQueue");
 connectionFactory = (ConnectionFactory) context>lookup(
"java:comp/env/jms/MyQueueConnectionFactory");
 connection = connectionFactory>createConnection();
 } catch (Throwable t) {
 logger.severe("PublisherBean>ejbCreate:" + "Exception: " + t.
toString());

331

 }

332

18 Administering the Java Naming and
Directory Interface (JNDI) Service
The Java Naming and Directory Interface (JNDI) API is used for accessing different kinds of naming
and directory services. Jakarta EE components locate objects by invoking the JNDI lookup method.

The following topics are addressed here:

• About JNDI

• Administering JNDI Resources

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

About JNDI
By making calls to the JNDI API, applications locate resources and other program objects. A
resource is a program object that provides connections to systems, such as database servers and
messaging systems. A JDBC resource is sometimes referred to as a data source. Each resource object
is identified by a unique, people-friendly name, called the JNDI name. A resource object and its
JNDI name are bound together by the naming and directory service, which is included with the
Eclipse GlassFish.

When a new name-object binding is entered into the JNDI, a new resource is created.

The following topics are addressed here:

• Jakarta EE Naming Environment

• How the Naming Environment and the Container Work Together

• Naming References and Binding Information

Jakarta EE Naming Environment

JNDI names are bound to their objects by the naming and directory service that is provided by a
Jakarta EE server. Because Jakarta EE components access this service through the JNDI API, the
object usually uses its JNDI name. For example, the JNDI name of the Apache Derby database is
jdbc/_default. At startup, the Eclipse GlassFish reads information from the configuration file and
automatically adds JNDI database names to the name space, one of which is jdbc/_default.

Jakarta EE application clients, enterprise beans, and web components must have access to a JNDI
naming environment.

The application component’s naming environment is the mechanism that allows customization of
the application component’s business logic during deployment or assembly. This environment
allows you to customize the application component without needing to access or change the source
code off the component. A Jakarta EE container implements the provides the environment to the
application component instance as a JNDI naming context.

333

How the Naming Environment and the Container Work Together

The application component’s environment is used as follows:

• The application component’s business methods access the environment using the JNDI
interfaces. In the deployment descriptor, the application component provider declares all the
environment entries that the application component expects to be provided in its environment
at runtime.

• The container provides an implementation of the JNDI naming context that stores the
application component environment. The container also provides the tools that allow the
deployer to create and manage the environment of each application component.

• A deployer uses the tools provided by the container to initialize the environment entries that
are declared in the application component’s deployment descriptor. The deployer sets and
modifies the values of the environment entries.

• The container makes the JNDI context available to the application component instances at
runtime. These instances use the JNDI interfaces to obtain the values of the environment
entries.

Each application component defines its own set of environment entries. All instances of an
application component within the same container share the same environment entries. Application
component instances are not allowed to modify the environment at runtime.

Naming References and Binding Information

A resource reference is an element in a deployment descriptor that identifies the component’s
coded name for the resource. For example, jdbc/SavingsAccountDB. More specifically, the coded
name references a connection factory for the resource.

The JNDI name of a resource and the resource reference name are not the same. This approach to
naming requires that you map the two names before deployment, but it also decouples components
from resources. Because of this decoupling, if at a later time the component needs to access a
different resource, the name does not need to change. This flexibility makes it easier for you to
assemble Jakarta EE applications from preexisting components.

The following table lists JNDI lookups and their associated resource references for the Jakarta EE
resources used by the Eclipse GlassFish.

Table 18-1 JNDI Lookup Names and Their Associated References

JNDI Lookup Name Associated Resource Reference

java:comp/env Application environment entries

java:comp/env/jdbc JDBC DataSource resource manager connection factories

java:comp/env/ejb EJB References

java:comp/UserTransaction UserTransaction references

java:comp/env/mail Jakarta Mail Session Connection Factories

334

JNDI Lookup Name Associated Resource Reference

java:comp/env/url URL Connection Factories

java:comp/env/jms JMS Connection Factories and Destinations

java:comp/ORB ORB instance shared across application components

Administering JNDI Resources
Within Eclipse GlassFish, you can configure your environment for custom and external JNDI
resources. A custom resource accesses a local JNDI repository; an external resource accesses an
external JNDI repository. Both types of resources need user-specified factory class elements, JNDI
name attributes, and so on.

• Administering Custom JNDI Resources

• Administering External JNDI Resources

Administering Custom JNDI Resources

A custom resource specifies a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface.

The following topics are addressed here:

• To Create a Custom JNDI Resource

• To List Custom JNDI Resources

• To Update a Custom JNDI Resource

• To Delete a Custom JNDI Resource

To Create a Custom JNDI Resource

Use the create-custom-resource subcommand in remote mode to create a custom resource.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Create a custom resource by using the create-custom-resource subcommand.

Information on properties for the subcommand is contained in this help page.

3. Restart Eclipse GlassFish.

See To Restart a Domain.

Example 18-1 Creating a Custom Resource

This example creates a custom resource named sample-custom-resource.

asadmin> create-custom-resource --restype topic --factoryclass com.imq.topic
sample_custom_resource

335

https://glassfish.org/docs/latest/reference-manual.pdf#create-custom-resource

Command create-custom-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
custom-resource at the command line.

To List Custom JNDI Resources

Use the list-custom-resources subcommand in remote mode to list the existing custom resources.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the custom resources by using the list-custom-resources subcommand.

Example 18-2 Listing Custom Resources

This example lists the existing custom resources.

asadmin> list-custom-resources
sample_custom_resource01
sample_custom_resource02
Command list-custom-resources executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
custom-resources at the command line.

To Update a Custom JNDI Resource

1. List the custom resources by using the list-custom-resources subcommand.

2. Use the set subcommand to modify a custom JNDI resource.

Example 18-3 Updating a Custom JNDI Resource

This example modifies a custom resource.

asadmin> set server.resources.custom-resource.custom
/my-custom-resource.property.value=2010server.resources.custom-resource.custom
/my-custom-resource.property.value=2010

To Delete a Custom JNDI Resource

Use the delete-custom-resource subcommand in remote mode to delete a custom resource.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the custom resources by using the list-custom-resources subcommand.

336

https://glassfish.org/docs/latest/reference-manual.pdf#list-custom-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-custom-resources
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#list-custom-resources

3. Delete a custom resource by using the delete-custom-resource subcommand.

Example 18-4 Deleting a Custom Resource

This example deletes a custom resource named sample-custom-resource.

asadmin> delete-custom-resource sample_custom_resource
Command delete-custom-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
custom-resource at the command line.

Administering External JNDI Resources

Applications running on Eclipse GlassFish often require access to resources stored in an external
JNDI repository. For example, generic Java objects might be stored in an LDAP server according to
the Java schema. External JNDI resource elements let you configure such external resource
repositories.

The following topics are addressed here:

• To Register an External JNDI Resource

• To List External JNDI Resources

• To List External JNDI Entries

• To Update an External JNDI Resource

• To Delete an External JNDI Resource

• Example of Using an External JNDI Resource

• To Disable Eclipse GlassFish v2 Vendor-Specific JNDI Names

To Register an External JNDI Resource

Use the create-jndi-resource subcommand in remote mode to register an external JNDI resource.

Before You Begin

The external JNDI factory must implement the javax.naming.spi.InitialContextFactory interface.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Register an external JNDI resource by using the create-jndi-resource subcommand.

Information on properties for the subcommand is contained in this help page.

3. Restart Eclipse GlassFish.

See To Restart a Domain.

337

https://glassfish.org/docs/latest/reference-manual.pdf#delete-custom-resource
https://glassfish.org/docs/latest/reference-manual.pdf#create-jndi-resource

Example 18-5 Registering an External JNDI Resource

In This example sample_jndi_resource is registered.

asadmin> create-jndi-resource --jndilookupname sample_jndi
--restype queue --factoryclass sampleClass --description "this is a sample jndi
resource" sample_jndi_resource
Command create-jndi-resource executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-
jndi-resource at the command line.

To List External JNDI Resources

Use the list-jndi-resources subcommand in remote mode to list all existing JNDI resources.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the existing JNDI resources by using the list-jndi-resources subcommand.

Example 18-6 Listing JNDI Resources

This example lists the JNDI resources.

asadmin> list-jndi-resources
jndi_resource1
jndi_resource2
jndi_resource3
Command list-jndi-resources executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
jndi-resources at the command line.

To List External JNDI Entries

Use the list-jndi-entries subcommand in remote mode to browse and list the entries in the JNDI
tree. You can either list all entries, or you can specify the JNDI context or subcontext to list specific
entries.

1. Ensure that the server is running. Remote subcommands require a running server.

2. List the JNDI entries for a configuration by using the list-jndi-entries subcommand.

Example 18-7 Listing JNDI Entries

This example lists all the JNDI entries for the naming service.

338

https://glassfish.org/docs/latest/reference-manual.pdf#list-jndi-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-jndi-entries

asadmin> list-jndi-entries
jndi_entry03
jndi_entry72
jndi_entry76
Command list-jndi-resources executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help list-
jndi-entries at the command line.

To Update an External JNDI Resource

1. List the existing JNDI resources by using the list-jndi-resources subcommand.

2. Use the set subcommand to modify an external JNDI resource.

Example 18-8 Updating an External JNDI Resource

This example modifies an external resource.

asadmin> set server.resources.external-jndi-resource.my-jndi-resource.
jndi-lookup-name=bar server.resources.external-jndi-resource.my-jndi-resource.jndi-
lookup-name=bar

To Delete an External JNDI Resource

Use the delete-jndi-resource subcommand in remote mode to remove a JNDI resource.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Remove an external JNDI entry by using the delete-jndi-resource subcommand.

Example 18-9 Deleting an External JNDI Resource

This example deletes an external JNDI resource:

asadmin> delete-jndi-resource jndi_resource2
Command delete-jndi-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help delete-
jndi-resource at the command line.

Example of Using an External JNDI Resource

<resources>

339

https://glassfish.org/docs/latest/reference-manual.pdf#list-jndi-resources
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jndi-resource

 <!-- external-jndi-resource element specifies how to access Jakarta EE resources
 -- stored in an external JNDI repository. This example
 -- illustrates how to access a java object stored in LDAP.
 -- factory-class element specifies the JNDI InitialContext factory that
 -- needs to be used to access the resource factory. property element
 -- corresponds to the environment applicable to the external JNDI context
 -- and jndi-lookup-name refers to the JNDI name to lookup to fetch the
 -- designated (in this case the java) object.
 -->
 <external-jndi-resource jndi-name="test/myBean"
 jndi-lookup-name="cn=myBean"
 res-type="test.myBean"
 factory-class="com.sun.jndi.ldap.LdapCtxFactory">
 <property name="PROVIDER-URL" value="ldap://ldapserver:389/o=myObjects" />
 <property name="SECURITY_AUTHENTICATION" value="simple" />
 <property name="SECURITY_PRINCIPAL", value="cn=joeSmith, o=Engineering" />
 <property name="SECURITY_CREDENTIALS" value="changeit" />
 </external-jndi-resource>
</resources>

To Disable Eclipse GlassFish v2 Vendor-Specific JNDI Names

The EJB 3.1 specification supported by Eclipse GlassFish 7 defines portable EJB JNDI names. Because
of this, there is less need to continue to use older vendor-specific JNDI names.

By default, Eclipse GlassFish v2-specific JNDI names are applied automatically by Eclipse GlassFish
7 for backward compatibility. However, this can lead to some ease-of-use issues. For example,
deploying two different applications containing a Remote EJB component that exposes the same
remote interface causes a conflict between the default JNDI names.

The default handling of v2-specific JNDI names in Eclipse GlassFish 7 can be managed with the
asadmin command or with the disable-nonportable-jndi-names boolean property for the ejb-
container element in glassfish-ejb-jar.xml.

Use the asadmin command or directly modify the glassfish-ejb-jar.xml file to set the disable-
nonportable-jndi-names property.

• Using the asadmin command:

asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

• Directly modifying the glassfish-ejb-jar.xml file.

1. Add the disable-nonportable-jndi-names property to the ejb-container element in glassfish-
ejb-jar.xml.

2. Set the value of the disable-nonportable-jndi-names boolean, as desired.

false - Enables the automatic use of Eclipse GlassFish v2-specific JNDI names. This is the
default setting.

340

true - Disables the automatic use of v2-specific JNDI names. In all cases, 5.0-compatible JNDI
names will be used.

3. Save the glassfish-ejb-jar.xml file and restart the Eclipse GlassFish domain.

This setting applies to all EJBs deployed to the server.

341

19 Administering Transactions
This chapter discusses how to manage the transaction service for the Eclipse GlassFish
environment by using the asadmin command-line utility. Instructions for manually recovering
transactions are also included.

The following topics are addressed here:

• About Transactions

• Configuring the Transaction Service

• Managing the Transaction Service for Rollbacks

• Recovering Transactions

• Transaction Logging

Instructions for accomplishing the tasks in this chapter by using the Administration Console are
contained in the Administration Console online help.

For more information about the Java Transaction API (JTA) see the following site:
https://jakarta.ee/specifications/transactions/.

You might also want to read "Transactions" in The Jakarta EE Tutorial.

About Transactions
A transaction is a series of discreet actions in an application that must all complete successfully. By
enclosing one or more actions in an indivisible unit of work, a transaction ensures data integrity
and consistency. If all actions do not complete, the changes are rolled back.

For example, to transfer funds from a checking account to a savings account, the following steps
typically occur:

1. Check to see if the checking account has enough money to cover the transfer.

2. Debit the amount from the checking account.

3. Credit the amount to the savings account.

4. Record the transfer to the checking account log.

5. Record the transfer to the savings account log.

These steps together are considered a single transaction.

If all the steps complete successfully, the transaction is committed . If any step fails, all changes
from the preceding steps are rolled back, and the checking account and savings account are
returned to the states they were in before the transaction started. This type of event is called a
rollback. A normal transaction ends in either a committed state or a rolled back state.

The following elements contribute to reliable transaction processing by implementing various APIs
and functionalities:

342

https://jakarta.ee/specifications/transactions/
https://eclipse-ee4j.github.io/jakartaee-tutorial/#transactions

• Transaction Manager. Provides the services and management functions required to support
transaction demarcation, transactional resource management, synchronization, and transaction
context propagation.

• Eclipse GlassFish. Provides the infrastructure required to support the application runtime
environment that includes transaction state management.

• Resource Manager. Through a resource adapter, the resource manager provides the application
access to resources. The resource manager participates in distributed transactions by
implementing a transaction resource interface used by the transaction manager to
communicate transaction association, transaction completion, and recovery work. An example
of such a resource manager is a relational database server.

• Resource Adapter. A system-level software library is used by Eclipse GlassFish or a client to
connect to a resource manager. A resource adapter is typically specific to a resource manager.
The resource adapter is available as a library and is used within the address space of the client
using it. An example of such a resource adapter is a Java Database Connectivity (JDBC) driver.
For information on supported JDBC drivers, see Configuration Specifics for JDBC Drivers.

• Transactional User Application. In the Eclipse GlassFish environment, the transactional user
application uses Java Naming and Directory Interface (JNDI) to look up transactional data
sources and, optionally, the user transaction). The application might use declarative transaction
attribute settings for enterprise beans, or explicit programmatic transaction demarcation. For
more information, see "The Transaction Manager, the Transaction Synchronization Registry,
and UserTransaction" in Eclipse GlassFish Application Development Guide.

The following topics are addressed here:

• Transaction Resource Managers

• Transaction Scope

Transaction Resource Managers

There are three types of transaction resource managers:

• Databases - Use of transactions prevents databases from being left in inconsistent states due to
incomplete updates. For information about JDBC transaction isolation levels, see "Using JDBC
Transaction Isolation Levels" in Eclipse GlassFish Application Development Guide.

The Eclipse GlassFish supports a variety of JDBC XA drivers. For a list of the JDBC drivers
currently supported by the Eclipse GlassFish, see the Eclipse GlassFish Release Notes. For
configurations of supported and other drivers, see Configuration Specifics for JDBC Drivers.

• Java Message Service (JMS) Providers - Use of transactions ensures that messages are reliably
delivered. The Eclipse GlassFish is integrated with Open Message Queue, a fully capable JMS
provider. For more information about transactions and the JMS API, see Administering the Java
Message Service (JMS).

• J2EE Connector Architecture (CA) components - Use of transactions prevents legacy EIS systems
from being left in inconsistent states due to incomplete updates. For more information about
connectors, see Administering EIS Connectivity.

343

https://glassfish.org/docs/latest/application-development-guide.pdf#the-transaction-manager-the-transaction-synchronization-registry-and-usertransaction
https://glassfish.org/docs/latest/application-development-guide.pdf#the-transaction-manager-the-transaction-synchronization-registry-and-usertransaction
https://glassfish.org/docs/latest/application-development-guide.pdf#using-jdbc-transaction-isolation-levels
https://glassfish.org/docs/latest/application-development-guide.pdf#using-jdbc-transaction-isolation-levels
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN

Transaction Scope

A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is specific to
the resource manager and is transparent to the Jakarta EE application.

In the Eclipse GlassFish, a JDBC resource is non-XA if it meets either of the following criteria:

• In the JDBC connection pool configuration, the DataSource class does not implement the
javax.sql.XADataSource interface.

• The Resource Type setting is not set to javax.sql.XADataSource .

A transaction remains local if the following conditions remain true:

• One and only one non-XA resource is used. If any additional non-XA resource is used, the
transaction is aborted, because the transaction manager must use XA protocol to commit two or
more resources.

• No transaction importing or exporting occurs.

Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent optimization
is enabled. Otherwise, all resources must be XA. The use-last-agent-optimization property is set to
true by default. For details about how to set this property, see Configuring the Transaction Service.

If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the
transaction is coordinated with a two-phase commit protocol.

A two-phase commit protocol between the transaction manager and all the resources enlisted for a
transaction ensures that either all the resource managers commit the transaction or they all abort.
When the application requests the commitment of a transaction, the transaction manager issues a
PREPARE_TO_COMMIT request to all the resource managers involved. Each of these resources can in
turn send a reply indicating whether it is ready for commit (PREPARED) or not (NO). Only when all the
resource managers are ready for a commit does the transaction manager issue a commit request
(COMMIT) to all the resource managers. Otherwise, the transaction manager issues a rollback request
(ABORT) and the transaction is rolled back.

Configuring the Transaction Service
You can configure the transaction service in the Eclipse GlassFish in the following ways:

• To configure the transaction service using the Administration Console, open the Transaction
Service component under the relevant configuration. For details, click the Help button in the
Administration Console.

• To configure the transaction service, use the set subcommand to set the following attributes.

The following examples show the server-config configuration, but values for any configuration
can be set. For example, if you create a cluster named cluster1 and a configuration named
cluster1-config is automatically created for it, you can use cluster1-config in the set

344

https://glassfish.org/docs/latest/reference-manual.pdf#set

subcommand to get the transaction service settings for that cluster.

server-config.transaction-service.automatic-recovery = false
server-config.transaction-service.heuristic-decision = rollback
server-config.transaction-service.keypoint-interval = 2048
server-config.transaction-service.retry-timeout-in-seconds = 600
server-config.transaction-service.timeout-in-seconds = 0
server-config.transaction-service.tx-log-dir = domain-dir/logs

You can also set these properties:

server-config.transaction-service.property.oracle-xa-recovery-workaround = true
server-config.transaction-service.property.sybase-xa-recovery-workaround = false
server-config.transaction-service.property.disable-distributed-transaction-logging
= false
server-config.transaction-service.property.xaresource-txn-timeout = 0
server-config.transaction-service.property.pending-txn-cleanup-interval = -1
server-config.transaction-service.property.use-last-agent-optimization = true
server-config.transaction-service.property.delegated-recovery = false
server-config.transaction-service.property.wait-time-before-recovery-insec = 60
server-config.transaction-service.property.purge-cancelled-transactions-after = 0
server-config.transaction-service.property.commit-one-phase-during-recovery = false
server-config.transaction-service.property.add-wait-point-during-recovery = 0
server-config.transaction-service.property.db-logging-resource = jdbc/TxnDS
server-config.transaction-service.property.xa-servername = myserver

Default property values are shown where they exist. For db-logging-resource and xa-servername,
typical values are shown. Values that are not self-explanatory are as follows:

◦ The xaresource-txn-timeout default of 0 means there is no timeout. The units are seconds.

◦ The pending-txn-cleanup-interval default of -1 means the periodic recovery thread doesn’t
run. The units are seconds.

◦ The purge-cancelled-transactions-after default of 0 means cancelled transactions are not
purged. The units are the number of cancellations in between purging attempts.

◦ The add-wait-point-during-recovery property does not have a default value. If this property
is unset, recovery does not wait. The units are seconds.

◦ The db-logging-resource property does not have a default value. It is unset by default.
However, if you set db-logging-resource to an empty value, the value used is jdbc/TxnDS.

◦ The xa-servername property does not have a default value. Use this property to override
server names that can cause errors.

You can use the get subcommand to list all the transaction service attributes and the
properties that have been set. For details, see the Eclipse GlassFish Reference Manual.

Changing keypoint-interval, retry-timeout-in-seconds, or timeout-in-seconds does not
require a server restart. Changing other attributes or properties requires a server restart.

345

https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf

• You can also set the following system properties:

ALLOW_MULTIPLE_ENLISTS_DELISTS=false
JTA_RESOURCE_TABLE_MAX_ENTRIES=8192
JTA_RESOURCE_TABLE_DEFAULT_LOAD_FACTOR=0.75f

The JTA_RESOURCE_TABLE_DEFAULT_LOAD_FACTOR default is the default Map resizing value.

Managing the Transaction Service for Rollbacks
You can roll back a single transaction by using the asadmin subcommands described in this section.
To do so, the transaction service must be stopped (and later restarted), allowing you to see the
active transactions and correctly identify the one that needs to be rolled back.

The following topics are addressed here:

• To Stop the Transaction Service

• To Roll Back a Transaction

• To Restart the Transaction Service

• Determining Local Transaction Completion at Shutdown

To Stop the Transaction Service

Use the freeze-transaction-service subcommand in remote mode to stop the transaction service.
When the transaction service is stopped, all in-flight transactions are immediately suspended. You
must stop the transaction service before rolling back any in-flight transactions.

Running this subcommand on a stopped transaction subsystem has no effect. The transaction
service remains suspended until you restart it by using the unfreeze-transaction-service
subcommand.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Stop the transaction service by using the freeze-transaction-service subcommand.

Example 19-1 Stopping the Transaction Service

This example stops the transaction service.

asadmin> freeze-transaction-service --target instance1
Command freeze-transaction-service executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help freeze-
transaction-service at the command line.

346

https://glassfish.org/docs/latest/reference-manual.pdf#freeze-transaction-service

To Roll Back a Transaction

In some situations, you might want to roll back a particular transaction. Before you can roll back a
transaction, you must first stop the transaction service so that transaction operations are
suspended. Use the rollback-transaction subcommand in remote mode to roll back a specific
transaction.

1. Ensure that the server is running. Remote subcommands require a running server.

2. Enable monitoring using the set subcommand. For example:

asadmin> set cluster1-config.monitoring-service.module-monitoring-
levels.transaction-service=HIGH

3. Use the freeze-transaction-service subcommand to halt in-process transactions. See To Stop the
Transaction Service.

4. Identify the ID of the transaction you want to roll back.

To see a list of IDs of active transactions, use the get subcommand with the --monitor option to
get the monitoring data for the activeids statistic. See Transaction Service Statistics. For
example:

asadmin> get --monitor instance1.server.transaction-service.activeids-current

5. Roll back the transaction by using the rollback-transaction subcommand.

The transaction is not rolled back at the time of this command’s execution, but only marked for
rollback. The transaction is rolled back when it is completed.

Example 19-2 Rolling Back a Transaction

This example rolls back the transaction with transaction ID 0000000000000001_00.

asadmin> rollback-transaction --target instance1 0000000000000001_00
Command rollback-transaction executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help rollback-
transaction at the command line.

To Restart the Transaction Service

Use the unfreeze-transaction-service subcommand in remote mote to resume all the suspended in-
flight transactions. Run this subcommand to restart the transaction service after it has been frozen.

1. Ensure that the server is running. Remote subcommands require a running server.

347

https://glassfish.org/docs/latest/reference-manual.pdf#rollback-transaction

2. Restart the suspended transaction service by using the unfreeze-transaction-service
subcommand.

Example 19-3 Restarting the Transaction Service

This example restarts the transaction service after it has been frozen.

asadmin> unfreeze-transaction-service --target instance1
Command unfreeze-transaction-service executed successfully

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help unfreeze-
transaction-service at the command line.

Determining Local Transaction Completion at Shutdown

When you shut down a Eclipse GlassFish instance, all database connections are closed. When an
Oracle JDBC driver-based database connection is closed in the middle of a non-XA transaction, all
pending changes are committed. Other databases usually roll back pending changes when a
connection is closed without being explicitly committed. To determine the exact behavior for your
database, refer to the documentation from your JDBC driver vendor.

To explicitly specify whether Eclipse GlassFish commits or rolls back non-XA transactions at server
shutdown, set the com.sun.enterprise.in-progress-local-transaction.completion-mode JVM option to
either commit or rollback using the create-jvm-options subcommand. For example:

asadmin> create-jvm-options -Dcom.sun.enterprise.in-progress-local
-transaction.completion-mode=rollback

Recovering Transactions
There are some situations where the commit or rollback operations might be interrupted, typically
because the server crashed or a resource manager crashed. Crash situations can leave some
transactions stranded between steps. Eclipse GlassFish is designed to recover from these failures. If
the failed transaction spans multiple servers, the server that started the transaction can contact the
other servers to get the outcome of the transaction. If the other servers are unreachable, the
transaction uses heuristic decision information to determine the outcome.

The following topics are addressed here:

• Automatic Transaction Recovery

• To Manually Recover Transactions

• Distributed Transaction Recovery

• Recovery Workarounds and Limitations

348

https://glassfish.org/docs/latest/reference-manual.pdf#unfreeze-transaction-service
https://glassfish.org/docs/latest/reference-manual.pdf#create-jvm-options

Automatic Transaction Recovery

Eclipse GlassFish can perform automatic recovery in these ways:

• Pending transactions are completed upon server startup if automatic-recovery is set to true.

• Periodic automatic recovery is performed by a background thread if the pending-txn-cleanup-
interval property is set to a positive value.

Changing these settings requires a server restart. For more information about how to change these
settings, see Configuring the Transaction Service.

If commit fails during recovery, a message is written to the server log.

To Manually Recover Transactions

Use the recover-transactions subcommand in remote mode to manually recover transactions that
were pending when a resource or a server instance failed.

For a standalone server, do not use manual transaction recovery to recover transactions after a
server failure. For a standalone server, manual transaction recovery can recover transactions only
when a resource fails, but the server is still running. If a standalone server fails, only the full
startup recovery process can recover transactions that were pending when the server failed.

For an installation of multiple server instances, you can use manual transaction recovery from a
surviving server instance to recover transactions after a server failure. For manual transaction
recovery to work properly, transaction logs must be stored on a shared file system that is accessible
to all server instances. See Transaction Logging.

When you execute recover-transactions in non-delegated mode, you can recover transactions that
didn’t complete two-phase commit because of a resource crash. To use manual transaction recovery
in this way, the following conditions must be met:

• The recover-transactions command should be executed after the resource is restarted.

• Connection validation should be enabled so the connection pool is refreshed when the resource
is accessed after the recovery. For more information, see "Connection Validation Settings" in
Eclipse GlassFish Performance Tuning Guide.

If commit fails during recovery, a message is written to the server log.

A JMS resource crash is handled the same way as any other resource.

You can list in-doubt Open Message Queue transactions using the imqcmd list txn
subcommand. For more information, see the "Managing Transactions" section in
the "Open Message Queue Administration Guide".

1. Ensure that the server is running. Remote subcommands require a running server.

2. Manually recover transactions by using the recover-transactions subcommand.

Example 19-4 Manually Recovering Transactions

349

https://glassfish.org/docs/latest/performance-tuning-guide.pdf#connection-validation-settings
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://glassfish.org/docs/latest/reference-manual.pdf#recover-transactions

This example performs manual recovery of transactions on instance1, saving them to instance2.

asadmin recover-transactions --target instance2 instance1
Transaction recovered.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help recover-
transactions at the command line.

Distributed Transaction Recovery

To enable cluster-wide automatic recovery, you must first facilitate storing of transaction logs in a
shared file system. See Transaction Logging.

Next, you must set the transaction service’s delegated-recovery property to true (the default is
false). For information about setting tx-log-dir and delegated-recovery, see Configuring the
Transaction Service.

Recovery Workarounds and Limitations

The Eclipse GlassFish provides workarounds for some known issues with transaction recovery
implementations.

 These workarounds do not imply support for any particular JDBC driver.

General Recovery Limitations

The following general limitations apply to transaction recovery:

• Recovery succeeds if there are no exceptions during the process. This is independent of the
number of transactions that need to be recovered.

• Only transactions that did not complete the two-phase commit can be recovered (one of the XA
resources failed or Eclipse GlassFish crashed after resources were prepared).

• Manual transaction recovery cannot recover transactions after a server crash on a standalone
server instance. Manual operations are intended for cases when a resource dies unexpectedly
while the server is running. In case of a server crash, only startup recovery can recover in-
doubt transactions.

• It is not possible to list transaction IDs for in-doubt transactions.

• Delegated transaction recovery (by a different server instance in a cluster) is not possible if the
failed instance used an EMBEDDED Message Queue broker, or if it used a LOCAL or REMOTE Message
Queue broker and the broker also failed. In this case, only automatic recovery on server
instance restart is possible. This is because for conventional Message Queue clustering, state
information in a failed broker is not available until the broker restarts.

350

Oracle Setup for Transaction Recovery

You must configure the following grant statements in your Oracle database to set up transaction
recovery:

grant select on SYS.DBA_PENDING_TRANSACTIONS to user;
grant execute on SYS.DBMS_SYSTEM to user;
grant select on SYS.PENDING_TRANS$ to user;
grant select on SYS.DBA_2PC_NEIGHBORS to user;
grant execute on SYS.DBMS_XA to user;
grant select on SYS.DBA_2PC_PENDING to user;

The user is the database administrator. On some versions of the Oracle driver the last grant execute
fails. You can ignore this.

Oracle Thin Driver

In the Oracle thin driver, the XAResource.recover method repeatedly returns the same set of in-
doubt Xids regardless of the input flag. According to the XA specifications, the Transaction Manager
initially calls this method with TMSTARTSCAN and then with TMNOFLAGS repeatedly until no Xids
are returned. The XAResource.commit method also has some issues.

To disable the Eclipse GlassFish workaround, set the oracle-xa-recovery-workaround property value
to false. For details about how to set this property, see Configuring the Transaction Service. This
workaround is used unless explicitly disabled.

Delegated Recovery After Server Crash Doesn’t Work on MySQL

The MySQL database supports XA transaction recovery only when the database crashes. When a
Eclipse GlassFish instance crashes, MySQL rolls back prepared transactions.

Call to XATeminator.recover() During ResourceAdapter.start() Hangs If Automatic Recovery Is
Enabled

Calls to XATerminator.recover() from the ResourceAdapter.start() method never return because
Eclipse GlassFish deadlocks. This only occurs when automatic recovery is enabled.

It is not advisable to do transactional activities, such as starting a transaction or calling
XATerminator.recover(), during ResourceAdapter.start(). For more information, see
http://markmail.org/message/ogc7qndhaywfkdrp#query:+page:1+mid:kyyzpcexusbnv7ri+state:results.

Transaction Logging
The transaction service writes transactional activity into transaction logs so that transactions can
be recovered. You can control transaction logging in these ways:

• Set the location of the transaction log files in one of these ways:

351

http://markmail.org/message/ogc7qndhaywfkdrp#query:+page:1+mid:kyyzpcexusbnv7ri+state:results

◦ Set the Eclipse GlassFish’s log-root setting to a shared file system base directory and set the
transaction service’s tx-log-dir attribute to a relative path.

◦ Set tx-log-dir to an absolute path to a shared file system directory, in which case log-root is
ignored for transaction logs.

◦ Set a system property called TX-LOG-DIR to a shared file system directory. For example:

asadmin> create-system-properties --target server TX-LOG-DIR=/inst1/logs

For information about setting log-root and other general logging settings, see Administering
the Logging Service.

• Turn off transaction logging by setting the disable-distributed-transaction-logging property to
true and the automatic-recovery attribute to false. Do this only if performance is more
important than transaction recovery.

All instances in a cluster must be owned by the same user (uid), and read/write
permissions for that user must be set on the transaction log directories.

Transaction logs should be stored in a high-availability network file system (NFS)
to avoid a single point of failure.

To Store Transaction Logs in a Database

For multi-core machines, logging transactions to a database may be more efficient. Transaction
logging is designed to work with any JDBC-compliant database. For databases with which
transaction logging has been tested, see the Eclipse GlassFish Release Notes.

1. Create a JDBC connection Pool. To use non-transactional connections to insert log records, you
can either set the non-transactional-connections attribute to true in this step, or you can
perform step 5 later.

2. Create a JDBC resource that uses the connection pool and note the JNDI name of the JDBC
resource.

3. Automatic table creation for the transaction logs is done by default. However, if you would
prefer to create the table manually, name it txn_log_table with the following schema:

Column Name JDBC Type

LOCALTID VARCHAR

INSTANCENAME VARCHAR

SERVERNAME VARCHAR(n)

GTRID VARBINARY

The size of the SERVERNAME column should be at least the length of the Eclipse GlassFish host
name plus 10 characters.
The size of the GTRID column should be at least 64 bytes.

352

4. Add the db-logging-resource property to the transaction service. For example:

asadmin set server-config.transaction-service.property.db-logging-
resource="jdbc/TxnDS"

The property’s value should be the JNDI name of the JDBC resource configured previously.

5. If you didn’t set the non-transactional-connections attribute to true in step 1 and you want to
use non-transactional connections to insert log records, use the following asadmin create-jvm-
options command to reference an existing transactional resource but use non-transactional
connections for the INSERT statements:

asadmin create-jvm-options
-Dcom.sun.jts.dblogging.use.nontx.connection.for.add=true

6. To disable file synchronization, use the following asadmin create-jvm-options command:

asadmin create-jvm-options -Dcom.sun.appserv.transaction.nofdsync

7. Restart the server.

Next Steps

To define the SQL used by the transaction manager when it is storing its transaction logs in the
database, use the following flags:

-Dcom.sun.jts.dblogging.insertquery=sql statement

-Dcom.sun.jts.dblogging.deletequery=sql statement

-Dcom.sun.jts.dblogging.selectquery=sql statement

-Dcom.sun.jts.dblogging.selectservernamequery=sql statement

The default statements are as follows:

-Dcom.sun.jts.dblogging.insertquery=insert into txn_log_table values (?, ?, ?, ?)

-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where localtid = ? and servername
= ?

-Dcom.sun.jts.dblogging.selectquery=select * from txn_log_table where servername = ?

-Dcom.sun.jts.dblogging.selectservernamequery=select distinct servername from txn_log_table
where instancename = ?

To set one of these flags using the asadmin create-jvm-options command, you must quote the
statement. For example:

create-jvm-options '-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where gtrid =

353

?'

You can also set JVM options in the Administration Console. Select the JVM Settings component
under the relevant configuration. These flags and their statements must also be quoted in the
Administration Console. For example:

'-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where gtrid = ?'

See Also

For information about JDBC connection pools and resources, see Administering Database
Connectivity. For more information about the asadmin set and asadmin create-jvm-options
commands, see the Eclipse GlassFish Reference Manual. For databases with which transaction
logging has been tested, see the Eclipse GlassFish Release Notes.

354

https://glassfish.org/docs/latest/reference-manual.pdf

Part III

355

Appendixes

356

A Subcommands for the asadmin Utility
This appendix lists the asadmin subcommands that are included with this release of the Eclipse
GlassFish 7 software.

• General Administration Subcommands

• Batch Jobs Subcommands

• Concurrent Resources Subcommands

• Connectivity Subcommands

• Domain Subcommands

• Internet Connectivity Subcommands

• Jakarta Mail Subcommands

• JMS Subcommands

• JNDI Subcommands

• JVM Subcommands

• Life Cycle Module Subcommands

• Logging and Monitoring Subcommands

• ORB Subcommands

• Thread Pool Subcommands

• Transaction Service Subcommands

For information and instructions on using the asadmin application deployment subcommands, see
the Eclipse GlassFish Application Deployment Guide.

Online help for the asadmin subcommands can be invoked on the command line, for example,
asadmin create-domain help. The Eclipse GlassFish Reference Manual also provides a collection of
these help pages.

The common options used with remote subcommands are described in the
asadmin(1M) help page.

General Administration Subcommands
add-resources

Creates the resources named in the specified XML file. Supported in remote mode only. For
procedural information in this guide, see To Add Resources From an XML File.

asadmin

Describes how the asadmin utility works.

attach

Attaches to subcommands that were started using the asadmin --detach option or that contain

357

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#add-resources
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#attach

progress information. For procedural information in this guide, see To Run asadmin
Subcommands in --detach Mode.

configure-managed-jobs

Configures how long information about subcommands (jobs) that were started using the asadmin
--detach option or that contain progress information is kept. For procedural information in this
guide, see To Run asadmin Subcommands in --detach Mode.

create-module-config

Adds the default configuration of a module to domain.xml.

create-service

Configures the starting of a domain administration server (DAS) on an unattended boot. On
Oracle Solaris 10, this subcommand uses the Service Management Facility (SMF). For procedural
information in this guide, see To Configure a DAS or an Instance for Automatic Restart on Oracle
Solaris.

create-system-properties

Creates or updates system properties. Supported in remote mode only. For procedural
information in this guide, see To Create System Properties.

delete-module-config

Removes the configuration of a module from domain.xml.

delete-system-property

Deletes system properties of a domain or configuration, or server instance. Supported in remote
mode only. For procedural information in this guide, see To Delete a System Property.

get

Gets an attribute of an element in the domain.xml file. With the -m option, gets the names and
values of the monitorable or configurable attributes. For procedural information in this guide,
see Guidelines for Using the list and get Subcommands for Monitoring.

get-active-module-config

Displays the current active configuration of a module.

list

Lists the configurable element. On Oracle Solaris, quotes are needed when running
subcommands with * as the option value or operand. For procedural information in this guide,
see Guidelines for Using the list and get Subcommands for Monitoring.

list-commands

Lists all the asadmin subcommands, local subcommands first, then remote subcommands. You
can specify that only remote subcommands or only local subcommands be displayed. Supported
in remote mode only. For procedural information in this guide, see To List Subcommands.

list-containers

Lists application containers and the status of each container. Supported in remote mode only.

358

https://glassfish.org/docs/latest/reference-manual.pdf#configure-managed-jobs
https://glassfish.org/docs/latest/reference-manual.pdf#create-module-config
https://glassfish.org/docs/latest/reference-manual.pdf#create-service
https://glassfish.org/docs/latest/reference-manual.pdf#create-system-properties
https://glassfish.org/docs/latest/reference-manual.pdf#delete-module-config
https://glassfish.org/docs/latest/reference-manual.pdf#delete-system-property
https://glassfish.org/docs/latest/reference-manual.pdf#get
https://glassfish.org/docs/latest/reference-manual.pdf#get-active-module-config
https://glassfish.org/docs/latest/reference-manual.pdf#list
https://glassfish.org/docs/latest/reference-manual.pdf#list-commands
https://glassfish.org/docs/latest/reference-manual.pdf#list-containers

For procedural information in this guide, see To List Containers.

list-jobs

Lists information about subcommands that were started using the asadmin --detach option or
that contain progress information. For procedural information in this guide, see To Run asadmin
Subcommands in --detach Mode.

list-modules

Lists modules that are accessible to the Eclipse GlassFish subsystem. The status of each module is
included. Supported in remote mode only. For procedural information in this guide, see To List
Modules.

list-system-properties

Lists the system properties of a domain or configuration. Supported in remote mode only. For
procedural information in this guide, see To List System Properties.

list-timers

List the timers owned by a specific server instance. Supported in remote mode only. For
procedural information in this guide, see To List Timers.

multimode

Provides an asadmin> prompt for running multiple subcommands while preserving options and
environment settings. Supported in local mode only. For procedural information, see Using the
asadmin Utility.

osgi

Delegates the command line to the Apache Felix Gogo remote shell for the execution of OSGi
shell commands. For procedural information in this guide, see To Run Apache Felix Gogo Remote
Shell Commands.

osgi-shell

Provides interactive access to the Apache Felix Gogo remote shell for the execution of OSGi shell
commands. For procedural information in this guide, see To Run Apache Felix Gogo Remote
Shell Commands.

set

Sets the values of one or more configurable attributes. For procedural information in this guide,
see Configuring Monitoring.

setup-local-dcom

Sets up the Distributed Component Object Model (DCOM) remote protocol on the host where the
subcommand is run. The DCOM remote protocol is available only on Windows systems.

show-component-status

Lists the status of existing components. Supported in remote mode only. For procedural
information in this guide, see To Show Component Status.

359

https://glassfish.org/docs/latest/reference-manual.pdf#list-jobs
https://glassfish.org/docs/latest/reference-manual.pdf#list-modules
https://glassfish.org/docs/latest/reference-manual.pdf#list-system-properties
https://glassfish.org/docs/latest/reference-manual.pdf#list-timers
https://glassfish.org/docs/latest/reference-manual.pdf#multimode
https://glassfish.org/docs/latest/reference-manual.pdf#osgi
https://glassfish.org/docs/latest/reference-manual.pdf#osgi-shell
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#setup-local-dcom
https://glassfish.org/docs/latest/reference-manual.pdf#show-component-status

start-database

Starts the Apache Derby database server. Use this subcommand only for working with
applications deployed to the Eclipse GlassFish. For procedural information in this guide, see To
Start the Database.

stop-database

Stops a process of the Apache Derby DB database server. For procedural information in this
guide, see To Stop the Database.

version

Displays the version information for the option specified in archive or folder format. Supported
in remote mode only. For procedural information in this guide, see To Display the Eclipse
GlassFish Version.

Batch Jobs Subcommands
list-batch-jobs

Lists batch jobs and job details. For procedural information in this guide, see To List Batch Jobs.

list-batch-job-executions

Lists batch job executions and execution details. For procedural information in this guide, see To
List Batch Job Executions.

list-batch-job-steps

Lists steps for a specific batch job execution. For procedural information in this guide, see To List
Batch Job Steps.

list-batch-runtime-configuration

Displays the configuration of the batch runtime. For procedural information in this guide, see To
List the Batch Runtime Configuration.

set-batch-runtime-configuration

Configures the batch runtime. For procedural information in this guide, see To Configure the
Batch Runtime.

Concurrent Resources Subcommands
create-context-service

Creates a context service resource. For procedural information in this guide, see To Create a
Context Service.

create-managed-executor-service

Creates a managed executor service resource. For procedural information in this guide, see To
Create a Managed Executor Service.

create-managed-scheduled-executor-service

Creates a managed scheduled executor service resource. For procedural information in this

360

https://glassfish.org/docs/latest/reference-manual.pdf#start-database
https://glassfish.org/docs/latest/reference-manual.pdf#stop-database
https://glassfish.org/docs/latest/reference-manual.pdf#version
https://glassfish.org/docs/latest/reference-manual.pdf#list-batch-jobs
https://glassfish.org/docs/latest/reference-manual.pdf#list-batch-job-executions
https://glassfish.org/docs/latest/reference-manual.pdf#list-batch-job-steps
https://glassfish.org/docs/latest/reference-manual.pdf#list-batch-runtime-configuration
https://glassfish.org/docs/latest/reference-manual.pdf#set-batch-runtime-configuration
https://glassfish.org/docs/latest/reference-manual.pdf#create-context-service
https://glassfish.org/docs/latest/reference-manual.pdf#create-managed-executor-service
https://glassfish.org/docs/latest/reference-manual.pdf#create-managed-scheduled-executor-service

guide, see To Create a Managed Scheduled Executor Service.

create-managed-thread-factory

Creates a managed thread factory resource. For procedural information in this guide, see To
Create a Managed Thread Factory.

list-context-services

Lists context service resources. For procedural information in this guide, see To List Context
Services.

list-managed-executor-services

Lists managed executor service resources. For procedural information in this guide, see To List
Managed Executor Services.

list-managed-scheduled-executor-services

Lists managed scheduled executor service resources. For procedural information in this guide,
see To List Managed Scheduled Executor Services.

list-managed-thread-factories

Lists managed thread factory resources. For procedural information in this guide, see To List
Managed Thread Factories.

delete-context-service

Removes a context service resource. For procedural information in this guide, see To Delete a
Context Service.

delete-managed-executor-service

Removes a managed executor service resource. For procedural information in this guide, see To
Delete a Managed Executor Service.

delete-managed-scheduled-executor-service

Removes a managed scheduled executor service resource. For procedural information in this
guide, see To Delete a Managed Scheduled Executor Service.

delete-managed-thread-factory

Removes a managed thread factory resource. For procedural information in this guide, see To
Delete a Managed Thread Factory.

Connectivity Subcommands
create-admin-object

Creates an administered object. For procedural information in this guide, see To Create an
Administered Object.

create-connector-connection-pool

Adds a new connector connection pool with the specified connection pool name. For procedural
information in this guide, see To Create a Connector Connection Pool.

361

https://glassfish.org/docs/latest/reference-manual.pdf#create-managed-thread-factory
https://glassfish.org/docs/latest/reference-manual.pdf#create-context-service
https://glassfish.org/docs/latest/reference-manual.pdf#create-managed-executor-service
https://glassfish.org/docs/latest/reference-manual.pdf#create-managed-scheduled-executor-service
https://glassfish.org/docs/latest/reference-manual.pdf#create-managed-thread-factory
https://glassfish.org/docs/latest/reference-manual.pdf#delete-context-service
https://glassfish.org/docs/latest/reference-manual.pdf#delete-managed-executor-service
https://glassfish.org/docs/latest/reference-manual.pdf#delete-managed-scheduled-executor-service
https://glassfish.org/docs/latest/reference-manual.pdf#delete-managed-thread-factory
https://glassfish.org/docs/latest/reference-manual.pdf#create-admin-object
https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-connection-pool

create-connector-resource

Creates a connector resource. For procedural information in this guide, see To Create a
Connector Resource.

create-connector-security-map

Creates a connector security map for the specified connector connection pool. For procedural
information, see To Create a Connector Security Map.

create-connector-work-security-map

Creates a connector work security map for the specified resource adapter. Supported in remote
mode only. For procedural information in this guide, see To Create a Connector Work Security
Map.

create-jdbc-resource

Creates a new JDBC resource. Supported in remote mode only. For procedural information in
this guide, see To Create a JDBC Resource.

create-jdbc-connection-pool

Registers a new JDBC connection pool with the specified JDBC connection pool name. Supported
in remote mode only. For procedural information in this guide, see To Create a JDBC Connection
Pool.

create-resource-adapter-config

Creates configuration information for the connector module. Supported in remote mode only.
For procedural information in this guide, see To Create Configuration Information for a
Resource Adapter.

delete-admin-object

Deletes an administered object. For procedural information in this guide, see To Delete an
Administered Object.

delete-connector-connection-pool

Removes the connector connection pool specified using the connector_connection_pool_name
operand. For procedural information in this guide, see To Delete a Connector Connection Pool.

delete-connector-resource

Deletes connector resource. For procedural information in this guide, see To Delete a Connector
Resource.

delete-connector-security-map

Deletes a specified connector security map. Supported in remote mode only. For procedural
information in this guide, see To Delete a Connector Security Map.

delete-connector-work-security-map

Deletes a specified connector work security map. Supported in remote mode only. For
procedural information in this guide, see To Delete a Connector Work Security Map.

362

https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-resource
https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#create-connector-work-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-resource-adapter-config
https://glassfish.org/docs/latest/reference-manual.pdf#delete-admin-object
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-resource
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#delete-connector-work-security-map

delete-jdbc-connection-pool

Deletes the specified JDBC connection pool. Supported in remote mode only. For procedural
information in this guide, see To Delete a JDBC Connection Pool.

delete-jdbc-resource

Deletes a JDBC resource. The specified JNDI name identifies the resource to be deleted.
Supported in remote mode only. For procedural information in this guide, see To Delete a JDBC
Resource.

delete-resource-adapter-config

Deletes configuration information for the connector module. Supported in remote mode only.
For procedural information in this guide, see To Delete a Resource Adapter Configuration.

flush-connection-pool

Reintializes all connections established in the specified connection. For procedural information
in this guide, see To Reset (Flush) a Connection Pool.

list-admin-objects

Lists administered objects. For procedural information in this guide, see To List Administered
Objects.

list-connector-connection-pools

Lists the connector connection pools that have been created. For procedural information in this
guide, see To List Connector Connection Pools.

list-connector-resources

Creates connector resources. For procedural information in this guide, see To List Connector
Resources.

list-connector-security-maps

Lists the connector security maps belonging to a specified connector connection pool. For
procedural information in this guide, see To List Connector Security Maps.

list-connector-work-security-maps

Lists the existing connector work security maps for a resource adapter. Supported in remote
mode only. For procedural information in this guide, see To List Connector Work Security Maps.

list-jdbc-connection-pools

Lists the existing JDBC connection pools. Supported in remote mode only. For procedural
information in this guide, see To List JDBC Connection Pools.

list-jdbc-resources

Lists the existing JDBC resources. Supported in remote mode only. For procedural information in
this guide, see To List JDBC Resources.

list-resource-adapter-configs

Lists configuration information for the connector modules. Supported in remote mode only. For
procedural information in this guide, see To List Resource Adapter Configurations.

363

https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jdbc-resource
https://glassfish.org/docs/latest/reference-manual.pdf#delete-resource-adapter-config
https://glassfish.org/docs/latest/reference-manual.pdf#flush-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#list-admin-objects
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-security-maps
https://glassfish.org/docs/latest/reference-manual.pdf#list-connector-work-security-maps
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-connection-pools
https://glassfish.org/docs/latest/reference-manual.pdf#list-jdbc-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-resource-adapter-configs

ping-connection-pool

Tests if a JDBC connection pool is usable. Supported in remote mode only. For procedural
information in this guide, see To Contact (Ping) a Connection Pool.

update-connector-security-map

Modifies a security map for the specified connector connection pool. For procedural information
in this guide, see To Update a Connector Security Map.

update-connector-work-security-map

Modifies a work security map that belongs to a specific resource adapter (connector module).
For procedure information in this guide, see To Update a Connector Work Security Map.

Domain Subcommands
backup-domain

Describes how to back up a domain. Supported in local mode only. For procedural information
in this guide, see To Back Up a Domain.

create-domain

Creates the configuration of a domain. A domain can exist independent of other domains. Any
user who has access to the asadmin utility on a given host can create a domain and store its
configuration in a location of choice. For procedural information in this guide, see To Create a
Domain.

delete-domain

Deletes the specified domain. The domain must be stopped before it can be deleted. For
procedural information in this guide, see To Delete a Domain.

list-backups

Lists the existing domain backups. Supported in local mode only. For procedural information in
this guide, see To List Domain Backups.

list-domains

Lists the existing domains and their statuses. If the domain directory is not specified, the
domains in the domain-root-dir, the default for which is as-install/domains, are displayed. For
procedural information in this guide, see To List Domains.

login

Allows you to log in to a domain. For procedural information in this guide, see To Log In to a
Domain.

restart-domain

Restarts the Domain Administration Server (DAS) of the specified domain. Supported in remote
mode only. For procedural information in this guide, see To Restart a Domain.

restore-domain

Recovers and domain from a backup file. Supported in local mode only. For procedural

364

https://glassfish.org/docs/latest/reference-manual.pdf#ping-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#update-connector-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#update-connector-work-security-map
https://glassfish.org/docs/latest/reference-manual.pdf#backup-domain
https://glassfish.org/docs/latest/reference-manual.pdf#create-domain
https://glassfish.org/docs/latest/reference-manual.pdf#delete-domain
https://glassfish.org/docs/latest/reference-manual.pdf#list-backups
https://glassfish.org/docs/latest/reference-manual.pdf#list-domains
https://glassfish.org/docs/latest/reference-manual.pdf#login
https://glassfish.org/docs/latest/reference-manual.pdf#restart-domain
https://glassfish.org/docs/latest/reference-manual.pdf#restore-domain

information in this guide, see To Restore a Domain.

start-domain

Starts a domain. If the domain directory is not specified, the default domain1 in the default
domain-root-dir directory is started. If there are two or more domains, the domain_name
operand must be specified. For procedural information in this guide, see To Start a Domain.

stop-domain

Stops the domain administration server (DAS) of the specified domain. Supported in remote
mode only. For procedural information in this guide, see To Stop a Domain.

uptime

Displays the length of time that the domain administration server (DAS) has been running since
the last restart. Supported in remote mode only. For procedural information in this guide, see To
Display Domain Uptime.

Internet Connectivity Subcommands
create-http

Creates a set of HTTP parameters for a protocol, which in turn configures one or more network
listeners. Supported in remote mode only. For procedural information in this guide, see To
Create an HTTP Configuration.

create-http-listener

Creates a new HTTP listener socket. Supported in remote mode only. For procedural information
in this guide, see To Create an Internet Connection.

create-network-listener

Creates a new HTTP listener socket. Supported in remote mode only. For procedural information
in this guide, see To Create an Internet Connection.

create-protocol

Creates a protocol for a listener. Supported in remote mode only. For procedural information in
this guide, see To Create a Protocol.

create-transport

Creates a transport for a listener. Supported in remote mode only. For procedural information in
this guide, see To Create a Transport.

create-virtual-server

Creates the specified virtual server element. Supported in remote mode only. For procedural
information in this guide, see To Create a Virtual Server.

create-ssl

Creates and configures the SSL element in the selected HTTP listener to enable secure
communication on that listener/service. Supported in remote mode only. For procedural
information in this guide, see To Configure an HTTP Listener for SSL.

365

https://glassfish.org/docs/latest/reference-manual.pdf#start-domain
https://glassfish.org/docs/latest/reference-manual.pdf#stop-domain
https://glassfish.org/docs/latest/reference-manual.pdf#uptime
https://glassfish.org/docs/latest/reference-manual.pdf#create-http
https://glassfish.org/docs/latest/reference-manual.pdf#create-http-listener
https://glassfish.org/docs/latest/reference-manual.pdf#create-network-listener
https://glassfish.org/docs/latest/reference-manual.pdf#create-protocol
https://glassfish.org/docs/latest/reference-manual.pdf#create-transport
https://glassfish.org/docs/latest/reference-manual.pdf#create-virtual-server
https://glassfish.org/docs/latest/reference-manual.pdf#create-ssl

delete-http

Deletes an existing HTTP configuration. Supported in remote mode only. For procedural
information in this guide, see To Delete an HTTP Configuration.

delete-http-listener

Deletes the specified HTTP listener. Supported in remote mode only. For procedural information
in this guide, see To Delete an HTTP Network Listener.

delete-network-listener

Deletes the specified HTTP listener. Supported in remote mode only. For procedural information
in this guide, see To Delete an HTTP Network Listener.

delete-protocol

Deletes and existing HTTP protocol. Supported in remote mode only. For procedural information
in this guide, see To Delete a Protocol.

delete-ssl

Deletes the SSL element in the selected HTTP listener. Supported in remote mode only. For
procedural information in this guide, see To Delete SSL From an HTTP Listener.

delete-transport

Deletes and existing HTTP transport. Supported in remote mode only. For procedural
information in this guide, see To Delete a Transport.

delete-virtual-server

Deletes the specified virtual server element. Supported in remote mode only. For procedural
information in this guide, see To Delete a Virtual Server.

list-http-listeners

Lists the existing HTTP listeners. Supported in remote mode only. For procedural information in
this guide, see To List HTTP Network Listeners.

list-network-listeners

Lists the existing HTTP listeners. Supported in remote mode only. For procedural information in
this guide, see To List HTTP Network Listeners.

list-protocols

Lists the existing HTTP protocols. Supported in remote mode only. For procedural information in
this guide, see To List Protocols.

list-transports

Lists the existing HTTP transports. Supported in remote mode only. For procedural information
in this guide, see To List Transports.

list-virtual-servers

Lists the existing virtual servers. Supported in remote mode only. For procedural information in
this guide, see To List Virtual Servers.

366

https://glassfish.org/docs/latest/reference-manual.pdf#delete-http
https://glassfish.org/docs/latest/reference-manual.pdf#delete-http-listener
https://glassfish.org/docs/latest/reference-manual.pdf#delete-network-listener
https://glassfish.org/docs/latest/reference-manual.pdf#delete-protocol
https://glassfish.org/docs/latest/reference-manual.pdf#delete-ssl
https://glassfish.org/docs/latest/reference-manual.pdf#delete-transport
https://glassfish.org/docs/latest/reference-manual.pdf#delete-virtual-server
https://glassfish.org/docs/latest/reference-manual.pdf#list-http-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#list-network-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#list-protocols
https://glassfish.org/docs/latest/reference-manual.pdf#list-transports
https://glassfish.org/docs/latest/reference-manual.pdf#list-virtual-servers

Jakarta Mail Subcommands
create-mail-resource

Creates a Jakarta Mail session resource. Supported in remote mode only. For procedural
information in this guide, see To Create a Jakarta Mail Resource.

delete-mail-resource

Deletes a Jakarta Mail session resource. Supported in remote mode only. For procedural
information in this guide, see To Delete a Jakarta Mail Resource.

list-mail-resources

Creates Jakarta Mail session resources. Supported in remote mode only. For procedural
information in this guide, see To List Jakarta Mail Resources.

JMS Subcommands
create-jmsdest

Creates a JMS physical destination. Along with the physical destination, you use the create-jms-
resource subcommand to create a JMS destination resource that has a Name property that
specifies the physical destination. Supported in remote mode only. For procedural information
in this guide, see To Create a JMS Physical Destination.

create-jms-host

Creates a JMS host within the JMS service. Supported in remote mode only. For procedural
information in this guide, see To Create a JMS Host.

create-jms-resource

Creates a JMS connection factory resource or JMS destination resource. Supported in remote
mode only. Supported in remote mode only. For procedural information in this guide, see To
Create a Connection Factory or Destination Resource.

delete-jmsdest

Removes the specified JMS destination. Supported in remote mode only. For procedural
information in this guide, see To Delete a JMS Physical Destination.

delete-jms-host

Deletes a JMS host within the JMS service. Supported in remote mode only. For procedural
information in this guide, see To Delete a JMS Host.

delete-jms-resource

Deletes a JMS connection factory resource or JMS destination resource. Supported in remote
mode only. For procedural information in this guide, see To Delete a Connection Factory or
Destination Resource.

flush-jmsdest

Purges the messages from a physical destination in the specified JMS Service configuration of the
specified target. Supported in remote mode only. For procedural information in this guide, see

367

https://glassfish.org/docs/latest/reference-manual.pdf#create-mail-resource
https://glassfish.org/docs/latest/reference-manual.pdf#delete-mail-resource
https://glassfish.org/docs/latest/reference-manual.pdf#list-mail-resources
https://glassfish.org/docs/latest/reference-manual.pdf#create-jmsdest
https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-host
https://glassfish.org/docs/latest/reference-manual.pdf#create-jms-resource
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jmsdest
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jms-host
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jms-resource
https://glassfish.org/docs/latest/reference-manual.pdf#flush-jmsdest

To Purge Messages From a Physical Destination.

jms-ping

Checks if the JMS service (also known as the JMS provider) is up and running. Supported in
remote mode only. For procedural information in this guide, see Troubleshooting the JMS
Service.

list-jmsdest

Lists the JMS physical destinations. Supported in remote mode only. For procedural information
in this guide, see To List JMS Physical Destinations.

list-jms-hosts

Lists the existing JMS hosts. Supported in remote mode only. For procedural information in this
guide, see To List JMS Hosts.

list-jms-resources

Lists the existing JMS connection factory or destination resources. Supported in remote mode
only. For procedural information in this guide, see To List JMS Resources.

JNDI Subcommands
create-custom-resource

Creates a custom JNDI resource. Supported in remote mode only. For procedural information in
this guide, see To Create a Custom JNDI Resource.

create-jndi-resource

Creates an external JNDI resource. Supported in remote mode only. For procedural information
in this guide, see To Register an External JNDI Resource.

delete-custom-resource

Deletes a custom JNDI resource. Supported in remote mode only. For procedural information in
this guide, see To Delete a Custom JNDI Resource.

delete-jndi-resource

Deletes an external JNDI resource. Supported in remote mode only. For procedural information
in this guide, see To Delete an External JNDI Resource.

list-custom-resources

Lists the existing custom JNDI resources. Supported in remote mode only. For procedural
information in this guide, see To List Custom JNDI Resources.

list-jndi-entries

Lists the entries in the JNDI tree. Supported in remote mode only. For procedural information in
this guide, see To List External JNDI Entries,

list-jndi-resources

Lists the existing external JNDI resources. Supported in remote mode only. For procedural
information in this guide, see To List External JNDI Resources.

368

https://glassfish.org/docs/latest/reference-manual.pdf#jms-ping
https://glassfish.org/docs/latest/reference-manual.pdf#list-jmsdest
https://glassfish.org/docs/latest/reference-manual.pdf#list-jms-hosts
https://glassfish.org/docs/latest/reference-manual.pdf#list-jms-resources
https://glassfish.org/docs/latest/reference-manual.pdf#create-custom-resource
https://glassfish.org/docs/latest/reference-manual.pdf#create-jndi-resource
https://glassfish.org/docs/latest/reference-manual.pdf#delete-custom-resource
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jndi-resource
https://glassfish.org/docs/latest/reference-manual.pdf#list-custom-resources
https://glassfish.org/docs/latest/reference-manual.pdf#list-jndi-entries
https://glassfish.org/docs/latest/reference-manual.pdf#list-jndi-resources

JVM Subcommands
create-jvm-options

Creates a JVM option in the Java configuration or profiler elements of the domain.xml file.
Supported in remote mode only. For procedural information in this guide, see To Create JVM
Options.

create-profiler

Creates a profiler element. Supported in remote mode only. For procedural information in this
guide, see To Create a Profiler.

delete-jvm-options

Deletes the specified JVM option from the Java configuration or profiler elements of the
domain.xml file. Supported in remote mode only. For procedural information in this guide, see To
Delete JVM Options.

delete-profiler

Deletes the specified profiler element. Supported in remote mode only. For procedural
information in this guide, see To Delete a Profiler.

generate-jvm-report

Generates a report showing the threads, classes, and memory for the virtual machine that runs
Eclipse GlassFish. For procedural information in this guide, see To Generate a JVM Report.

list-jvm-options

Lists the command-line options that are passed to the Java application launcher when Eclipse
GlassFish is started. Supported in remote mode only. For procedural information in this guide,
see To List JVM Options.

Life Cycle Module Subcommands
create-lifecycle-module

Creates a new life cycle module. Supported in remote mode only. For procedural information in
this guide, see To Create a Life Cycle Module.

list-lifecycle-modules

Lists life cycle modules. Supported in remote mode only. For procedural information in this
guide, see To List Life Cycle Modules.

delete-lifecycle-module

Deletes an existing life cycle module. Supported in remote mode only. For procedural
information in this guide, see To Delete a Life Cycle Module.

Logging and Monitoring Subcommands

369

https://glassfish.org/docs/latest/reference-manual.pdf#create-jvm-options
https://glassfish.org/docs/latest/reference-manual.pdf#create-profiler
https://glassfish.org/docs/latest/reference-manual.pdf#delete-jvm-options
https://glassfish.org/docs/latest/reference-manual.pdf#delete-profiler
https://glassfish.org/docs/latest/reference-manual.pdf#generate-jvm-report
https://glassfish.org/docs/latest/reference-manual.pdf#list-jvm-options
https://glassfish.org/docs/latest/reference-manual.pdf#create-lifecycle-module
https://glassfish.org/docs/latest/reference-manual.pdf#list-lifecycle-modules
https://glassfish.org/docs/latest/reference-manual.pdf#delete-lifecycle-module

collect-log-files

Collects all available log files and creates a ZIP archive. Supported in remote mode only. For
procedural information in this guide, see To Collect Log Files into a ZIP Archive.

disable-monitoring

Disables the monitoring service. Supported in remote mode only. For procedural information in
this guide, see To Disable Monitoring.

enable-monitoring

Enables the monitoring service. Supported in remote mode only. For procedural information in
this guide, see To Enable Monitoring.

list-log-attributes

Lists log file attributes. Supported in remote mode only. For procedural information in this
guide, see Configuring the Logging Service.

list-log-levels

Lists the existing loggers. Supported in remote mode only. For procedural information in this
guide, see To List Log Levels.

list-loggers

Lists all public loggers in your distribution of Eclipse GlassFish. Internal loggers are not listed.
For procedural information in this guide, see To List Loggers.

monitor

Displays monitoring information for the common Eclipse GlassFish resources. Supported in
remote mode only. For procedural information in this guide, see To View Common Monitoring
Data.

rotate-log

Rotates the server.log file and stores the old data in a time-stamped file. Supported in remote
mode only. For procedural information in this guide, see To Rotate Log Files Manually.

set-log-attributes

Sets log file attributes. Supported in remote mode only. For procedural information in this guide,
see Configuring the Logging Service.

set-log-file-format

Sets the formatter used to format log records in log files. For procedural information in this
guide, see Setting the Log File Format.

set-log-levels

Sets the log level for a module. Supported in remote mode only. For procedural information in
this guide, see Setting Log Levels.

370

https://glassfish.org/docs/latest/reference-manual.pdf#collect-log-files
https://glassfish.org/docs/latest/reference-manual.pdf#disable-monitoring
https://glassfish.org/docs/latest/reference-manual.pdf#enable-monitoring
https://glassfish.org/docs/latest/reference-manual.pdf#list-log-attributes
https://glassfish.org/docs/latest/reference-manual.pdf#list-log-levels
https://glassfish.org/docs/latest/reference-manual.pdf#list-loggers
https://glassfish.org/docs/latest/reference-manual.pdf#monitor
https://glassfish.org/docs/latest/reference-manual.pdf#rotate-log
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-attributes
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-file-format
https://glassfish.org/docs/latest/reference-manual.pdf#set-log-levels

ORB Subcommands
create-iiop-listener

Creates an IIOP listener. Supported in remote mode only. For procedural information in this
guide, see To Create an IIOP Listener.

delete-iiop-listener

Deletes an IIOP listener. Supported in remote mode only. For procedural information in this
guide, see To Delete an IIOP Listener.

list-iiop-listeners

Lists the existing IIOP listeners. Supported in remote mode only. For procedural information in
this guide, see To List IIOP Listeners.

Thread Pool Subcommands
create-threadpool

Creates a new thread pool. Supported in remote mode only. For procedural information in this
guide, see To Create a Thread Pool.

delete-threadpool

Deletes the specified thread pool. Supported in remote mode only. For procedural information in
this guide, see To Delete a Thread Pool.

list-threadpools

Lists the existing thread pools. Supported in remote mode only. For procedural information in
this guide, see To List Thread Pools.

Transaction Service Subcommands
freeze-transaction-service

Freezes the transaction subsystem during which time all the in-flight transactions are
suspended. Supported in remote mode only. For procedural information, see To Stop the
Transaction Service.

recover-transactions

Manually recovers pending transactions. Supported in remote mode only. For procedural
information, see To Manually Recover Transactions.

rollback-transaction

Rolls back the named transaction. Supported in remote mode only. For procedural information,
see To Roll Back a Transaction.

unfreeze-transaction-service

Resumes all the suspended in-flight transactions. Invoke this subcommand on an already frozen
transaction. Supported in remote mode only. For procedural information, see To Restart the
Transaction Service.

371

https://glassfish.org/docs/latest/reference-manual.pdf#create-iiop-listener
https://glassfish.org/docs/latest/reference-manual.pdf#delete-iiop-listener
https://glassfish.org/docs/latest/reference-manual.pdf#list-iiop-listeners
https://glassfish.org/docs/latest/reference-manual.pdf#create-threadpool
https://glassfish.org/docs/latest/reference-manual.pdf#delete-threadpool
https://glassfish.org/docs/latest/reference-manual.pdf#list-threadpools
https://glassfish.org/docs/latest/reference-manual.pdf#freeze-transaction-service
https://glassfish.org/docs/latest/reference-manual.pdf#recover-transactions
https://glassfish.org/docs/latest/reference-manual.pdf#rollback-transaction
https://glassfish.org/docs/latest/reference-manual.pdf#unfreeze-transaction-service

List of Examples
• 1-1 Determining if the DAS Requires Restart

• 1-2 Determining if an Instance Requires Restart

• 1-3 Listing Apache Felix Gogo Remote Shell Commands

• 1-4 Running a Remote Shell Command

• 1-5 Determining the Services That an OSGi Bundle Provides

• 2-1 Running an asadmin Utility Subcommand in Single Mode

• 2-2 Specifying an asadmin Utility Option With a Subcommand in Single Mode

• 2-3 Specifying an asadmin Utility Option and a Subcommand Option in Single Mode

• 2-4 Displaying Help Information for the asadmin Utility

• 2-5 Displaying Help Information for an asadmin Utility Subcommand

• 2-6 Starting a Multimode Session With asadmin Utility Options

• 2-7 Starting a Multimode Session by Using the multimode Subcommand

• 2-8 Running a Subcommand in a Multimode Session

• 2-9 Running a Set of asadmin Subcommands From a File

• 2-10 Using the --detach Option in Single Mode

• 2-11 Using the --detach Option in Multimode

• 2-12 Listing Jobs

• 2-13 Attaching to a Subcommand and Checking Its Status

• 2-14 Configuring Managed Jobs

• 2-15 Creating a System Property

• 2-16 Listing System Properties

• 2-17 Deleting a System Property

• 2-18 Adding Module Configuration to domain.xml

• 2-19 Removing Module Configuration From domain.xml

• 2-20 Displaying the Current Active Configuration of a Module

• 2-21 Adding Resources

• 2-22 Displaying Version Information

• 2-23 Listing Applications

• 2-24 Listing Containers

• 2-25 Listing Modules

• 2-26 Listing Subcommands

• 2-27 Listing Timers

• 2-28 Showing Status of a Component

372

• 2-29 Determining the Methods and Method Parameters That an Object in the Tree Supports

• 2-30 Retrieving Data for an Object in the Tree

• 2-31 Adding an Object to the Tree

• 2-32 Updating an Object in the Tree

• 2-33 Deleting an Object From the Tree

• 3-1 Creating a Domain

• 3-2 Listing Domains

• 3-3 Logging In To a Domain on a Remote Machine

• 3-4 Logging In to a Domain on the Default Port of Localhost

• 3-5 Deleting a Domain

• 3-6 Starting a Domain

• 3-7 Stopping a Domain (or Server)

• 3-8 Restarting a Domain (or Server)

• 3-9 Restarting a Domain in a Browser

• 3-10 Creating a Service to Restart a DAS Automatically on Windows

• 3-11 Querying the Service to Restart a DAS Automatically on Windows

• 3-12 Creating a Service to Restart a DAS Automatically on Linux

• 3-13 Creating a Service to Restart a Domain Automatically on Oracle Solaris

• 3-14 Backing Up the Default Domain

• 3-15 Restoring the Default Domain

• 3-16 Listing Backups of the Default Domain

• 3-17 Displaying the DAS Uptime

• 3-18 Changing the Administration Port of a Domain

• 4-1 Creating JVM Options

• 4-2 Listing JVM Options

• 4-3 Deleting a JVM Option

• 4-4 Deleting Multiple JVM Options

• 4-5 Generating a JVM Report

• 4-6 Creating a Profiler

• 4-7 Deleting a Profiler

• 5-1 Creating a Thread Pool

• 5-2 Listing Thread Pools

• 5-3 Updating a Thread Pool

• 5-4 Deleting a Thread Pool

• 6-1 Invoking a Servlet With a URL

373

• 6-2 Invoking a Servlet From Within a JSP File

• 6-3 Redirecting a URL

• 6-4 httpd.conf File for mod_jk

• 6-5 workers.properties File for mod_jk

• 6-6 httpd.conf File for Load Balancing

• 6-7 workers.properties File for Load Balancing

• 6-8 http-ssl.conf File for mod_jk Security

• 7-1 Changing the Name and Location of a Cluster’s Log File

• 7-2 Listing Logger Levels for DAS

• 7-3 Listing Logger Levels for an Instance

• 7-4 Changing the Logger Log Level for a Cluster

• 7-5 Setting Log Levels for Multiple Loggers

• 7-6 Changing the Handler Log Level

• 7-7 Setting the Log File Format using set-log-file-format

• 7-8 Setting the Log File Format using set-log-attributes

• 7-9 Excluding Fields in the ODLLogFormatter

• 7-10 Excluding Fields in the GlassFishLogHandler

• 7-11 Disabling the Multiline Mode in the Log File

• 7-12 Changing the Rotation Size

• 7-13 Changing the Rotation Interval

• 7-14 Changing the Limit Number of Archived Log Files

• 7-15 Rotating Log Files Manually

• 7-16 Collecting and Downloading Log Files as a ZIP File

• 7-17 Listing Loggers

• 8-1 Enabling the Monitoring Service Dynamically

• 8-2 Enabling Monitoring for Modules Dynamically

• 8-3 Enabling Monitoring for Modules by Using the set Subcommand

• 8-4 Disabling the Monitoring Service Dynamically

• 8-5 Disabling Monitoring for Modules Dynamically

• 8-6 Disabling Monitoring by Using the set Subcommand

• 8-7 Viewing Common Monitoring Data

• 8-8 Viewing Attributes for a Specific Type

• 8-9 Viewing Monitorable Applications

• 8-10 Viewing Attributes for an Application

• 8-11 Viewing a Specific Attribute

374

• 9-1 Creating a Life Cycle Module

• 9-2 Listing Life Cycle Modules

• 9-3 Updating a Life Cycle Module

• 9-4 Deleting a Life Cycle Module

• 10-1 Listing Batch Jobs

• 10-2 Listing Batch Job Executions

• 10-3 Listing Batch Job Steps

• 10-4 Listing the Batch Runtime Configuration

• 10-5 Configuring the Batch Runtime

• 11-1 Starting a Database

• 11-2 Stopping a Database

• 11-3 Creating a JDBC Connection Pool

• 11-4 Listing JDBC Connection Pools

• 11-5 Contacting a Connection Pool

• 11-6 Resetting (Flushing) a Connection Pool

• 11-7 Deleting a JDBC Connection Pool

• 11-8 Creating a JDBC Resource

• 11-9 Listing JDBC Resources

• 11-10 Updating a JDBC Resource

• 11-11 Deleting a JDBC Resource

• 12-1 Creating a Connector Connection Pool

• 12-2 Listing Connector Connection Pools

• 12-3 Deleting a Connector Connection Pool

• 12-4 Creating a Connector Resource

• 12-5 Listing Connector Resources

• 12-6 Deleting a Connector Resource

• 12-7 Creating a Resource Adapter Configuration

• 12-8 Listing Configurations for a Resource Adapter

• 12-9 Deleting a Resource Adapter Configuration

• 12-10 Creating a Connector Security Map

• 12-11 Listing All Connector Security Maps for a Connector Connection Pool

• 12-12 Listing Principals for a Specific Security Map for a Connector Connection Pool

• 12-13 Listing Principals of All Connector Security Maps for a Connector Connection Pool

• 12-14 Updating a Connector Security Map

• 12-15 Deleting a Connector Security Map

375

• 12-16 Creating Connector Work Security Maps

• 12-17 Listing the Connector Work Security Maps

• 12-18 Updating a Connector Work Security Map

• 12-19 Deleting a Connector Work Security Map

• 12-20 Creating an Administered Object

• 12-21 Listing Administered Objects

• 12-22 Deleting an Administered Object

• 13-1 Creating an HTTP Protocol

• 13-2 Listing the Protocols

• 13-3 Deleting a Protocol

• 13-4 Creating an HTTP Configuration

• 13-5 Deleting an HTTP Configuration

• 13-6 Creating a Transport

• 13-7 Listing HTTP Transports

• 13-8 Deleting a Transport

• 13-9 Creating an HTTP Listener

• 13-10 Creating a Network Listener

• 13-11 Listing HTTP Listeners

• 13-12 Updating an HTTP Network Listener

• 13-13 Deleting an HTTP Listener

• 13-14 Configuring an HTTP Listener for SSL

• 13-15 Deleting SSL From an HTTP Listener

• 13-16 Creating a Virtual Server

• 13-17 Listing Virtual Servers

• 13-18 Deleting a Virtual Server

• 14-1 Creating a Context Service

• 14-2 Listing Context Services

• 14-3 Deleting a Context Service

• 14-4 Creating a Managed Thread Factory

• 14-5 Listing Managed Thread Factories

• 14-6 Deleting a Managed Thread Factory

• 14-7 Creating a Managed Executor Service

• 14-8 Listing Managed Executor Services

• 14-9 Deleting a Managed Executor Service

• 14-10 Creating a Managed Scheduled Executor Service

376

• 14-11 Listing Managed Scheduled Executor Services

• 14-12 Deleting a Managed Scheduled Executor Service

• 15-1 Creating an IIOP Listener

• 15-2 Listing IIOP Listeners

• 15-3 Updating an IIOP Listener

• 15-4 Deleting an IIOP Listener

• 16-1 Creating a Jakarta Mail Resource

• 16-2 Listing Jakarta Mail Resources

• 16-3 Updating a Jakarta Mail Resource

• 16-4 Deleting a Jakarta Mail Resource

• 17-1 Creating a JMS Host

• 17-2 Listing JMS Hosts

• 17-3 Updating a JMS Host

• 17-4 Deleting a JMS Host

• 17-5 Creating a JMS Connection Factory

• 17-6 Creating a JMS Destination

• 17-7 Listing All JMS Resources

• 17-8 Listing a JMS Resources of a Specific Type

• 17-9 Deleting a JMS Resource

• 17-10 Creating a JMS Physical Destination

• 17-11 Listing JMS Physical Destinations

• 17-12 Flushing Messages From a JMS Physical Destination

• 17-13 Deleting a Physical Destination

• 18-1 Creating a Custom Resource

• 18-2 Listing Custom Resources

• 18-3 Updating a Custom JNDI Resource

• 18-4 Deleting a Custom Resource

• 18-5 Registering an External JNDI Resource

• 18-6 Listing JNDI Resources

• 18-7 Listing JNDI Entries

• 18-8 Updating an External JNDI Resource

• 18-9 Deleting an External JNDI Resource

• 19-1 Stopping the Transaction Service

• 19-2 Rolling Back a Transaction

• 19-3 Restarting the Transaction Service

377

• 19-4 Manually Recovering Transactions

378

List of Figures
• 2-1 Web Page for the REST Resource for Managing a Domain

• 2-2 Web Page for the REST Resource That Provides Class Loader Statistics

379

List of Tables
• 1-1 Default Administration Values

• 1-2 Default Locations

• 2-1 REST Resource Methods for Administering Monitoring and Configuration Data

• 6-1 URL Fields for Servlets Within an Application

• 8-1 HTTP Listener Common Monitoring Statistics

• 8-2 JVM Common Monitoring Statistics

• 8-3 Web Module Common Monitoring Statistics

• 8-4 Example Resources Level Dotted Names

• 8-5 EJB Cache Monitoring Statistics

• 8-6 EJB Container Monitoring Statistics

• 8-7 EJB Method Monitoring Statistics

• 8-8 EJB Pool Monitoring Statistics

• 8-9 Timer Monitoring Statistics

• 8-10 HTTP Service Virtual Server Monitoring Statistics

• 8-11 Jersey Statistics

• 8-12 Connector Connection Pool Monitoring Statistics (JMS)

• 8-13 Connector Work Management Monitoring Statistics (JMS)

• 8-14 JVM Monitoring Statistics for Java SE Class Loading

• 8-15 JVM Monitoring Statistics for Java SE - Threads

• 8-16 JVM Monitoring Statistics for Java SE Compilation

• 8-17 JVM Monitoring Statistics for Java SE Garbage Collectors

• 8-18 JVM Monitoring Statistics for Java SE Memory

• 8-19 JVM Statistics for the Java SE Operating System

• 8-20 JVM Monitoring Statistics for Java SE Runtime

• 8-21 Network Keep Alive Statistics

• 8-22 Network Connection Queue Statistics

• 8-23 Network File Cache Statistics

• 8-24 Network Thread Pool Statistics

• 8-25 ORB Monitoring Statistics (Connection Manager)

• 8-26 General Resource Monitoring Statistics (Connection Pool)

• 8-27 Application Specific Resource Monitoring Statistics (Connection Pool)

• 8-28 EJB Security Monitoring Statistics

• 8-29 Web Security Monitoring Statistics

380

• 8-30 Realm Security Monitoring Statistics

• 8-31 Thread Pool Monitoring Statistics

• 8-32 JVM Monitoring Statistics for Java SE - Thread Info

• 8-33 Transaction Service Monitoring Statistics

• 8-34 Web Module Servlet Statistics

• 8-35 Web JSP Monitoring Statistics

• 8-36 Web Request Monitoring Statistics

• 8-37 Web Servlet Monitoring Statistics

• 8-38 Web Session Monitoring Statistics

• 13-1 Default Ports for Listeners

• 18-1 JNDI Lookup Names and Their Associated References

381

	Eclipse GlassFish Administration Guide, Release 7
	Eclipse GlassFish
	Preface
	Eclipse GlassFish Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names

	1 Overview of Eclipse GlassFish Administration
	Default Settings and Locations
	Configuration Tasks
	Initial Configuration Tasks
	How Dotted Names Work for Configuration
	Configuration Files
	Impact of Configuration Changes

	Administration Tools
	Administration Console
	asadmin Utility
	REST Interfaces
	OSGi Module Management Subsystem
	keytool Utility
	Java Monitoring and Management Console (JConsole)

	Instructions for Administering Eclipse GlassFish

	Part I
	Runtime Administration
	2 General Administration
	Using the asadmin Utility
	Path to the asadmin Utility
	asadmin Utility Syntax
	To Run an asadmin Utility Subcommand in Single Mode
	To Display Help Information for the asadmin Utility or a Subcommand
	To Start a Multimode Session
	To End a Multimode Session
	To Run a Set of asadmin Subcommands From a File
	To Run asadmin Subcommands in --detach Mode

	Administering System Properties
	To Create System Properties
	To List System Properties
	To Delete a System Property

	Using Configuration Modularity
	To Add the Default Configuration of a Module to domain.xml
	To Remove the Configuration of a Module From domain.xml
	To Display the Current Active Configuration of a Module

	Administering Resources
	To Add Resources From an XML File

	Listing Various System Elements
	To Display the Eclipse GlassFish Version
	To List Applications
	To List Containers
	To List Modules
	To List Subcommands
	To List Timers
	To Show Component Status

	Using REST Interfaces to Administer Eclipse GlassFish
	Using REST URLs to Administer Eclipse GlassFish
	Using REST Resource Methods to Administer Eclipse GlassFish
	Resources for asadmin Subcommands That Perform Non-CRUD Operations
	Securing Eclipse GlassFish REST Interfaces
	Formats for Resource Representation of Configuration Objects
	Formats for Resource Representation of Monitoring Objects
	Formats for Resource Representation of Log File Details
	Supported Content Types in Requests to REST Resources

	3 Administering Domains
	About Administering Domains
	Eclipse GlassFish Instances
	Domains for Administering Eclipse GlassFish
	Domain Administration Server (DAS)

	Creating, Logging In To, and Deleting a Domain
	To Create a Domain
	To Create a Domain From a Custom Template
	To List Domains
	To Log In to a Domain
	To Delete a Domain

	Starting and Stopping a Domain
	To Start a Domain
	To Stop a Domain
	To Restart a Domain

	Configuring a DAS or a Eclipse GlassFish Instance for Automatic Restart
	To Configure a DAS or an Instance for Automatic Restart on Windows
	To Configure a DAS or an Instance for Automatic Restart on Linux
	To Configure a DAS or an Instance for Automatic Restart on Oracle Solaris
	To Prevent Service Shutdown When a User Logs Out on Windows

	Backing Up and Restoring a Domain
	To Back Up a Domain
	To Restore a Domain
	To List Domain Backups

	Re-Creating the Domain Administration Server (DAS)
	To Migrate the DAS

	Additional Domain Tasks
	To Display Domain Uptime
	To Switch a Domain to Another Supported Java Version
	To Change the Administration Port of a Domain

	4 Administering the Virtual Machine for the Java Platform
	Administering JVM Options
	To Create JVM Options
	To List JVM Options
	To Delete JVM Options
	To Generate a JVM Report

	Administering the Profiler
	To Create a Profiler
	To Delete a Profiler

	5 Administering Thread Pools
	About Thread Pools
	Configuring Thread Pools
	To Create a Thread Pool
	To List Thread Pools
	To Update a Thread Pool
	To Delete a Thread Pool

	6 Administering Web Applications
	Invoking a Servlet by Alternate Means
	Changing Log Output for a Servlet
	Defining Global Features for Web Applications
	To Use the default-web.xml File

	Redirecting a URL
	Administering mod_jk
	To Enable mod_jk
	To Load Balance Using mod_jk and Eclipse GlassFish
	To Enable SSL Between the mod_jk Load Balancer and the Browser
	To Enable SSL Between the mod_jk Load Balancer and Eclipse GlassFish

	Administering mod_proxy_ajp
	To Enable mod_proxy_ajp
	To Load Balance Using mod_proxy_ajp and Eclipse GlassFish

	7 Administering the Logging Service
	About Logging
	Log Manager
	Level
	Log Record
	Logger
	Handler
	Formatter
	Configuration

	Default Configuration
	The Configuration File
	The Server Log File
	The Access Log File
	Standard Output Stream
	Logger Levels

	Configuring the Logging Service
	Loggers
	Handlers
	Formatters

	Using Asadmin
	To Change the Location of the logging.properties File
	To Change the Location of the Log File
	Setting Log Levels
	Setting the Log File Format
	Setting Log File Rotation

	Viewing Log Records
	To Collect Log Files into a ZIP Archive

	Listing Loggers
	To List Loggers

	8 Administering the Monitoring Service
	About Monitoring
	How the Monitoring Tree Structure Works
	About Monitoring for Add-on Components
	Tools for Monitoring Eclipse GlassFish

	Configuring Monitoring
	To Enable Monitoring
	To Disable Monitoring

	Viewing Common Monitoring Data
	To View Common Monitoring Data
	Common Monitoring Statistics

	Viewing Comprehensive Monitoring Data
	Guidelines for Using the list and get Subcommands for Monitoring
	To View Comprehensive Monitoring Data
	Comprehensive Monitoring Statistics

	Configuring JConsole to View Eclipse GlassFish Monitoring Data
	To Connect JConsole to Eclipse GlassFish

	9 Administering Life Cycle Modules
	About Life Cycle Modules
	Configuring Life Cycle Modules
	To Create a Life Cycle Module
	To List Life Cycle Modules
	To Update a Life Cycle Module
	To Delete a Life Cycle Module

	10 Administering Batch Jobs
	About Batch Jobs
	Viewing Batch Jobs
	To List Batch Jobs
	To List Batch Job Executions
	To List Batch Job Steps

	Configuring the Batch Runtime
	To List the Batch Runtime Configuration
	To Configure the Batch Runtime

	Part II
	Resources and Services Administration
	11 Administering Database Connectivity
	About Database Connectivity
	Setting Up the Database
	To Install the Database and Database Driver
	To Start the Database
	To Stop the Database
	Apache Derby Database Utility Scripts

	Configuring Access to the Database
	Administering JDBC Connection Pools
	Administering JDBC Resources
	Enabling the jdbc/__default Resource in a Clustered Environment
	Integrating the JDBC Driver

	Configuration Specifics for JDBC Drivers
	IBM DB2 Database Type 2 Driver
	IBM DB2 Database Type 4 Driver
	Apache Derby DB/Derby Type 4 Driver
	MySQL Server Database Type 4 Driver
	Oracle 10 Database Driver
	Oracle 11 Database Driver
	PostgreSQL Type 4 Driver
	DataDirect Type 4 Driver for IBM DB2 Database
	DataDirect Type 4 Driver for IBM Informix
	DataDirect Type 4 Driver for Microsoft SQL Server Database
	DataDirect Type 4 Driver for MySQL Server Database
	DataDirect Type 4 Driver for Oracle 11 Database
	DataDirect Type 4 Driver for Sybase Database
	Inet Oraxo Driver for Oracle Database
	Inet Merlia Driver for Microsoft SQL Server Database
	Inet Sybelux Driver for Sybase Database
	JConnect Type 4 Driver for Sybase ASE 12.5 Database

	12 Administering EIS Connectivity
	About EIS Connectivity
	Administering Connector Connection Pools
	To Create a Connector Connection Pool
	To List Connector Connection Pools
	To Connect to (Ping) or Reset (Flush) a Connector Connection Pool
	To Update a Connector Connection Pool
	To Delete a Connector Connection Pool

	Administering Connector Resources
	To Create a Connector Resource
	To List Connector Resources
	To Update a Connector Resource
	To Delete a Connector Resource

	Administering the Resource Adapter Configuration
	To Create Configuration Information for a Resource Adapter
	To List Resource Adapter Configurations
	To Update a Resource Adapter Configuration
	To Delete a Resource Adapter Configuration

	Administering Connector Security Maps
	To Create a Connector Security Map
	To List Connector Security Maps
	To Update a Connector Security Map
	To Delete a Connector Security Map

	Administering Connector Work Security Maps
	To Create a Connector Work Security Map
	To List Connector Work Security Maps
	To Update a Connector Work Security Map
	To Delete a Connector Work Security Map

	Administering Administered Objects
	To Create an Administered Object
	To List Administered Objects
	To Update an Administered Object
	To Delete an Administered Object

	13 Administering Internet Connectivity
	About Internet Connectivity
	About HTTP Network Listeners
	About Virtual Servers

	Administering HTTP Network Listeners
	To Create an Internet Connection
	Administering HTTP Protocols
	Administering HTTP Configurations
	Administering HTTP Transports
	Administering HTTP Network Listeners

	Administering Virtual Servers
	To Create a Virtual Server
	To List Virtual Servers
	To Update a Virtual Server
	To Delete a Virtual Server
	To Assign a Default Web Module to a Virtual Server
	To Assign a Virtual Server to an Application or Module
	To Set JSESSIONIDSSO Cookie Attributes

	14 Administering Concurrent Resources
	About Concurrent Resources
	Default Concurrent Resources
	Configuring Context Services
	To Create a Context Service
	To List Context Services
	To Update a Context Service
	To Delete a Context Service

	Configuring Managed Thread Factories
	To Create a Managed Thread Factory
	To List Managed Thread Factories
	To Update a Managed Thread Factory
	To Delete a Managed Thread Factory

	Configuring Managed Executor Services
	To Create a Managed Executor Service
	To List Managed Executor Services
	To Update a Managed Executor Service
	To Delete a Managed Executor Service

	Configuring Managed Scheduled Executor Services
	To Create a Managed Scheduled Executor Service
	To List Managed Scheduled Executor Services
	To Update a Managed Scheduled Executor Service
	To Delete a Managed Scheduled Executor Service

	15 Administering the Object Request Broker (ORB)
	About the ORB
	Configuring the ORB
	Administering IIOP Listeners
	To Create an IIOP Listener
	To List IIOP Listeners
	To Update an IIOP Listener
	To Delete an IIOP Listener

	16 Administering the Jakarta Mail Service
	About Jakarta Mail
	Administering Jakarta Mail Resources
	To Create a Jakarta Mail Resource
	To List Jakarta Mail Resources
	To Update a Jakarta Mail Resource
	To Delete a Jakarta Mail Resource

	17 Administering the Java Message Service (JMS)
	About the JMS Service
	JMS Service High Availability

	Updating the JMS Service Configuration
	Setting Message Queue Broker Properties in the JMS Service Configuration

	Administering JMS Hosts
	About JMS Host Types
	Configuring Embedded and Local JMS Hosts
	To Create a JMS Host
	To List JMS Hosts
	To Update a JMS Host
	To Delete a JMS Host

	Administering JMS Connection Factories and Destinations
	To Create a Connection Factory or Destination Resource
	To List JMS Resources
	To Delete a Connection Factory or Destination Resource

	Administering JMS Physical Destinations
	To Create a JMS Physical Destination
	To List JMS Physical Destinations
	To Purge Messages From a Physical Destination
	To Delete a JMS Physical Destination

	Special Situations When Using the JMS Service
	Troubleshooting the JMS Service
	Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers
	Configuring GenericJMSRA for Supported External JMS Providers
	Using GenericJMSRA with WebLogic JMS
	Using GenericJMSRA with IBM WebSphere MQ

	18 Administering the Java Naming and Directory Interface (JNDI) Service
	About JNDI
	Jakarta EE Naming Environment
	How the Naming Environment and the Container Work Together
	Naming References and Binding Information

	Administering JNDI Resources
	Administering Custom JNDI Resources
	Administering External JNDI Resources

	19 Administering Transactions
	About Transactions
	Transaction Resource Managers
	Transaction Scope

	Configuring the Transaction Service
	Managing the Transaction Service for Rollbacks
	To Stop the Transaction Service
	To Roll Back a Transaction
	To Restart the Transaction Service
	Determining Local Transaction Completion at Shutdown

	Recovering Transactions
	Automatic Transaction Recovery
	To Manually Recover Transactions
	Distributed Transaction Recovery
	Recovery Workarounds and Limitations

	Transaction Logging
	To Store Transaction Logs in a Database

	Part III
	Appendixes
	A Subcommands for the asadmin Utility
	General Administration Subcommands
	Batch Jobs Subcommands
	Concurrent Resources Subcommands
	Connectivity Subcommands
	Domain Subcommands
	Internet Connectivity Subcommands
	Jakarta Mail Subcommands
	JMS Subcommands
	JNDI Subcommands
	JVM Subcommands
	Life Cycle Module Subcommands
	Logging and Monitoring Subcommands
	ORB Subcommands
	Thread Pool Subcommands
	Transaction Service Subcommands

	List of Examples
	List of Figures
	List of Tables

